
The Bulletin of Symbolic Logic

Volume 13, Number 4, Dec. 2007

THE COMPLEXITY OF PROPOSITIONAL PROOFS

NATHAN SEGERLIND

Abstract. Propositional proof complexity is the study of the sizes of propositional proofs,

and more generally, the resources necessary to certify propositional tautologies. Questions

about proof sizes have connectionswith computational complexity, theories of arithmetic, and

satisfiability algorithms. This is article includes a broad survey of the field, and a technical

exposition of some recently developed techniques for proving lower bounds on proof sizes.
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Part 1. A tour of propositional proof complexity.

§1. Is there a way to prove every tautology with a short proof? One way to
certify that a propositional formula is a tautology is to present a proof of the
formula in a propositional calculus, such as the system F below:
Definition 1.1. The formulas of F are the well-formed formulas over the
connectives ∧, ∨,→ and ¬. The inference rule of F is modus ponens ( from A
and A→ B infer B), and its axioms are all substitution instances of:

1. A→ (B → A) 2. A ∧ B → B
3. (A→ B)→ (A→ B → C )→ (A→ C ) 4. A ∧ B → A
5. A→ A ∨ B 6. A→ B → A ∧ B
7. (A→ B)→ (A→ ¬B)→ ¬A 8. B → A ∨ B
9. (A→ C )→ (B → C )→ (A ∨ B → C ) 10. ¬¬A→ A

Let � be a propositional formula. An F-proof of � is a sequence of formulas
F1, . . . , Fm so that Fm = �, and each Fi is either an axiom, or follows from the
application of modus ponens to two formulas Fj and Fk , with j, k < i .

The completeness theorem forF guarantees that every tautology has anF-
proof. Moreover, most proofs of the completeness theorem give quantitative
bounds on proof sizes: Every tautology � on n variables has an F-proof in
which there are at most 2O(n) formulas, each of which has size polynomial
in the size of �. Of course, for many tautologies, much smaller proofs
are possible. Does every tautology have an F-proof significantly smaller
than the exponential length derivation? More generally, does there exist a
propositional proof system in which every tautology has a small proof?
This question requires a clarification of what is meant by “propositional
proof sytem”. For example, any algorithm for deciding satisfiability of a
Boolean formula can be viewed as a proof system, with an execution trace
for a run that declares � to be unsatisfiable being viewed as a proof that ¬�
is a tautology. Another possibility would be to formalize the definitions of
propositional formulas and tautologies in ZFCand present a proof in formal
ZFC that the formula in question is a tautology. This might seem extreme
but by using high-level mathematics, some proofs might be shorter than
possible with a more commonplace system such as F . These methods and
the proof systemF share three properties that seemnecessary for anymethod
of certifying tautologies: Every tautology has a proof, only tautologies have
proofs, and valid proofs are computationally easy to verify.

Definition 1.2 (modified from [69]). Let F denote the set of propositional
formulas over the connectives ∧, ∨,→ and ¬, with a countably infinite supply
of propositional variables. An abstract propositional proof system is a poly-
nomial time function V : F ×{0, 1}∗ → {0, 1} such that for every tautology �
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there is a proof P ∈ {0, 1}∗ with V (�, P) = 1 and for every non-tautology �,
for every P, V (�, P) = 0. The size of the proof is |P|.
Defintion 1.2 equates propositional proof systems with non-deterministic
algorithms for the language of tautologies. In particular, if a family of
tautologies possess polynomial-size proofs in the sense of Definition 1.2,
then that family of tautologies is in NP.1

Definition 1.3. A propositional proof systems is said to be polynomially
bounded if there exists a constant c so that for every tautology �, there exists
a proof P with |P| ≤ c|�|c and V (�, P) = 1.
Theorem 1.1. [69] There exists a polynomially bounded propositional proof
system if and only NP = coNP.

Proof. Let TAUT denote the language of propositional tautologies over
the connectives ∧, ∨, ¬, and →, and let TAUTc denote the language of
non-tautologies. If NP = coNP then there is a polynomial-time nonde-
terministic Turing machine that decides TAUT, call this machine A. The
procedure that takes a tautology � and a string S and checks that S is an an
accepting computational history of A on input � is a polynomially bounded
proof system for TAUT. Now suppose that there is a polynomially-bounded
propositional proof system V . Choose a constant c so that every tautology
� has a V -proof of length at most c|�|c . The nondeterministic algorithm
that on input � simply guesses a string S of length≤ c|�|c and verifies that S
is a V -proof of � correctly decides TAUT. Because TAUT is coNP-complete
under polynomial-time many-one reductions, we have that coNP ⊆ NP.
Furthermore, this places TAUTc ∈ coNP, and since TAUTc isNP-complete
we have NP ⊆ coNP and thus NP = coNP. ⊣
Because P = NP ⇒ NP = coNP, showing that there is no polynomially-
bounded propositional proof system would also show that P 	= NP. So
resolving the existence of a polynomially-bounded propositional proof sys-
tem “in the expected direction” is probably a tough problem.
Showing thatF is not polynomially bounded seems to be an easier problem
than showing NP 	= coNP—it is a particular proof system with a simple
syntactic structure. However, whether or notF is polynomially bounded has
resisted decades of effort, and this problem can be viewed as the fundamental
open problem in propositional proof complexity- “Are the Frege systems
polynomially bounded?” Frege systems are the axiom-and-inference-rule
based derivation systems exemplified by the system F .

1It is natural to ask what happens if the proof verification procedure is a randomized
or quantum algorithm. With a randomized classical verifier, families of tautologies with
polynomial-size proofs fall into the complexity class of “Merlin–Arthur games” (MA), which,
modulo plausible conjectures in computational complexity, is the same class as NP [97, 84].
For a quantum verifier, families of tautologies with polynomial-size proofs are in the class
QCMA, and it is not known how this class relates to NP [4].
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Definition 1.4. [69] A Frege system is an axiomatic proof system that is
implicationally complete. An axiomatic proof system has two parts:

1. A finite set of propositional tautologies, A1, . . . , Ak, called the axioms.
2. A finite set of tuples of formulas (A0, . . . , Al ) such that for each tuple

∧l
i=1Ai → A0 is a tautology. These tuples are called inference rules and
are not necessarily of the same arity.

A derivation of a propositional formula � from hypotheses H is a sequence of
formulas F1, . . . , Fm so that Fm = � and eachFi is either amember ofH, a sub-
stitution instance of an axiom, or, there is an inference rule of (A0, A1, . . . , Al )
and a substitution � so that Fi = A0[�], for each j = 1, . . . , l , the formula
Aj [�] is among the formulas F1, . . . , Fi−1. A proof of � is a derivation of �
from the empty set of hypotheses.
A propositional proof system G is said to be implicationally complete if for
all formulas F0, . . . , Fk , whenever F1, . . . , Fk |= F0, there exists a G-derivation
of F0 from the hypotheses F1, . . . , Fk .

The particular choice of axioms and inference rules does not affect proof
sizes toomuch, as derivations in oneFrege systemcanbe efficiently translated
into derivations in any other Frege system. Implicational completeness is
used in the proof of this fact.

Theorem 1.2. [69] There exists a polynomially-bounded Frege system if and
only if all Frege systems are polynomially bounded.

Establishing superpolynomial proof size lower bounds for the Frege sys-
tems seems beyond current techniques, so people have focused their attention
on proving size lower bounds for Frege systems that use only formulas of
some limited syntactic form. These results can be interpreted as partial
results towards the larger goals of proving that the Frege systems are not
polynomially-bounded and proving that NP 	= coNP. Furthermore, these
special cases are interesting on their own terms: Proof size lower bounds for
restricted Frege systems can establish run time lower bounds for satisfiability
algorithms and independence results for first-order theories of arithmetic.

§2. Satisfiability algorithms and theories of arithmetic.

2.1. The efficiency of satisfiability algorithms. Many satisfiability algo-
rithms heuristically construct proofs in a restricted fragment of a Frege
system. By identifying tautologies that require large proofs in the proof
system, we identify limitations for the satisfiability algorithms that apply
no matter which heuristics are used. Knowledge of these limitations helps
explain why some algorithms are faster than others on certain instances, and
helps guide the development of new algorithms.
The best known connection between a proof system and satisfiability al-
gorithms is that between resolution and satisfiability algorithms such as the
Davis–Logemann–Loveland procedure, the Davis–Putnam procedure, and



COMPLEXITY OF PROPOSITIONAL PROOFS 421

contemporary clause learning algorithms. This brings us a minor techni-
cal issue: Because satisfiability algorithms distinguish between satisfiable
and unsatisfiable formulas (as opposed to tautological and non-tautological
formulas), it is cleaner to compare satisfiability algorithms with refutation
systems. A refutation of φ in a Frege system is a derivation of a contra-
diction from φ. Because the axioms are tautologies and the inference rules
are sound, a refutation of φ certifies that φ is unsatisfiable. Every refutation
system can be viewed as a proof system because φ is a tautology if and only
if ¬φ is unsatisfiable
Definition 2.1. Resolution is a propositional refutation system that manip-
ulates clauses, and has two inference rules: The resolution rule, “From A ∨ x
and B ∨¬x, infer A∨B”, and the subsumption rule, “From A, infer A∨ x”.
A resolution refutation of a CNF

∧m
i=1Ci is a sequence of clauses D1, . . . , Ds

so that Ds = ∅, and eachDi either is one of the clauses C1, . . . , Cm, or follows
from the preceding clausesDj , j < i by application of one of the inference rules.

A basic satisfiability algorithm is the Davis–Logemann–Loveland (DLL)
procedure [112]. Below we present pseudocode for a simple DLL-based
satisfiability algorithm.2 The input F is a CNF represented as a set of
clauses and the input � is a partial assignment to the variables, represented
as a set of literals. The procedure returns 0 if F ↾� is unsatisfiable and 1 if
F ↾� is satisfiable. To decide if F is satisfiable, run DLL(F, ∅). A sample run
of the DLL algorithm is presented in Figure 1.

DLL(F, �):

1. If for all C ∈ F , C ↾�= 1, return 1
2. If there exist a clause C ∈ F so that C ↾�= 0, return 0
3. (Unit Propagation) If there exists a clause C ∈ F so that C ↾�= l ,
then return DLL(F, � ∪ {l})

4. (Decision)
(a) Heuristically choose a variable x that is unset by �
(b) Heuristically choose a value v ∈ {0, 1}
(c) Return DLL(F, � ∪ {xv}) ∨DLL(F, � ∪ {x1−v})

When an implementation of the DLL algorithm finds a CNF F to be
unsatisfiable, its execution tree corresponds to a resolution refutation of F .
The idea is to label each leaf by a clause of F falsified by the branch, and
then proceed upwards resolving on each variable that is branched upon. Unit
propagation on a variable is treated as a decision node in which one child
is immediately falsified. The conversion of the DLL tree in Figure 1 into
a resolution refutation is demonstrated in Figure 2. This conversion holds
regardless of the heuristic choices used for branching at steps 4a and 4b.

2The original version of the procedure included a “Pure Literal Rule”: If there exists a
literal l that occurs only positively in F then we may set l to 1. Contemporary satisfiability
engines usually omit this rule. The translation into resolution is easily seen to hold even when
the pure literal rule is used.
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Branch
on a

a = 0 a = 1

UP:
a ∨ y

Branch
on x

y = 1 x = 0 x = 1

UP:
¬x ∨ ¬y

UP:
b ∨ y

UP:
¬x ∨ ¬y

x = 0 b = 1 y = 0

UP:
b ∨ x ¬b ∨ x ¬a ∨ x ∨ y

b = 1

¬b ∨ x

Figure 1. ADLL refutation of the set of clauses ¬a ∨¬x ∨
¬y, a ∨ y, ¬b ∨ x, b ∨ x, ¬x ∨ ¬y. “UP” written above
clause denotes a unit propagation caused by that clause. Be-
neath each branch is a clause which is falsified by the partial
assignment of that branch.

Lemma 2.1. If some implementation of the DLL algorithm deems a CNF F
to be unsatisfiable within s steps, then there is a resolution refutation of F of
size at most s .

The Davis–Putnam procedure is another satisfiability algorithm based
upon resolution [71]. Below we present pseudocode for a simple DP-based
satisfiability algorithm. Again, the input F is a CNF represented as a set of
clauses. The procedure returns 0 if F is unsatisfiable and 1 if F is satisfiable.

DP(F ):

1. Order the variables as x1, . . . , xn.
2. For i = 1, . . . , n:
(a) For each clause C ∨xi ∈ F , and each clauseD ∨¬xi ∈ F , add
C ∨D to F

(b) Remove all clauses containing xi from F
3. If the empty clause belongs to F then return 0, otherwise return 1
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∅

a

¬y

x

¬b ∨ x b ∨ x

¬x ∨ ¬y

a ∨ y

a

x

¬b ∨ x b ∨ x

¬x ∨ a

¬x ∨ y ∨ ¬a ¬x ∨ ¬y

Figure 2. The resolution refutation of the set of clauses
¬a∨¬x∨¬y, a∨y, ¬b∨x, b∨x, ¬x∨¬y that corresponds
to the DLL run of Figure 1.

The execution of the Davis–Putnam algorithm on an unsatisfiable CNF
corresponds to a resolution refutation. This is demonstrated in Figure 3.

Lemma 2.2. If the Davis–Putnam algorithm deems a CNF F to be unsat-
isfiable within s steps, then there is a resolution refutation of F of size at
most s .

Notice that the conversion from the execution trace of a DLL algorithm
into a resolution refutation preserves the structure of the backtracking tree.
In the jargon of propositional proof complexity, the derivation of Figure 2
is said to be tree-like and the derivation of Figure 3 is said to be DAG-like.
In Figure 2, the literal x is derived twice, whereas in Figure 3, it is derived
once and used twice. The ability to reuse previously derived formulas, rather
than repeatedly rederiving them, can make general resolution exponentially
more efficient than tree-like resolution.

Theorem 2.3 ([37] building upon [67, 159, 44, 38]). There exists a family
of unsatisfiable CNFs, {Fn}∞n=1, with |Fn | = O(n), so that tree-like resolution
refutations of Fn are all of size 2

Ω(n/ log n) but Fn possesses DAG-like resolution
refutations of size O(n).

Theorem 2.3 shows that algorithms that generate DAG-like resolution
refutations can be exponentially more efficient than any algorithm that gen-
erates tree-like resolution refutations—even those with idealized optimal
branching heuristics. While the Davis–Putnam procedure creates DAG-like
refutations, it is often unsatisfactory because it can derive many unneces-
sary clauses and has large memory requirements. However, in recent years
there has been progress with other methods that generate DAG-like reso-
lution proofs in a more efficient manner than the Davis–Putnam approach.
Algorithms based on DLL with clause learning [157, 24, 111, 119, 83, 77]
perform a DLL backtracking search augmented with the ability to create
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∅

Eliminate y y ¬y

Eliminate x ¬x ∨ y x ¬x ∨ ¬y

Eliminate b ¬b ∨ x b ∨ x

Eliminate a ¬x ∨ y ∨ ¬a ¬x ∨ a

Figure 3. The resolution refutation of the set of clauses
¬a ∨ ¬x ∨ ¬y, a ∨ y, ¬b ∨ x, b ∨ x, ¬x ∨ ¬y generated by
the Davis–Putnam procedure with the variable order a, b,
x, y.

new (“learned”) clauses and remove these new clauses when unneeded. This
process constructs DAG-like resolution refutations [109], and it is known
that versions of these algorithms can efficiently refute the CNFs of Theo-
rem 2.3 [30].
The satisfiability algorithms that we have discussed so far—DLL back-
tracking, the Davis–Putnam procedure, and DLL with clause learning,
share some limitations. Each implements resolution, and therefore none
can quickly refute a CNF that requires large resolution refutations. Con-
sider the pigeonhole principle, the statement that n + 1 pigeons cannot be
placed into n holes without a collision. This fact can be encoded as an
unsatisfiable CNF as follows: For each i = 1, . . . , n + 1, there is a clause
∨n
j=1 xi,j—“pigeon i gets some hole”, and for all 1 ≤ i < j ≤ n + 1, and
all 1 ≤ k ≤ n, ¬xi,k ∨ ¬xj,k—“pigeon i and pigeon j do not share hole k”.
(This CNF is so important that we give it a name,PHPn+1n .) A famous result
of Armin Haken shows that the pigeonhole principle requires exponentially
large resolution refutations.

Theorem 2.4. [87, 60, 29, 38] Resolution refutations of PHPn+1n require

size 2Ω(n).

Corollary 2.5. All DLL, Davis–Putnam or DLL with clause learning al-
gorithms run for 2Ω(n) many steps when processing PHPn+1n .

Many satisfiability algorithms have been proposed that can efficiently re-
fute the propositional pigeonhole principle (and thereby go beyond the



COMPLEXITY OF PROPOSITIONAL PROOFS 425

abilities of resolution based solvers). Techniques based on symmetry-
exploitation [76, 75, 74, 16], integer programming [73], and ordered-binary
decision diagrams [61, 62, 14, 120, 121, 125] have been suggested. Proof
search for these systems is a developing art, and none of these algorithms
has yet to consistently out-perform resolution based solvers over general
instances.

2.2. Independence results for weak-theories of arithmetic. One notion of
constructivity in arithmetic is to restrict the use of induction so that the
definable functions have restricted growth rates. A well known example
of such a system is Parikh’s theory I∆0, which formalizes strongly finitist
arguments that disallow the use of exponentiation [126, 55].

Definition 2.2. The bounded formulas over the language +, ·, ≤, 0, 1 are
those meeting the following recursive definition:

1. All quantifier free formulas are bounded.
2. If φ(y) is a bounded formula and t is a term, then ∀y < t φ(y) and

∃y < t φ(y) are bounded formulas. (Either φ or t or both might contain
free variables different from y.)

I∆0 is a first-order theory with function symbols + and ·, binary relation
symbol <, and constants 0 and 1. As axioms, the theory includes the universal
closures of each of the following formulas:

a+0=a (a+b)+c=a+(b+c) a+b=b+a

a<b→∃x, a+x=b 0=a ∨ 0<a 0<1

0<a→1≤a a<b→a+c<b+c a ·0=0
a ·1=a (a ·b)·c=a ·(b ·c) a ·b=b ·a
(a<b∧c 	=0)→a ·c <b ·c a ·(b+c)=(a ·b)+(a ·c)
In addition, for every bounded formula φ, there is an axiom:

φ(0) ∧
(

∀xφ(x)→ φ(x + 1)
)

→ ∀xφ(x)
The functions definable by I∆0 are rudimentary (in the language of com-
putational complexity, they belong to the linear-time hierarchy) [126, 39,
161, 107]. Other theories of bounded arithmetic correspond to other com-
plexity classes. For example, in Buss’s theory S12 the Σ

b
1 definable functions

are exactly the polynomial time computable functions. At present we do not
knowmuch about which arguments can be formalized in the various theories
of bounded arithmetic. Learning more might shed light on the P versusNP
problem—for example, if strong pseudorandom number generators exist,
then superpolynomial circuit size lowerbounds for SAT are independent of
the theory S22 [140, 53].

3

3The connections with cryptography and complexity go the other direction as well, for
example, if the RSA function is secure against polynomial-size circuits, then S12 cannot prove
Fermat’s little theorem [105].
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For many classical results, it is unknown whether or not they can be
proved in I∆0. In particular, it is not known whether or not I∆0 can
prove the infinitude of the primes. It is known that if I∆0 can prove the
pigeonhole principle, then I∆0 can prove the infinitude of the primes [160,
128]. However, the relationship between I∆0 and the pigeonhole principle
is sticky.

Definition 2.3. Let I∆0(R) denote I∆0 with its language expanded to in-
clude the relation symbol R. Let php(R) denote the following sentence in the
language of I∆0(R):

∀n ¬
((

∀x0<n+1∀x1<n+1∀y<n (x0=x1)∨¬R(x0, y)∨¬R(x1, y))
∧

(

∀x<n+1∃y<n R(x, y))
)

Theorem 2.6. There is no I∆0(R) proof of PHP(R).

What Theorem 2.6 means for I∆0 is that there is no “schematic” I∆0 proof
of the pigeonhole principle, one in which we take the proof of php(R) in
I∆0(R) and then substitute a bounded formula φ for R to obtain an I∆0
proof of php(φ). It is still open whether or not I∆0 can prove php(φ) for
every bounded φ, but such proofs would have to be done on a formula-by-
formula basis that makes use of the structure of φ.
We now sketch the proof of Theorem 2.6.

Definition 2.4. [128] Let φ be a bounded formula in the language I∆0(R)
with free variables x1, . . . , xm. For each �n ∈ N

m we define 〈φ〉�n by induction
on the structure of φ as follows:

φ 〈φ〉�n

s(�y) = t(�y) 0, if s(�n) 	= t(�n), or 1, if s(�n) = t(�n)

s(�y) < t(�y) 0, if s(�n) ≥ t(�n), or 1, if s(�n) < t(�n)

R(s(�y), t(�y)) xi,j where i = s(�n) and j = t(�n)

� ∨ � 〈�〉�n ∨ 〈�〉�n
� ∧ � 〈�〉�n ∧ 〈�〉�n
� → � 〈�〉�n → 〈�〉�n
¬� ¬〈�〉�n

∃y < t(�x) �(y, �x) ∨b
j=1〈�(j, �x)〉�n where b = t(�n)

∀y < t(�x) �(y, �x) ∧b
j=1〈�(j, �x)〉�n where b = t(�n)
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Because the terms of this language are polynomials, each existential (uni-
versal) quantifier translates into a disjunction (conjuntion) with at most
polynomially many disjuncts (conjuncts). An easy induction argument
bounds the size and alternation depth of the propositional translations in
terms of the first-order formula.

Lemma 2.7. [128] Let φ be a bounded formula in the language of I∆0(R)
with free variables x1, . . . , xm. There exist constants c, d ∈ N so that for all
�n ∈ N

m with N = maxi ni , |〈φ〉�n| ≤ N c and dp(〈φ〉�n) ≤ d .
The translation preserves the structure of I∆0(R) proofs (up to small
number of “clean-up” steps).

Theorem 2.8. [128] Let φ be a bounded formula in the language of I∆0(R).
Let x1, . . . , xm be the free variables of φ. If I∆0(R) proves ∀�xφ(�x) then for
each �n ∈ N

m, the propositional formula 〈φ〉�n has a Frege proof of alternation-
depth O(d ) and size (maxi ni )

O(1).

A break-through result of Miklós Ajtai showed that there are no
polynomial-size, constant-depth Frege proofs of the n + 1 to n pigeonhole
principle [6].

Theorem 2.9. [6, 106, 130] All depth d Frege proofs ofPHPn+1n require size

Ω
(

2n
1/6d

)

.

By Theorem 2.8, if I∆0(R) could prove php
n+1
n (R), then that proof would

translate into a family of polynomial-size, constant alternation-depth Frege
proofs for PHPn+1n , contradicting Theorem 2.9. Thus we obtain Theo-
rem 2.6.

§3. A menagerie of Frege-like proof systems. In this section, we describe
and compare many propositional proof systems that come from satisfiability
algorithms and translations from theories of bounded arithmetic. We focus
on propositional systems that can be viewed asFrege systemswhose formulas
are restricted to a particular syntactic form.
The notion used to compare all of these different propositional proof
systems is p-simulation. We consider a proof system A to be at least as
efficient as a system B if every B-proof can be efficiently translated into an
A proof.

Definition 3.1. LetV1 andV2 be abstract propositional proof systems. We
say that V1 p-simulates V2 if there is a polynomial time computable function
f so that whenever � is a tautology and V1(�, P) = 1, V2(�, f(P)) = 1. Let
g : N → N. We say that V1 is g-separated from V2 if there exists a infinite
family of tautologies {�n | n = 1, . . .∞} so that for alln, sV2(�n) ≥ g(sV1(�n)).
These definitions are adapted in the obvious manner for refutation systems.

Theorem 1.2 is usually stated in its stronger form: “All Frege systems
p-simulate one another” [69].
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3.1. Some Frege systems with restricted formulas.

Resolution: The resolution system and its connections with satisfiability al-
gorithms were discussed at length in Subsection 2.1. Resolution also
arises from translations of very weak theories of arithmetic into propo-
sitional logic, for example, the fragment of I∆0(R) that allows induction
only on Σb1 formulas, cf. [100, 102]. Theorem 2.4 shows that resolution is
not polynomially bounded.

Res (k): The Res (k) systems generalize resolution by using formulas that
are k-DNFs instead of only clauses [102, 20]. The inference rules for
Res (k) are the same as those for resolution, but with the addition of rules

for and-introduction x1∨C ···xk∨C
(

Vk
i=1 xi)∨C

and and-elimination (
Vk
i=1 xi)∨C
xi∨C

. The

Res (k) systems correspond to translations from certain weak theories
of bounded arithmetic, for example, the fragment of I∆0(R) that allows
induction only on Σb2 formulas, cf. [102]. The Res (k) systems also play
a significant role in understanding the proof complexity of the weak
pigeonhole principles, variants of the pigeonhole principle in which there
are many more pigeons than holes [102, 110, 20, 152]. Because Res (k)
systems are special kinds of Frege systems with constant alternation
depth, Theorem 2.9 shows that the Res (k) systems are not polynomially
bounded.

Constant-depth Frege systems: A depth d Frege system (or, d -Frege) is a
Frege system in which the formulas are restricted to have alternation
depth at most d . For a function s : N → N, it is said that a family of
tautologies {�n | n = 1, . . .∞} possesses size s(n) constant-depth Frege
proofs if there exist a constant d so that each �n possesses a depth d
Frege proof of size at most s(n).
Constant-depth Frege systems generalize the resolution and Res (k)
systems, which are depth one and depth two systems, respectively. Ex-
tensions to resolution based satisfiability algorithms, such as caching
previously refuted subformulas, can be formalized as constant-depth
Frege systems [28]. As shown in Subection 2.2, constant-depth proofs
arise naturally from translations of proofs from the first-order theory
I∆0(R) [128]. Theorem 2.9 shows that constant depth Frege systems are
not polynomially bounded.
The exact formulation of the inference rules and axioms is not relevant
—a variant of Theorem 1.2 shows that proofs can be translated between
any two constant-depth Frege systemswith atmost a polynomial increase
in size and a linear increase in depth.

Constant-depth Frege with counting axioms modulo m: “You cannot parti-
tion a set of odd cardinality into sets of size two.” Facts like this are
the beginnings of the connections between combinatorics and algebra,
and they entail many other results (for example, the onto pigeonhole



COMPLEXITY OF PROPOSITIONAL PROOFS 429

principle, which states that there is no onto, injective relation from n +1
pigeons to n holes, cf. [5]). These “counting principles” can be formu-
lated as propositional formulas as follows: For a modulus m > 1 and
finite set V of size indivisible by m, the formula CountVm has a variable
xe for each e ∈ ( Vm ), and:

CountVm =
∨

v∈V

(
∧

e∈[V ]m

e∋v

¬xe) ∨
∨

e,f∈[V ]m

e⊥f

(

xe ∧ xf
)

.

Augment a depth d Frege system with substitution instances of the
CountVm formulas, and we have a “d -Frege + CAm” system. These
systems are capable of efficiently formalizing arguments based on the
unsatisfiability of linear equations modulo m, and more generally, argu-
ments based on Hilbert’s Nullstellensatz over Zm [95].
It is known that for everym, constant-depth Frege systems with count-
ing axioms modulo m are not polynomially bounded [5, 7, 27, 57].
Furthermore, when p and q are coprime, there is no sub-exponential
size derivation of the counting principles modulo q from the counting
principles modulo p [7, 27, 57].

Constant-depth Frege with counting gates: A natural extension to bounded
arithmetic is the introduction of a bounded modular counting quantifier
Qmx < t �(x), meaning that the number of x < t with �(x) satisfied
is zero modulo m [127]. Consider the system that extends I∆0(R) with
counting quantifiers modulo m. The analog of Theorem 2.8 for this
system is that its proofs translate into propositional proofs in a constant-
depth Frege system with counting gates. The lines of these systems are
formulas that, in addition to ∧, ∨ and ¬ gates, have arbitrary fan-in
MODm,a gates (which takes the value 1 when the sum of its inputs is
a mod m and 0 otherwise). Alternation depth is calculated in a similar
way, and the followingaxioms are added for reasoning about theMODm,a
gates:
1. MODm,0(∅),
2. ¬MODm,a(∅) for a = 1, . . . , m − 1,
3. MODm,a(φ1, . . . , φk , φk+1) ≡

(

MODm,a(φ1, . . . , φk) ∧ (¬φk+1))∨
(

MODm,a−1(φ1, . . . , φk) ∧ φk+1) for all a = 0, . . . , m and k ≥ 0.
Weabbreviate the nameof these systems to “d -Frege+CGm”. It iswidely
conjectured that constant-depth Frege systems with counting gates are
not polynomially bounded, however, no unconditional proof of this is
known. Interestingly, superpolynomial size lower bounds are known
constant alternation depth formulas built from ∧, ∨, ¬, and modular
counting connectives [138, 155, 45], but it not known how to extend the
techniques from formulas to proof systems.

Polynomial calculus: Clauses correspond naturally to polynomials over a
field, for example the clause x ∨¬y ∨ z can be viewed as the polynomial
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(1−x)y(1− z) = y − zy − xy+ xyz. The satisfying assignments of the
clause are exactly the zero-one roots of the polynomial. In light of this,
one way to solve the CNF satisfiability problem is to translate the given
CNF into a system of polynomials over a field, and then use Groebner’s
basis algorithm to decide if the system of polynomials has a common
zero-one root [66].
The steps of the Groebner basis algorithm over a field F can be sim-
ulated by the following refutation system: Treat as axioms the clauses
of the input CNF (translated into polynomials), as well as x2 − x for
each variable x (this enforces that all roots are zero-one). As inference
rules, we may derive gf where f has been previously derived and g is an
arbitrary polynomial, and we may derive αf + 
g, where α, 
 ∈ F and
bothf and g have been previously derived. When 1 has been derived, we
know that the initial set of clauses is unsatisfiable. Completeness for the
polynomial calculus follows fromHilbert’s Nullstellensatz [66, 129]. The
size of a polynomial calculus derivation is the number of monomials that
it contains, and it is known that over any field, the polynomial calculus
is not polynomially bounded [66, 141, 93].
The translation of clauses into polynomials results is not size efficient.
For example, x1 ∨ · · · ∨ xn translates into a polynomial with 2n many
monomials. The extension polynomial calculus with resolution (PCR)
adds to the polynomial calculus an extension variable yi for each original
variable xi alongwith an equation yi = 1−xi . This system behavesmuch
like the polynomial calculus, but it p-simulates resolution.

Nullstellensatz refutations: The Nullstellensatz refutation system is a re-
stricted form of the polynomial calculus. Rather than iteratively de-
rive new polynomials in the ideal generated by the polynomials of the
CNF until a contradiction is found, a Nullstellensatz refutation lists
an explicit combination that yields the polynomial “1”. Each clause
Cj is translated into a polynomial pj . A Nullstellensatz refutation
of

∧m
j=1Cj is a list of polynomials f1, . . . , fm, g1, . . . , gn so that 1 =

∑m
j=1fjpj +

∑n
i=1 gi (x

2
i − xi). The completeness of the system follows

from Hilbert’s Nullstellensatz. The size of a Nullstellensatz refutation is
the number of monomials in the list f1, . . . , fm, g1, . . . , gn.
The Nullstellensatz refutation system over Zp is closely related to
constant-depth Frege proofs with counting axioms modulo q: Known
lower bound proofs for constant-depth Frege systems with counting
axioms modulo q build upon lower bounds on Nullstellensatz refuta-
tions [27, 57, 33]. Furthermore, constant-depth Frege systems with mod
q counting axioms p-simulate Nullstellensatz refutations [95], size lower
bounds forNullstellensatz refutations are necessary for size lower bounds
for constant-depth Frege systems with counting axioms.
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Cutting planes: Clauses can be identified with inequalities over zero-one val-
ued variables, for example, x∨¬y∨z translates into x+(1−y)+z ≥ 1,
so that the satisfying assignments of the clause are exactly the zero-one
solutions of the inequality. This allows us to bring powerful techniques
from integer optimization to theBoolean satisfiability problem. One such
method is the cutting planes technique for converting integer program-
ming problems into linear programming problems by repeatedly apply-
ing the following “cutting planes inference rule”: From

∑n
i=1 caixi ≥ a,

where c ∈ N, c > 0, and each ai ∈ Z, infer
∑n
i=1 aixi ≥ ⌈ac ⌉ [85, 63].

Cutting planes derivations can be viewed as a Frege-like refutation
system that manipulates linear inequalities: There are axioms 0 ≤ x
and x ≤ 1 for each variable x, and in addition to the cutting planes
inference rule, we may add inequalities (from f ≥ a and g ≥ b infer
f + g ≥ a + b), and perform positive multiplication (from f ≥ a infer

f ≥ 
a for any 
 ≥ 0). The orginal CNF is unsatisfiable if and only if
there is a derivation of 1 ≥ 0.
The cutting planes refutation system p-simulates resolution, and pro-
vides polynomial size refutations of PHPn+1n . Satisfiability algorithms
based on so-called pseudoboolean methods construct cutting planes refu-
tations when run on unsatisfiable CNFs [72, 17, 73].

Lovász–Schrijver refutations: The Lovász–Schrijver lift-and-project method
is a way to convert zero-one programming problems into linear program-
ming problems [108]. The first observation is that if one knows that a
linear inequality f(�x) ≥ t holds and that all variables xi take values in
[0, 1], then for any variablexi , xif(�x) ≥ xi t and (1−xi )f(x) ≥ (1−xi )t.
Of course, this derives quadratic inequalities that hold for all �x ∈ [0, 1]n.
However, by incorporating the fact that for Boolean solutions, x2i = xi
for all i ∈ [n], one can derive new linear constraints that hold for all
zero-one solutions to the problem. If one repeats this procedure n times,
the resulting polytope will be the convex hull of the zero-one solutions
to the problem. For problems of propositional logic, we can convert a
CNF into inequality form and use the procedure to determine whether
the set of solutions is empty.
There are many formulations of the Lovász–Schrijver systems, but we
discuss only the LS+ system, which is one of the most powerful variants
commonly considered. The lines of an LS+ refutation are quadratic
inequalities over the rationals. There are axioms x ≥ 0, −x ≥ −1,
and x2 − x = 0 for every variable x, and f2 ≥ 0 for every affine
function f. From a linear inequality f ≥ t we may infer xf ≥ xt and
(1 − x)f ≥ (1 − x)t for any variable x. From f ≥ a and g ≥ b we
may infer that f + g ≥ a + b, and from f ≥ a we may infer 
f ≥ 
a
for any 
 ≥ 0. The orginal CNF is unsatisfiable if and only if there is a
derivation of 1 ≥ 0.
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Presently, it is not known if the LS+ refutation system is polynomially
bounded. However, two special cases, the LS0 system (in which multi-
plication is noncommutative and −xy does not cancel yx) [70], and the
tree-like LS+ system [96], are known to not be polynomially bounded.

Ordered-binary decision diagrams: The Boolean satisfiability problem
would be trivial if the CNFs considered could be efficiently reduced
to a canonical form—to decide if a CNF is unsatisfiable, we would need
only check that its canonical form is the constant false. Ordered binary
decision diagrams (OBDDs) are data structures for canonically repre-
senting Boolean functions4 [46, 47, 117]. The catch is that the canonical
OBDD can sometimes be exponentially large. However, OBDDs often
have reasonable sizes for Boolean functions encountered in engineering
practice, and they arewidely used in circuit synthesis andmodel checking,
cf. [46, 47, 114, 65].
Presently, there are two kinds of satisfiability algorithms based upon
OBDDs in the satisfiability literature. The first kind builds the OBDD for
the given CNF and tests if it is the constant false [46, 86, 3, 125, 91, 154].
This approach can be extended to eliminate variables using existential
quantification (a technique called symbolic quantifier elimination [86,
125, 91]). The second kind of approach uses the OBDDs to succinctly
represent an exponentially large resolution or breadth-first search [61,
62, 120, 121, 122]. Such techniques are called compressed search or
compressed resolution.
Algorithms that explicitly construct OBDDs and symbolic quantifier
elimination algorithms can be simulated by the OBDD-based proposi-
tional proof system formalized by Atserias, Kolaitis and Vardi [22]. In
this system, a variable ordering for constructing OBDDs is fixed, the
clauses of the CNF are each transformed into an OBDD, and new OB-
DDs are constructed according to the following inference rules: From
an OBDD A, then we may infer any OBDD B such that A ⇒ B , (in
particular, from an OBDD A(x, �y) we may infer ∃xA(x, �y)), and from
twoOBDDsA andB wemay inferA∧B . The given CNF is unsatisfiable
if and only if this system can derive the constantly-false OBDD.
Recently announced results show that OBDD refutations are not poly-
nomially bounded [103, 151]. No nontrivial bounds are known for proof
systems corresponding to the compressed search or compressed resolu-
tion algorithms.
In contrast with the other proof systems discussed in this section, it is
not known whether or not Frege systems p-simulate OBDD refutations.
This is because we do not know how to convert OBDDs into Boolean
formulas without an exponential increase in size.

4More precisely, anOBDD is a read-once branching program inwhich the variables appear
according to a fixed order along every path. It is the fixed ordering that guarantees canonicity.
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System p-simulates Cannot p-simulate

resolution Res (2) [19, 152], cutting
planes [6], Nullstellensatz

Res (k) resolution, Res (k − 1) Cutting planes,
Res (k + 1) [152, 150]

d -Frege Res (k), (d − 1)-Frege Cutting planes [6],
(d + 1)-Frege [99]

d -Frege + CAp Zp-Nullstellensatz [95],
d -Frege

polynomial calculus
mod p, constant-depth
Frege + CGp [94]

d -Frege + CGp d -Frege + CAp

F-Nullstellensatz resolution [48]

F-polynomial calculus F-Nullstellensatz Res
(

Θ(log2 n)
)

[141, 110]

F-PCR F polynomial calculus,
resolution

Res
(

Θ(log2 n)
)

[141, 110]

Cutting planes resolution Frege systems [132]

Lovász–Schrijver resolution

OBDD refutations resolution, Gaussian elim-
ination, cutting planes
with unary coefficients [22]

Frege systems [103]

Figure 4. Some known p-simulations and non-p-simula-
tions between propositional proof systems.

Known simulation and non-simulations for these propostional proof sys-
tems are presented Figure 4.

3.2. Tree-like versus DAG-like proofs. For many propositional proof sys-
tems, proof sizes depend dramatically on the inference structure. In Sub-
section 2.1, we saw this for resolution: Theorem 2.3 shows that DAG-like
resolution is exponentially separated from tree-like resolution. The notions
of being tree-like or DAG-like apply to any Frege-like system that derives
new formulas from axioms and hypotheses by the application of inference
rules.

Definition 3.2. Let C1, . . . , Cm be a derivation in some Frege-like system.
The derivation is said to be tree-like if every formula is used as an antecedent to
an inference rule at most once. Arbitrary derivations are said to beDAG-like.
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resolution exponential separation [38, 40]

Res (k) exponential separation [78]

constant-depth Frege polynomial simulation [99]

C.D. Frege with counting axioms ”

C. D. Frege with counting gates ”

Frege systems ”

polynomial calculus exponential separation [48]

cutting planes exponential separation [44]

Lovász–Schrijver unknown

OBDD refutations unknown

Figure 5. Comparisons between the DAG-like and tree-
like forms of some proof systems.

Tree-like systems arise from proof search algorithms based on backtrack-
ing search, and from translations of first-order proofs.5 However, they
can sometimes be less efficient than their DAG-like counterparts. For some
propositional proof systems, the DAG-like system has an exponential speed-
up over the tree-like system, but for others, the tree-like system p-simulates
the DAG-like system. The most general result on this is Krajı́ček’s Lemma
which shows that for many proof systems, the tree-like system p-simulates
theDAG-like system. Herewe state it only for constant-depth Frege systems.

Lemma 3.1 (Krajı́ček’s Lemma, [99, 100]). If � has a size s , depth d DAG-
like Frege proof, then � has a size O(s2), depth d + 1 tree-like Frege proof.

Currently known relationships between the tree-like and DAG-like ver-
sions of various propositional proof systems are summarized in Figure 5.

§4. Reverse mathematics of propositional principles. In addition to asking
questions focused on propositional proof systems—“Is this system polyno-
mially bounded? Does this system p-simulate that system?”—we can also
askquestions tha focus onparticular tautologies—“Whichproof systems can

5Converting a fixed first-order proof into tree-like form incurs an exponential increase in
the size of that first-order proof but this affects the sizes of the propositional translations by
only a constant factor.
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System PHPn+1n PHP2nn PHPn
2

n

Resolution 2Ω(n) / 2O(n) 2Ω(n) / 2O(n) 2n
Ω(1)

/ 2O(n)

Res
(

O
(

log n
log log n

))

2n
Ω(1)

/ 2O(n) 2n
Ω(1)

/ 2O(n) nO(1) / 2O(n)

Res
(

logO(1) n
)

2n
O(1)

/ 2O(n) nO(1)/ nO(log
O(1) n) nO(1) / nO(log

O(1) n)

d -Frege 2n
Ω(1)

/ 2O(n) nO(1) / n(log n)
O(1/d)

nO(1) / nO(log
(d) n)

d -Frege+ CGm 2n
Ω(1)

/ 2O(n) nO(1) / n(log n)
O(1/d)

nO(1) / nO(log
(d) n)

Frege nO(1) / nO(1) nO(1) / nO(1) nO(1) / nO(1)

Polynomial Calculus 2Ω(n) / 2O(n) 2Ω(n) / 2O(n) 2Ω(n) / 2O(n)

PCR 2Ω(n) / 2O(n) 2Ω(n) / 2O(n) nO(1) / 2O(n)

Figure 6. Known lower bounds / upper bounds for refuta-
tion sizes of pigeonhole principles. For allm > n, the cutting
planes, Lovász–Schrijver, and OBDD systems each refute
PHPmn with polynomial size refutations. References: Res-
olution lower bounds [87, 29, 38], resolution upper bound
is folklore, Res (k) lower bounds [20, 152], Res (k) upper
bounds [110], d -Frege lower bounds [6, 130, 106], d -Frege
upper bounds [18, 128], Frege upper bound [51], and the
polynomial calculus and PCR lower bounds [141, 93].

efficiently prove this tautology?”. This can be thought of as reverse mathe-
matics for propositional principles. Reverse mathematics studies the axioms
that are necessary to prove theorems of mathematics (cf. [153]). In contrast,
the propositional systems we consider are complete, so the focus is not on
provability but on efficiency. Two families of principles that have received
much attention are the weak pigeonhole principles and random 3-CNFs.

4.1. Weak pigeonhole principles. The weak pigeonhole principle states that
for integers m > n, m pigeons cannot be injectively associated with n holes.
Encoded as as the unsatisfiable CNF PHPmn , there are mn variables xi,j ,
with interpretation “pigeon i goes to hole j”, and for each i ∈ [m], there
is a clause

∨

j∈[n] xi,j , and for each i, i
′ ∈ [m] with i 	= i ′, there is a clause

¬xi,j∨¬xi ′,j . Whenm ≫ n, this CNF is called the weak pigeonhole principle
because it is “more contradictory” than the n + 1 to n pigeonhole principle.
Current understanding of the proof complexity of various weak pigeonhole
principles is summarized in Figure 6.
Theweak pigeonhole principle naturally arises inmany contexts. In indus-
trial satisfiability applications, it can arise when analyzing systems in which
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System Lower Bound

Resolution 2
n

∆4/k−2+ǫ [64, 29, 38]

Res
(

O(
√

log n/ log log n)
)

2n/2
O(k2)
[20, 152, 8]

Constant Depth Frege Ω(n)

Polynomial calculus 2Ω(n) [93, 36, 13]

Cutting planes Ω(n)

Lovász–Schrijver Ω(n)

OBDD Refutations Ω(n)

Figure 7. Best known lower bounds for refuting random
3-CNFs on ∆n clauses. A lower bound S means that with
probabilty 1 − o(1) as n → ∞, a 3-CNF on ∆n clauses
requires size S to be refuted in that system.

many agents are competing for exclusive access to resources from a small
pool, such as locks or channels [15]. Size lower bounds for refutations of the
weak pigeonhole principles can be useful starting points for proving other
results. By showing that a CNF F has a small derivation from PHPmn , we
show that the smallest refutation of F is no smaller than the smallest refu-
tation of PHPmn . Some striking results obtained through such techniques
show that resolution-based methods cannot prove superpolynomial circuit
size lower bounds for NP [137, 144].
In the study of bounded arithmetic, it is known that I∆0 can prove the in-
finitude of primes from the 2n to n weak pigeonhole principle [128]. By The-
orem 2.8, a necessary condition for I∆0(R) to be able to prove php

2n
n (R) is

that there exist polynomial size, constant depth Frege refutations of PHP2nn .
It seems plausible that there are small constant-depth refutations of PHP2nn .

The known upper bounds forPHP2nn andPHP
n2
n in constant-depth Frege are

barely-superpolynomial. Furthermore, there are polynomial-size, constant-
depth formulas that distinguish betweeen the cases when < 1/3 of the input
bits are set to 1 and these case when> 2/3 of the input bits are set to 1 [136].
However, it is not known how to use these formulas in a refutation ofPHP2nn .

4.2. Random 3-CNFs. It may be that for some propositional proof system
P, there are tautologies that require superpolynomially large proofs inP, yet
such tautologies are rare. We address this possibility by studying refutation
sizes needed for random 3-CNFs.
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Consider the experiment that generates a random 3-CNF on n variables by
choosing∆nmany 3-clauses uniformly, independently andwith replacement.
This distribution is called F ∆,n3 . The parameter ∆ is called the clause density.
Empirical study of satisfiability algorithms suggests that there is a thresh-
old value for ∆ (it seems to be approximately 4.2), above which a random
3-CNF is almost surely unsatisfiable and below which a random 3-CNF is
almost surely satisfiable [118]. Rigorously, it is known for each value of
n that there is some threshold but its value has not been been rigorously
determined [81]. This value is called the satisfiability threshold. Empirical
studies also suggest that for values of ∆ far below or far above the satisfi-
ability threshold, it is computationally easy to solve satisfiability for CNFs
of that clause density. However, when the clause density is close to the sat-
isfiability threshold, random 3-CNFs seem to require exponential run times
to be refuted by known satisfiability algorithms. Propositional proof com-
plexity rigorously explains this behavior for several satisfiability algorithms
and proof systems. Figure 7 summarizes currently known lower bounds for
refuting random 3-CNFs.6

It seems plausible that random 3-CNFs of appropriate clause densities
might require superpolynomial proofs of unsatisfiability in any propositional
proof system. There is little to suggest that this is actually the case, but
there is even less contradicting it. A surprising connection between this
question and the computational complexity of approximating combinatorial
optimization problems was discovered by Uri Feige: If refuting random 3-
CNFs of arbitrarily large constant clause density requires superpolynomial
size refutations in all abstract proof systems, then several approximation
problems (that resist analysis via current PCP-based techniques) cannot be
solved in polynomial time [80].

§5. Feasible interpolation. Consider the propositional form of Craig’s in-
terpolation theorem:

Theorem 5.1. Let φ(�x, �y) and �(�x, �z) be propositional formulas. If
φ(�x, �y)→ �(�x, �z) is a tautology, then exists a propositional formulas �(�x) so
that φ(�x, �y) → �(�x) and �(�x) → �(�x, �z) are both tautologies. The formula
� is called an interpolant.

The standard proof of Theorem 5.1 guarantees the existence of an inter-
polantwhose size is atmost exponentially large in the number of variables. In
general, the exponential blow-up is probably necessary: If the size of � were
bounded by a polynomial in the sizes of φ and �, then NP∩ coNP would
have polynomial size circuits [123]. However, for many propositional proof

6Recently Galesi and Lauria announced an exponential lower bound for refuting random
3-CNFs of constant clause density in the “polynomial calculus plus Res (k)” over finite fields
of characteristic �= 2 [82]. This system is the strongest (in terms of p-simulations) for which
we have lower bounds for refuting random 3-CNFs.
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probability
satisfiable

# of recusive
calls to DLL

1

0
0 4.267

∆ = ratio of clauses to variables

Figure 8. Overlay of graphs depicting the probability of sat-
isfiability for a random 3-CNF with n = 50 many variables
on ∆n many clauses being satisfiable, and the the number of
recursive callsmade byDLLon randomly generated 3-CNFs
with n = 50 variables and ∆n many clauses. In the region
near ∆ = 4.267, the probability of a random 3-CNF being
satisfiable switches from 1 to 0. The number of recursive
calls made by the DLL algorithm sharply spikes near this
satisfiability threshold. Data from [118].

systems, we can bound the size of the interpolant by a polynomial in the size
of the proof of φ(�x, �y) → �(�x, �z). This phenomenon is called feasible in-
terpolation. Feasible interpolation has been used to prove size lower bounds
for propositional proof systems [92, 41, 132, 101, 22, 151, 103], and it has
found applications in formal verification and theorem proving [115, 116].
Systems known to have feasible interpolation include resolution [132],
cutting planes [132], Lovász–Schrijver refutations [133], and the polynomial
calculus [135]. To date, the absence of feasible interpolation has been guar-
anteed for non-trivial proof systems only under cryptographic assumptions.
Among these results are: “If one-way functions exist, then Frege systems
do not have feasible interpolation” [104], and “if factoring Blum integers
is hard, then constant-depth Frege systems do not have feasible interpo-
lation” [42, 43]. It is not known, even under cryptographic assumptions,
whether or not Res (k) has feasible interpolation for any k ≥ 2.

§6. Further connections with satisfiability algorithms.

6.1. Space complexity of refutations. Satisfiability algorithms based on
clause learning and the Davis–Putnam procedure maintain a set of clauses
called the clause database. These are previously derived consequences of the
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input CNF, saved for future re-use. The size of the clause database is a major
bottleneck on the performance of such algorithms, so it is natural to ask
“How large must the clause database be to refute a given CNF?” This leads
to the notion of space complexity for resolution refutations.

Definition 6.1 ([79] and [10]). Let F be a CNF. A resolution refutation
presented in configuration form is a sequence of sets of clauses S1, . . . , Sm
satisfying the following properties:

1. S1 = ∅
2. The empty clause belongs to Sm.
3. Each Si+1 follows from Si by either (a) Removing a clause from Si (b)
Resolving two clauses from Si and adding the resolvent to Si+1 or (c)
Adding a clause from F to Si

The clause space of S1, . . . , Sm is maxi∈[m] |Si |. The variable space of
S1, . . . , Sm ismaxi∈[m]

∑

C∈Si
|C |. For a resolution refutation Γ, let sp(Γ) be

the minimum space needed to present Γ as a sequence of configurations, and
let vsp(Γ) be the minimum variable space needed to present Γ as a sequence
of configurations. Let sp(F ) denote the minimum clause space of a resolu-
tion refutation of F and let vsp(F ) denote the minimum variable space of a
resolution refutation of F .

Clearly, it the goal of any resolution based satisfiability engine worth its
salt is to find a derivation that simultaneously has small size and small space.
How are these two parameters related?
The space needed to refute a CNF is in general not the same as the size
needed to refute the CNF. For example, the implication chain x0, ¬xn, and
¬xi ∨ xi+1, for i = 0, . . . , n − 1, has a linear size, constant space refutation.
However, there are many connections between the space needed to refute a
CNF and its other requirements.

Theorem 6.1. [79] Let F be a CNF in n variables. Let size(F ) denote the
least size of a resolution refutation of F , let sizeT (F ) denote the least size
of a tree resolution refutation of F , and let height(F ) denote the least height
of a resolution refutation of F . We have that: sp(F ) ≤ n + 1, size(F ) ≤
(

sp(F )+height(F )
sp(F )

)

, and 2sp(F ) − 1 ≤ sizeT (F ).
It is known that for some unsatisfiable CNFs, it is impossible to simulta-
neously obtain optimal size and optimal space in tree-like resolution. The
case for general resolution remains open.

Theorem 6.2. [35] There exists a faily of CNFs {Tn}∞n=1 so that each Tn
has a tree-like resolution refutation of sizeO(n), but any resolution refutation
Γ of Tn has vsp(Γ) · log |Γ| = Ω(n/ log n).
A recently announced result of Hertel and Pitassi gives a very strong
trade-off between optimal resolution size and optimal resolution variable
space.
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Theorem 6.3. [89] There is a family of CNFs {Fn} and clauses {Cn} such
that Fn |= Cn, and all resolution derivations of Cn from Fn that use variable
space vsp(Fn) have size 2

Ω(n), but, there exists a size O(n), variable space
vsp(Fn) + 3 derivation of Cn from Fn.

Resolution width provides a lower bound for space, but the lower bound
is not tight.

Theorem 6.4. [21] Let F be an unsatisfiable CNF, let iw(F ) denote the
maximum width of a clause of F and let w(F ) denote the minimum width of a
resolution refutation of F . We have that sp(F ) ≥ w(F )− iw(F ) + 1.
Theorem 6.5. [124] For all k ≥ 4 there is a family of k-CNF formulas

{Fn}∞n=1 of size O(n) so that w(Fn) = O(1) but sp(Fn) = Θ(log n).
6.2. Automatizability. A big difference between propositional proof com-
plexity and the study of satisfiability algorithms is that just because a tautol-
ogy has a short proof, there is not necessarily a good way to automatically
find it.

Definition 6.2. Let f : N → N be given. A propositional proof system
P is said to be f-automatizable if there is an algorithm A so that for every
tautology �, whenever there is an P proof of size S, the algorithmA terminates
within f(S) steps and outputs some P proof of �.
There are some positive results for automatizability: Tree-like resolution
is nO(logn) automatizable [38, 29], as is the treelike polynomial calculus over
any field [66]. Negative results depend upon conjectures in computational
complexity and cryptography. It is known that neither resolution no tree-
resolution is polynomial-time automatizable unless the W [P] hierarchy in
parameterized complexity collapses [12]. Moreover, there is no automati-
zability for Frege systems if one-way functions exist [104], and under the
assumption that “factoring Blum integers is hard”, there is no automatiz-
ability for any system that can polynomially simulate constant-depth Frege
systems [43, 42].
For many purposes, it would suffice if the existence of a small P proof
guaranteed that we could quickly find a proof in some other systemQ. This
leads to the related notion is of weak automatizability [19]. It turns out
the resolution is weakly automatizable if and only if Res (2) has feasible
interpolation [19].

6.3. Lower bounds for satisfiability algorithms on satisfiable formulas.
Propositional proof complexity can tell us why a satisfiability algorithms
take a long time to run on some unsatisfiable CNF, but what can be said
about the running times of satisfiability algorithms on satisfiable CNFs?
When analyzing how a DLL-style backtracking algorithm performs on a
satisfiable CNF, you must take into account the method that chooses the
branching variable and which setting (x = 0 or x = 1) to explore first. This
is because a completely unrestricted, exponential-time heuristic could find
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a satisfying assignment, and then guide the DLL search to that assignment
within n decision steps.
The family ofmyopic branching heuristicshas been successfully analyzedon
satisfiable CNFs. When choosing the branching variable and which branch
to explore first, a myopic heuristic can make use of the partial assignment
at that point of the recursion tree, inspect at most n1−ǫ many clauses of the
input CNF,make full use of the formula with all negation signs removed, and
make full use of a variable frequency-analysis from the full CNF.A somewhat
orthogonal class of variable-centric heuristics has also been studied. In
variable-centric heuristics, the variable to branch upon is selected using an
arbitrary method, but the decision whether to first explore the branch with
x = 0 or the branch with x = 1 is made randomly.

Theorem 6.6. [11] For every myopic DLL algorithm A that reads at most
K(n) clauses per step, for each n there is a satisfiable formula Φn so that with

probability 1− 2Ω((n/(K logO(1))), A requires time 2Ω(n/ logO(1) n) on input Φn.
For each k ≥ 3 there is c > 0 and a family of satisfiable (k + 1)-CNF for-
mulas Gn so that for every DLL algorithmA with a variable-centric branching
heuristic, the probability that A finds a satisfying assignment on input Gn with
fewer than 2cn steps is at most 2−n.

A particularly interesting class of satisfiable CNFs are random 3-CNFs
with clause densities just below the satisfiability threshold. These seem
to be hard, however, unconditional results are only known for very weak
branching heuristics that use some fixed order for branching upon variables
along every branch of the search tree. (DLL with such a heuristic is called
ordered DLL.) For ordered DLL, it is known for a range of clause densities
just below the satisfiability threshold, a constant-fraction of the random
k-CNFs require exponential run times to refute.

Theorem 6.7. [2, 1] With uniformly positive probability, ordered-DLL re-
quires time 2Ω(n) on random k-CNFs of clause density c, where k = 4 and
c > 7.5, or k ≥ 5 and c > (11/k)2k−2. Moreover, a random k-CNF of clause
density c is almost-surely satisfiable if k = 4 and c < 7.91, or k ≥ 5 and
c < 2k(ln 2)− (k + 4)/2.

§7. Beyond the Frege systems.

7.1. Some powerful propositional proof systems. These are some of the
propositional proof systems conjectured to bemore superpolynomiallymore
efficient than the Frege systems. No superpolynomial proof size lower
bounds are known for any of these systems, and the only p-simulations
known are the obvious ones.

Extended Frege: Extended Frege systems extendFrege systemswith the abil-
ity to introduce definitions: At step i + 1 of a derivation, the formula
Ai+1may follow fromA1, . . . , Ai either by the usual inference rules of the
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Frege system, or, Ai+1 can be of the form x ↔ B where x is a variable
not appearing in A1, . . . , Ai , and B is a Boolean formula. The variable
x is called an extension variable.
Extended Frege systems can be also be defined as Frege systems that
manipulate circuits instead of formulas. For this reason, the distinction
between Frege systems and extended Frege systems can be viewed as
analogous to the distinction between Boolean formulas and Boolean
circuits in circuit complexity.

Quantified Frege systems: Quantified Boolean formulas extend Boolean for-
mulas byallowing the introductionof quantifiers, ∃xF (x, �y) or∀xF (x, �y),
where the semantics is that ∃xF (x, �y) is satisfied if and only if F (0, �y) ∨
F (1, �y) is satisfied and ∀xF (x, �y) is satisfied if and only if F (0, �y) ∧
F (1, �y) is satisfied. Quantified Frege systems are analagous to standard
first-order proof systems, except that the “terms” are propositional for-
mulas. QuantifiedBoolean formula are conjectured tohave exponentially
more succinct representations for someBoolean functions than is possible
with Boolean formulas, but this has not been proved. It is easily seen that
quantified Frege systems p-simulate extended Frege systems, cf. [100].

Propositional ZFC: A proof for a tautology need not be written in a classical
propositional calculus, indeed, it might be more intuitive and succinct to
bring to bear some higher mathematic formalized in ZFC (or Peano’s
arithmetic, or whatever theory you prefer). The proof would be formal-
ized in some standard way, and the verification procedure would check
that each line of the proof is an instance of an axiom or follows from the
preceding by application of the inference rules. All of the other proposi-
tional proof systems discussed in this survey can be p-simulated by such
a system, as can any proof system whose correctness is provable in ZFC.

What tautologies might require superpolynomially large proofs in pow-
erful systems such as these? As discussed in Section 4.2, it seems plausi-
ble that random 3-CNFs of certain clause densities almost surely require
superpolynomially-large proofs in any proof system, but other than that,
there are no candidates.
Possible separations between these strong systems such as these are more
difficult to identify. It is quite a challenge to even propose natural proposi-
tional tautologies that give superpolynomial separations between such sys-
tems. If we do not mind unnatural tautologies, then it suffices to cosider
partial consistency statements- propositional encodings of statements such
as “If P is a P proof of � then � is a tautology”. It turns out that, for proof
systems P that can p-simulate Frege systems, if P does not p-simulate a
proof system Q, then P requires superpolynomial size to prove the partial
consistency statements for Q.
Theorem 7.1. [68, 104, 52] Let P be a propositional proof system that p-
simulates Frege systems, and let Q be any propositional proof system. P +
ConQ p-simulates Q.
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Separations based on partial consistency would be great to have—but they
reveal little about the kinds of arguments that can be efficiently performed
in one proof system but not in another. For the problem of separating
extended Frege systems from Frege systems, there are natural combinato-
rial tautologies that are have polynomial size extended Frege proofs and
are conjectured to require superpolynomial size Frege proofs. The partial
consistency of extended Frege systems can be shown equivalent to a com-
binatorial statement about the non-existence of sinks in certain directed
graphs [23]. Another candidate is a propositional encoding of the principle
AB = I ⇒ BA = I [156]. The latter seeks to make use of the conjecture that
the inverse of a matrix cannot be computed by a polynomial-size Boolean
formula.

7.2. Optimal proof systems. It may well be that there is some “universal”
propositional proof system that p-simulates all other propositional proof
systems. In the literature, such a proof system is called p-optimal. Whether
or not a p-optimal proof system exists is a major open question, and there is
little evidence either way. The existence of p-optimal proof systems is guar-
anteed by implausible computational complexity hypotheses—for example,
“if EXPEXP = NEXPEXP then there is a p-optimal proof system [104, 98].
On the other hand, if p-optimal proof systems exist, then there also exist
complete sets for semantic classes such asUP [139, 148, 98]—a consequence
that is unexpected, but not particularly controversial.7

The most natural candidate for a p-optimal proof system is propositional
ZFC, but this is possibly an artifact of the fact that we develop propositional
proof systems andprove their consistency insideZFC. Itmaybe that bringing
in assumptions from beyond ZFC could enable more succinct proofs of
propositional tautologies.
This leaves us with three possibilities:

1. Propositional ZFC (and perhaps something weaker) is p-optimal. This
would be a remarkable conservation result: For the purposes of certify-
ing propositional tautologies, there would no benefit to adding further
axioms.

2. Propostional ZFC is not p-optimal, but some other system is. In this
case, identifying a p-optimal system and its properties would be of
utmost importance.

3. There is no p-optimal propositional system. If this is the situation, then
independence raises its head in one of the most basic tasks of logic: No
matter what (polynomial-time decidable) axioms of mathematics you
accept, the correctness of some method for certifying propositional
tautologies is independent of those axioms.

7A statement in computational complexity equivalent to the existence of ap-optimal proof
system is given in [104].
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Part 2. Some lower bounds on refutation sizes.

Much of the appeal of propositional proof complexity lies in the fact
that we can prove limitations for non-trival proof systems. In this section,
we present size lower bounds for refutations of random 3-CNFs and weak
pigeonhole principles. These have all been proved in recent years, and use
a family of related techniques that build upon and extend the size-width
trade-off for resolution.
Space limitations prevent us from discussing all known techniques for es-
tablishing proof size lower bounds. Many interesting results and techniques
have beenomitted, among them: Theuse of feasible interpolation to establish
size lower bounds for cutting planes [92, 41, 132], Lovász–Schrijver [32], and
OBDD refutations [151, 103], “rank” lower bounds for cutting planes and
Lovász–Schrijver refutations [49, 9], degree lower bounds for the Nullstel-
lensatz system [59, 57, 54] and the polynomial calculus [66, 141, 93, 56, 13],
using extensions of Håstad’s switching lemma to establish exponential size
lower bounds for constant-depth refutations of the n + 1 to n pigeonhole
principle [6, 130, 106], and lower bounds for constant-depth Frege systems
with counting axioms via a combination of the Håstad switching lemma and
Nullstellensatz degree lower bounds [5, 7, 27, 147, 57, 33, 94].

Background from probabilistic combinatorics. Our presentation is not self-
contained: We omit proofs of standard lemmas from discrete probability
and probabilistic combinatorics.
A common framework in proof complexity is to use expansion in the
clauses of the CNF (or some higher-level constraints) to guarantee that the
CNF requires large width to refute in resolution. For a thorough introduc-
tion to expansion and its applications in discrete mathematics and computer
science, see [90]. The following definition is more often phrased in the lan-
guage of bipartite graphs, but matrix notation better suits our perspective.

Definition 7.1. Let A be a Boolean matrix with m rows and n columns.
For a set of rows, I ⊆ [m], we define the boundary of I in A, ∂A(I ) as
∂A(I ) = {j ∈ [n] : |{i ∈ I | Ai,j = 1}| = 1}.
We say that A an (r, �)-boundary expander if for every I ⊆ [m] with |I | ≤ r
we have that |∂A(I )| ≥ �|I |. We say that an (r, �)-boundary expander is a
(d, r, �)-boundary expander if every column of A contains at most d ones.

Lemma 7.2. Let ∆ > 0 be a constant, and let m = ∆n. Let A be a random
matrix from {0, 1}m×n so that A is chosen uniformly among matrices with
exactly three ones in each row. For all constants ∆ > 0, � < 1, there exists
some constant � so that with probability 1 − o(1), An,∆ is a (�n, �)-boundary
expander.

In some of the lower bound arguments, we make use of the following form
of the Chernoff–Hoeffding bounds:
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Lemma 7.3 (Chernoff–Hoeffding bounds, cf. [113]). Let X1, . . . , Xn be in-
dependent random indicator variables. Let 
 = E

[
∑n
i=1Xi

]

. For every

ǫ > 0: Pr
[
∑n
i=1Xi < (1− ǫ)


]

≤ e−ǫ
2
/2 and Pr

[
∑n
i=1Xi > (1 + ǫ)


]

≤

e
− ǫ

2

2(1+ǫ/3) .

Corollary 7.4. LetX1, . . . , Xn be independent random indicator variables.
Let 
 = E

[
∑n
i=1Xi

]

. Pr
[
∑n
i=1Xi <



2

]

≤ e−
/8 and Pr
[
∑n
i=1Xi > 2


]

≤
e−3
/8. Furthermore, for anyB be withB ≥ 
, Pr

[
∑n
i=1Xi > 2B

]

≤ e−3B/8.
Proof. The first two inequalities specialize Lemma 7.3 with ǫ = 1/2 and

ǫ = 1, respectively. For the third claim, choose a family of independent,
random indicator variables X ∗

1 , . . . , X
∗
n with Xi ≤ X ∗

i for each i = 1, . . . , n,
and

∑n
i=1EX

∗
i = B . The probability that

∑n
i=1Xi exceeds 2B is less than

the probability that
∑n
i=1X

∗
i exceeds 2B , which by the preceding claim is at

most e−3B/8. ⊣

§8. The size-width trade-off for resolution. The task of proving lower
bounds on the sizes of resolution refutations has been simplified in recent
years by the discovery of the size-width trade-off: If every resolution refuta-
tion of a CNF F contains a clause withmany variables, then every resolution
refutation of F is large.

Definition 8.1. The width of a clause is the number of variables appearing
in the clause; the width of a resolution derivation is the maximum width of a
clause in the derivation. For a set of clauses F , w(F ) denotes the minimum
width of a resolution refutation of F , S(F ) denotes the minimum size of a
DAG-like resolution refutation of F , and ST (F ) denotes the minimum size of
a tree-like resolution refutation of F . The initial width of F , written iw(F ),
is the maximum width of a clause in F .

Theorem 8.1. [38] Let F be an unsatisfiable set of clauses in n variables.
We have that w(F ) − iw(F ) ≤ logST (F ) and that w(F ) − iw(F ) ≤ 1 +
3
√

n lnS(F ).

Corollary 8.2. Let F be an unsatisfiable set of clauses on n variables. We

have that ST (F ) ≥ 2(w(F )−iw(F ) and that S(F ) ≥ 2Ω((w(F )−iw(F ))
2/n).

While the size-width trade-off is sufficient for establishing resolution size
lower bounds, it is not necessary. Inparticular, the quality of the lower bound
falls off rapidly with the number of variables in the CNF, and it gives only
trivial bounds when minimum width of a refutation is at most the square-
root of the the number of variables. This can be a wild underestimation of
minimum refutation size, as there are unsatisfiable CNFs on n variables that

require resolution refutations of size 2n
Ω(1)
but which posses refutations of

width at most o(
√
n). This limitation to the applicability of the size-width

trade-off can be overcome with a sparsification trick (cf. Subsection 8.1), or
it can require completely new techniques (cf. Section 11).
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The size-width trade-off is not known to apply to stronger proof systems
(in particular, nothing like it is known to hold for the Res (k) systems), but
ideas developed here will be useful when analyzing those stronger systems in
Sections 9 and 10.
The presentation here closely follows [66] and [38]. As in those works, the
proof of Theorem 8.1 builds upon a sequence of simple lemmas.

Lemma 8.3. For v ∈ {0, 1}, if F ↾x=v can be refuted in width ≤ w, then
there is a width ≤ w + 1 derivation of x1−v from F .
Proof. Let Γ be the width w refutation of F ↾x=v. Without loss of
generality, no clause of Γ contains the variable x. Obtain a derivation Γ′ as
follows: By using subsumption inferences, infer C ∨ x1−v for every C ∈ F .
Follow this by a derivation that follows the structure of Γ, but in which every
clause C has been replaced by C ∨ x1−v . The sequence of clauses Γ′ clearly
as width at most w + 1. Moreover, it is a valid resolution derivation from
F : If C ∈ F ↾x=v , then either C ∨ x1−v ∈ F or C ∈ F ; in the either case,
C∨x1−v follows fromaclause ofF by subsumption. Clearly all subsumption
inferences inΓ become valid subsumption inferences in Γ′. Consider the case
whenC follows from a resolution step applied toC ∨y andC ∨¬y. Because
the variable x appears in no clause of Γ, y 	= x, and thus C ∨ x1−v follows
from a resolution step applied to C ∨ x1−v ∨ y and C ∨ x1−v ∨ ¬y. ⊣
Lemma 8.4. For all CNFs F , all literals x, all k ∈ N, and all values
v ∈ {0, 1}, if w(F ↾x=v) ≤ k − 1 and w(F ↾x=1−v) ≤ k then w(F ) ≤
max{k, iw(F )}.
Proof. By Lemma 8.3, there is a resolution derivation of x1−v from F
of width at most k. Take this derivation, and then resolve x1−v with every
clause of F that contains xv to derive F ↾x=1−v . This step requires width
at most iw(F ). Now refute F ↾x=1−v ; by hypothesis, this can be done with
width at most k. ⊣
Lemma 8.5. For any set of clauses F , w(F ) ≤ iw(F ) + logST (F ).
Proof. We will show that for every set of clauses F and every tree-like
refutation of F , Γ,w(F ) ≤ iw(F )+ log |Γ|. This proves the claim by taking
a refutation of minimum size.
Induct on the number of variables in F , denoted by n, and ⌈log |Γ|⌉,
denoted by b. If b = 0, then Γ is a length 1 refutation, and thus ∅ ∈ F .
Therefore, the minimum width of a refutation of F is 0 ≤ w(F ) + b. Note
that if n = 0, we necessarily have that b = 0.
For the induction step, let n, b ≥ 1, and assume that for all sets of clauses
F ′ in fewer than n variables and all tree refutations Γ′ of F ′, w(F ′) ≤
iw(F ′) + log |Γ′|, and that for all sets of clauses F ′ on n variables such that
⌈log |Γ′|⌉ ≤ b − 1, w(F ′) ≤ iw(F ′) + log |Γ′|. Let a set of clauses F , and
a tree-like resolution refutation of F , Γ, be be given so that b = ⌈log |Γ|⌉.
The final clause of Γ is ∅, so the final inference is the resolution of x and ¬x
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for some variable x. Let Γx and Γ¬x be the sub-derivations of Γ that lead
to x and ¬x, respectively. Note that |Γ| = 1 + |Γx | + |Γ¬x |. Without loss
of generality, |Γx | ≤ 2b−1. Notice that Γx ↾x=0 is a refutation of F ↾x=0 in
n − 1 variables and of size at most 2b−1; apply the induction hypothesis to
conclude that it has resolution refutation of width at most b − 1. Similarly,
Γ¬x ↾x=1 is a refutation of F ↾x=1 in n − 1 variables and of size at most 2b ;
apply the induction hypothesis to conclude that it has resolution refutation
of width at most b. By Lemma 8.4, w(F ) ≤ b + iw(F ). ⊣
Lemma 8.6. For any set of clauses F , w(F ) ≤ iw(F ) + 1 + 3

√

n lnS(F ).

Proof. Let Γ be a minimum size refutation of F , and let S = |Γ|. Set
d =

√

2n lnS(F ), and a = (1− d/2n)−1. LetW be the set of clauses from
F of width≥ d . Call such clauses “wide”. We show by induction on n and b
that if |W | < ab thenw(F ) ≤ iw(F )+d+b. Observe that the claim trivially
holds when d ≥ n, because every refutation that uses at most n variables has
width at most n, so we may assume that d < n. In the base case, b = 0 and
there are no clauses in Γ of width more than d , so w(F ) ≤ d ≤ iw(F ) + d .
In the induction step, suppose that |Γ| < ab . Because there are 2n literals
making at least d |W | appearances in the wide clauses, there is a literal x
that appears in at least d2n |W | of the wide clauses. Setting x = 1, Γ ↾x=1

is a refutation of F ↾x=1 with at most
(

1− d
2n

)

|W | < ab−1 many wide
clauses. By the induction hypothesis, w(F ↾x=1) ≤ d + iw(F ) + b − 1.
On the other hand, Γ ↾x=0 is a refutation with at most |W | < ab many
large clauses and in n − 1 many variables. By induction on the number
of variables, w(F ↾x=0) ≤ d + iw(F ) + b. Therefore by Lemma 8.4,
w(F ) ≤ d + iw(F ) + b. This concludes the proof by induction.
Now, for any size S refutation of Γ, we have that |W | < a⌊loga(|W |)⌋+1

and that |W | ≤ S. Applying the inequality demonstrated in the previous
paragraph (with the same definitions for a and d ), we havew(F ) ≤ iw(F )+
⌊loga(|W |)⌋+ 1 + d ≤ iw(F ) + loga(S) + 1 + d so that:
w(F )− iw(F ) ≤ 1 + d + loga(S) = 1 + d + log( 2n

2n−d )
(S)

= 1 + d + log(1+ d
2n−d )

S = 1 + d + (lnS) log(1+ d
2n−d )

(e)

= 1 + d + (lnS)
(

ln
(

1 + (d/(2n − d )))
)−1
.

Because 0 ≤ d < n, we have that 0 ≤ d/(2n − d ) < 1, so we may apply the
inequality ln(1 + x) ≥ x − x2/2 ≥ x/2 with x = d/(2n − d ). Therefore:

w(F )− iw(F )≤ 1 + d + (lnS)
(

d/2(2n − d ))−1

≤ 1 + d + (lnS)(2 · 2n/d )
= 1 +

√
2n lnS + 2 · 2n(lnS)/(

√
2n lnS)

= 1 + 3
√
2n lnS. ⊣
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8.1. Exponential lower bounds for the 2n to n weak pigeonhole principle.
We cannot directly apply the size-width trade-off of Corollary 8.2 to the pi-
geonhole principle: There are width n refutations of PHPmn , and the number
of variables ismn ≥ n2, therefore a direct application of Corollary 8.2 yields
a size lower bound that is constant. One way to get around this is to prove
the lower bound for an evenweaker pigeonhole principle—one in which each
pigeon finds only a small number of holes acceptable.

Definition 8.2. Let G = (U ∪V,E) be a bipartite graph. The pigeonhole
principle of G , PHP(G), is the set of clauses For each u ∈ U , there is
∨

v∈V
{u,v}∈E

xu,v. For each u, u
′ ∈ [m], with u 	= u′, and each v ∈ V with

{u, v} ∈ E and {u′, v} ∈ E, there is ¬xu,v ∨¬xu′,v . Themaximum degree of
G , ∆(G), is defined to be maxv∈V deg(v).

Notice that iw(PHP(G)) is the larger of two and the maximum degree of
a left vertex of G .

Definition 8.3. Let G be a bipartite graph with m left nodes and n right
nodes. We say that G is an (m, n, d, r, �)-boundary expander if the adjacency
matrix A ∈ {0, 1}m×n (with Ai,j = 1 iff i is adjacent to j in G) is an (d, r, �)-
boundary expander in the sense of Definition 7.1.

Lemma 8.7. [38] LetG be a bipartite graph that is an (m, n, d, r, �)-boundary
expander. w(PHP(G)) ≥ r�

2 .

Proof. For each i , let Pi denote the clause
∨

j∼G i
xi,j . Let H denote

the set of CNF
∧

i,i ′,j

(

¬xi,j ∨ ¬xi ′,j
)

. For each clause C in Γ, let 
(C ) =

min{|I | : H ∧ ∧

i∈I Pi |= C}. Observe that 
 : Γ → {0, . . . , m} maps each
axiom to 0 or 1. Moreover, 
(∅) ≥ r becauseG is an (m, n, d, r, �)-expander,
and thus Hall’s matching condition guarantees that every I ⊆ [m] with
|I | < r has a matching into [n]. Finally, 
 is subadditive with respect to the
resolution rule: 
(A∨B) ≤ 
(A∨x)+
(B ∨¬x). This allows us to choose
a clause C in Γ with r/2 ≤ 
(C ) < r.
Choose I0 ⊆ [m] so that |I0| = 
(C ) andH∧∧

i∈I0
Pi |= C . Let j0 ∈ �(I0)

be given. Suppose for the sake of contradiction that C contains no variable
of the form xi,j0 with i ∈ [m]. Choose i0 ∈ I0 so that i0 ∼G j0, and choose
an assignment α satisfying H ∧ ∧

i∈I0\{i0}
Pi and falsifying C . Because C

contains no variable of the form xi,j0 and j0 	∼G i for all i ∈ I0 \ {i0}, we
may assume that α(xi,j0) = 0 for all i ∈ [m].
Define the assignment α′ to agree with α off xi0,j0 and to set xi0,j to 1.
Because C does not contain the variable xi0,j , α

′ 	|= C . However, α′ |=
H ∧ ∧

i∈I0
Pi -contradiction. Therefore, for every j0 ∈ �(I0) there is some

variable xi,j0 present in C , so the width of C is at least |�(I0)| ≥ �r
2 . ⊣

Observe that when G has maximum left-degree d , there are dm variables
in PHP(G), therefore by Corollary 8.2:
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Corollary 8.8. [38] Whenever G is a bipartite (m, n, d, r, �)-expander,

S(PHP(G)) ≥ 2 r
2�2

4dm .

Theorem 8.9. [38] For all integers m > n > 0, S(PHPn+1n ) ≥ 2Ω(n) and
S(PHPmn ) ≥ 2

n2

m log m .

Proof. Let Gn+1,n be a bipartite (n + 1, n, 5, n/c, 1)-expander (such an
expander exists by a simple probabilistic calculationwith c a constant greater
than 1, cf. [90]). Let � be the partial assignment on Vars(PHPn+1n ) so
that �(xi,j) = xi,j , if (i, j) ∈ E(Gn), and �(xi,j) = 0 otherwise. Let
Γ = C1, . . . , Cm be a resolution refutation of PHP

n+1
n . Clearly, Γ ↾� is

resolution refutation of PHPn+1n ↾�= PHP(Gn+1,n). By Corollary 8.8, the

size of Γ ↾� is at least 2
n/4c2 . Form = Θ(n), we use a similar argument with

a (m, n, logm,Ω( nlogm ),
3
4 logm) expander. ⊣

8.2. Exponential lower bounds for refutations of random k-CNFs. It is
possible to prove that random 3-CNFs of constant clause density require
resolution refutations of linear width directly using the boundary expansion
technique of Lemma 8.7. However, a slightmodification gives quantitatively
better bounds.

Definition 8.4. [64] Let F be a set of clauses over the variable set V . The
boundary of F , ∂(F ), is defined as:

∂(F ) = {v ∈ V | v appears in exactly one clause of F }.
Let s(F ) be the minimum size of an unsatisfiable subset of F . Define the
expansion of F as e(F ) = min{|� (F0) | : F0 ⊆ F, s(F )/2 ≤ |F0| < s(F )}.
Theorem 8.10. [64] For any set of clauses F , w(F ) ≥ e(F ).
Proof. We define a notion of clause complexity as follows: For any
clause C , 
(C ) is equal to the minimum size of F0 ⊆ F so that F0 |= C .
Let Γ be a resolution refutation ofF . Because
 is subadditive with respect
to resolution, each A ∈ F has 
(A) = 1, and, by the definition of s(F ),

(∅) ≥ s(F ), there exists a clause C in Γ so that s(F )/2 ≤ 
(C ) < s(F ).
Let F0 ⊆ F be so that |F0| = 
(C ) and F0 |= C .
We now show that for each variable in ∂(F0) also appears in C . Let D
be the unique clause in F0 with x ∈ D. Because F0 − D 	|= C , we may
and choose an assignment α so that α satisfies every clause of F0 \ D but
not C . Let α∗ be α with its value on x flipped. Because x ∈ D, α∗ |= D,
and because x does not appear in any other clause of F0, α

∗ |= F0. Since
F0 |= C , we also have that α∗ |= C . Because α∗ |= C and α 	|= C , we must
have that x ∈ C . Because the size of ∂(F0) is at least e(F ), the lemma is
proved. ⊣
Plugging the excellent expansion parameters of random k-CNFs into the
width inequality of Theorem 8.10, and then applying the size-width trade-off
of Corollary 8.2 yields size lower bounds for refutations of random k-CNFs.
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Lemma 8.11 (See [29, 26] for proofs.). If F is distributed according to F ∆,nk
then with probability 1 − o(1) as n → ∞: s(F ) = Ω

(

n/∆1/(k−2)
)

and

e(F ) = Ω
(

n/∆2/(k−2)
)

.

Theorem 8.12. For F distributed as F ∆,nk , with probability 1 − o(1) as
n → ∞: Every treelike resolution refutation of F has size at least 2n/∆2/(k−2)+ǫ ,
and every resolution refutation of F has size at least 2n/∆

4/(k−2)+ǫ
.

Proof. Combining Lemma 8.11 and Theorem 8.10, we have that with

probability 1 − o(1), w(F ) ≥ Ω
(

n/∆2/(k−2)
)

. An application of Corol-

lary 8.2 shows that in this event: ST (F ) ≥ 2Ω((n/∆
2/(k−2))−k) and S(F ) ≥

2
Ω

“

(n/∆2/(k−2)−k)
2
/n

”

= 2Ω((n/(∆
4/(k−2)−2k∆2/(k−2)+k2))). ⊣

§9. The small restriction switching lemma. There is no known analog of
the size-width trade-off that holds for Res (k) for any k ≥ 2. However, we
can reduce size lower bounds for Res (k) refutations to width bounds for
resolution refutations using a technique called the small restriction switching
lemma. A switching lemma is a guarantee that after the application of a
randomly chosen partial assignment, a disjunction of small ANDs can be
represented by a conjunction of small ORs, thus “switching” an OR into an
AND. This turns the k-DNFs of a Res (k) refutation into narrow clauses,
so that the Res (k) refutation becomes a narrow resolution refutation (after
some clean-up of the inference steps).
In this section, we prove the small restriction switching lemma and its
connection with resolution width, and use these to prove that Res (k) refu-

tation of PHP2nn require size 2
nΩ(1) (this presentation closely follows [149]

and [152]). In Section 10, we combine the small restriction switching lemma
with expansion clean-up techniques to prove that almost all random 3-CNFs

of constant clause density requre size 2n
Ω(1)
to be refuted in Res (k).

Another variety of switching lemma, the Håstad-style switching lemmas,
have been used to establish exponential size lower bounds for constant-
depth Frege proofs of PHPn+1n [34, 130, 106] and the modular counting
principles [27, 57, 33, 94]. Such techniques are powerful—they can be
iterated toprove proof size lower bounds for constant depth systems- but they
seem too crude to analyze refutation sizes forPHP2nn or for random 3-CNFs.
This is because switching lemmas of this form must set an overwhelming
majority of the variables to 0 or 1 in order to collapse a k-DNF into a CNF
of narrow clauses. Consider the standard formulation for distributions that
set bits independently:

Theorem 9.1 (“Håstad’s switching lemma” [88], cf. [45, 25]). Let positive
integers k and w be given. Setting φ = (1+

√
5)/2 and � = 2/ lnφ (note that
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� > 4), we have that for any k-DNF F , if we construct an assignment � by
independently setting each bit to 0 with probability p/2, to 1 with probability
p/2, and leave it unset with probability 1− p:

Pr�[F ↾� cannot be computed by a w-CNF] ≤ (�(1− p)k)w .

To collapse a k-DNF to a w-CNF using Theorem 9.1, it is necessary for
the probability of a variable being set (p in the notation of Theorem 9.1)
to be strictly more than 1 − 1

�k ≥ 1 − (1/4k) ≥ 3/4. Futhermore, when k
is a superconstant function of n, almost all of the bits must be set. On the
other hand, if a partial matching matches a majority of the pigeons in the
2n to n pigeonhole principle, the original CNF becomes trivially false. The
small restriction switching lemma of Theorem 9.2 can apply to k-DNFs even
when the probability of setting a variable is vanishingly small. This enables
the small restriction switching lemma to be applied in many contexts when
Håstad’s switching lemma cannot.

9.1. The small restriction switching lemma.

Definition 9.1. A decision tree is a rooted binary tree in which every in-
ternal node is labeled with a variable, the edges leaving a node correspond to
whether the variable is set to 0 or 1, and the leaves are labeled with either 0
or 1. Every path from the root to a leaf may be viewed as a partial assign-
ment. For a decision tree T and v ∈ {0, 1}, we write the set of paths (partial
assignments) that lead from the root to a leaf labeled v as Brv(T ). We say
that a decision tree T strongly represents a DNF F if for every � ∈ Br0(T ),
for all t ∈ F , t ↾�= 0 and for every � ∈ Br1(T ), there exists t ∈ F , t ↾�= 1.
The representation height of F , h(F ), is the minimum height of a decision tree
strongly representing F .

Notice that the function computed by a decision tree of height h can also
be computed by both an h-CNF and an h-DNF.
The switching lemma exploits a trade-off based on the minimum size of a
set of variables that meets each term of a k-DNF.

Definition 9.2. Let F be a DNF, and let S be a set of variables. If every
term of F contains a variable from S, then we say that S is a cover of F . The
covering number of F , c(F ), is the minimum cardinality of a cover of F .

For example, the 3-DNF xyz ∨ ¬x ∨ yw has covering number two.
Wenowgive a general condition on the distributions of partial assignments
for which our switching lemma holds: That the distribution almost always
satisfies any k-DNF with a large cover number.

Theorem 9.2. [152] Let k ≥ 1, let s0, . . . , sk−1 and p1, . . . , pk be sequences
of positive numbers, and letD be a distribution on partial assignments so that for
every i ≤ k and every i-DNF G , if c(G) > si−1, then Pr�∈D

[

G ↾� 	= 1
]

≤ pi .
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Then for every k-DNF F :

Pr�∈D

[

h(F ↾�) >
k−1
∑

i=0

si

]

≤
k

∑

i=1

2(
Pk−1
j=i sj)pi .

Proof. Weproceed by induction on k. First consider k = 1. If c(F ) ≤ s0,
then atmost s0 variables appear inF . We can construct aheight≤ s0 decision
tree that strongly represents F ↾� by querying all of the variables of F ↾�.
On the other hand, if c(F ) > s0 then Pr�∈D

[

F ↾� 	= 1
]

≤ p1. Therefore,
h(F ↾�) is non-zero with probability at most p1 = p12

Pk−1
j=1 sj .

For the induction step, assume that the theorem holds for all k-DNFs,
let F be a (k + 1)-DNF, and let s0, . . . , sk and p1, . . . , pk+1 be sequences of
positive numbers satisfying the hypotheses of the theorem. If c(F ) > sk ,
then by the conditions of the lemma, Pr�∈D

[

F ↾� 	= 1
]

≤ pk+1. Because
pk+1 ≤

∑k+1
i=1 2

Pk
j=i sjpi , we have that h(F ↾�) is non-zero with probability

at most
∑k+1
i=1 2

Pk
j=i sjpi .

Consider the case when c(F ) ≤ sk. Let S be a cover of F of size at
most sk. Let � be any assignment to the variables in S. Because each term
of F contains at least one variable from S, F ↾� is a k-DNF. By combining
the induction hypothesis with the union bound, we have that

Pr�∈D

[

∃� ∈ {0, 1}S h((F ↾�) ↾�) >
k−1
∑

i=0

si

]

≤ 2sk
(

k
∑

i=1

2(
Pk−1
j=i sj)pi

)

<

k+1
∑

i=1

2(
Pk
j=i sj)pi .

In the event that ∀� ∈ {0, 1}S , h((F ↾�) ↾�) ≤
∑k−1
i=0 si , we construct a

decision tree for F ↾� as follows. First, query all variables in S unset by �,
and then underneath each branch, 
 , simulate a decision tree of minimum
height strongly representing (F ↾�) ↾
 . For each such 
 , let 
̂ be the part of

the assignment �∪
 restricted to the variables of S, and note that 
̂ is a total
assignment to the variables of S with (F ↾�) ↾
= (F ↾�) ↾
̂ . Therefore the

height of the resulting decision tree is atmost sk+max�∈{0,1}S h((F ↾�) ↾�) ≤
∑k
i=0 si .
Now we show that the decision tree constructed above strongly represents
F ↾�. Let � be a branch of the tree. Notice that � = 
 ∪ �, where 
 is
an assignment to the variables in S \ dom(�) and � is a branch of a tree
that strongly represents (F ↾�) ↾
 . Consider the case that � leads to a leaf
labeled 1. In this case, � satisfies a term t′ of (F ↾�) ↾
 . We may choose a
term t of F so that t′ = (t ↾�∪
), and � = 
 ∪ � satisfies the term t ↾� of
F ↾�. Now consider the case that � leads to a leaf labeled 0. There are two
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cases, (F ↾�) ↾
= 0 and (F ↾�) ↾
 	= 0. If (F ↾�) ↾
= 0, then for every term
t of F ↾�, t is inconsistent with 
 and hence with �. If (F ↾�) ↾
 	= 0 then
because the sub-tree underneath 
 strongly represents (F ↾�) ↾
 , for every
term t of (F ↾�) ↾
 , t is inconsistent with �. Therefore, every term of F ↾�
is inconsistent with either 
 or �, and thus with � = 
 ∪ �. ⊣
Corollary 9.3. Let k ≥ 1, d > 0, 1 ≥ � > 0, 1 ≥ � > 0, s ,
and let D be a distribution on partial assignments so that for every
k-DNF G , Pr�∈D

[

G ↾� 	= 1
]

≤ d2−�(c(G))� . Then for every k-DNF F ,
Pr�∈D

[

h(F ↾�) > 2s
]

≤ dk2−�′s�
′

, where �′ = 2(�/4)k and � ′ = �k.

Proof. Let si = (�/4)
i (s�

i
), and pi = d2

−4si . Note that si−1/4 ≥
(�/4)si−1 = (�/4)(�/4)

i−1
s�
i−1 ≥ (�/4)is� i = si . It follows that

∑k
j=i sj ≤

∑

j≥i si/4
j−i ≤ 2si . Also, for any i-DNF G , with c(G) ≥ si−1,

Pr�∈D
[

G ↾� 	= 1
]

≤ d2−�(c(G))� ≤ d2−�s
�
i−1 = 2−�(�/4)

i−1(s�
i−1
)� = d2−4si .

Thus, we can apply theorem 9.2 with parameters p1, . . . , pk, s0, . . . , sk−1.
For every k-DNF F :

Pr�∈D
[

h(F ↾�) > 2s
]

≤ Pr�∈D
[

h(F ↾�) >
k−1
∑

i=0

si

]

≤
k

∑

i=1

2(
Pk−1
j=i sj)pi

≤
k

∑

i=1

22si (d2−4si )

≤ dk2−2sk = dk2−�′s�
′

. ⊣

9.2. Converting Res (k) refutations into resolution refutations. Applica-
tions of the small-restriction switching lemma use the fact that when the
lines of a Res (k) refutation are strongly represented by short decision trees,
the refutation can be converted into a narrow resolution refutation. This
does not depend the particular, definition of the Res(k) system, but only
upon a property called strong soundness: If F is inferred from F1, . . . , Fj ,
and t1, . . . , tj are mutually consistent terms of F1, . . . , Fj respectively, then

there is a term t of F implied by
∧j
i=1 ti . In other words, any reason why

F1, . . . , Fk are true implies a reason why F is true. This is stronger than mere
soundness.
Recall the definition of w(C) from Definition 8.1.
Theorem 9.4. Let C be a set of clauses of width ≤ h. If C has a Res (k)
refutation so that for each line F of the refutation, h(F ) ≤ h, thenw(C) ≤ kh.



454 NATHAN SEGERLIND

Proof. We will use the short decision trees to construct a narrow refuta-
tion of C in resolution augmented with subsumption inferences: Whenever
A ⊆ B , AB . These new inferences simplify our proof, but they may be
removed from the resolution refutation without increasing the size or the
width.
For each initial clauseC ∈ C, we letTC be the decision tree that queries the
(at most h) variables in C , stopping with a 1 if the clause becomes satisfied
and stopping with a 0 if the clause becomes falsified. For the other lines, F ,
let TF be a shortest decision tree that strongly represents F .
For any partial assignment � letC� be the clause of width≤ h that contains
the negation of every literal in �, i.e., the clause that says that branch � was
not taken.
We construct a resolution proof of width ≤ kh by deriving C� for each
line F of the refutation and each � ∈ Br0(TF ).
Notice that for � ∈ Br0(T∅), C� = ∅, and for each C ∈ C, for the unique
� ∈ Br0(TC ), C� = C .
LetF be a line of the refutation that is inferred from the previously derived
formulas F1, . . . , Fj , j ≤ k. Assume we have derived all C� ∈ Br0(TFi ) for
1 ≤ i ≤ j.
To guide the derivation of {C� | � ∈ Br0(TF )}, we construct a decision
tree that represents the the conjunction of F1, . . . , Fj . The tree (call it T )
begins by simulating, TF1 and outputting 0 on any 0-branch of TF1 . On any
1-branch, it then simulates TF2 , etc. If all j branches are 1, T outputs 1;
otherwise T outputs 0. The height of T is at most jh ≤ kh, so the width of
any such C�, with � ∈ Br(T ) is at most kh.
Every � ∈ Br0(T ) contains some � ∈

⋃j
i=1 Br0(TFi ). Therefore, {C� | � ∈

Br0(T )} can be derived from the previously derived clauses by subsumption
inferences.
On the other hand, if � ∈ Br1(T ), there exists �1 ∈ Br1(TF1), . . . , �j ∈
Br1(TFj ) so that �1 ∪ · · · ∪ �j = �. Because the decision trees TF1 , . . . , TFj
strongly represent the k-DNFs F1, . . . , Fj , there exist terms t1 ∈ F1, . . . , tj ∈
Fj so that

∧j
i=1 ti is satisfied by �. By strong soundness of Res (k), there

exists t ∈ F so that � satisfies t.
Let � ∈ Br0(TF ) be given. Because TF strongly represents F , � sets all
terms of F to 0. So by the preceding paragraph, for all � ∈ Br(T ), if � is
consistent with �, then � ∈ Br0(T ).
We now begin the derivation of Br0(TF ). Let � ∈ Br0(TF ) be given. For
each node v in T , let �v be the path (viewed as a partial assignment) from
the root to v. Bottom-up from leaves to root, we inductively deriveC�v ∨C� ,
for each v so that �v is consistent with �. When we reach the root, we will
have derived C� .
If v is a leaf, then �v ∈ Br0(T ) (because it is consistent with �), and it has
already been derived.
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If v is labeled with a variable that appears in �, call it x, then there is a
child u of v with �u = �v ∪ {x}. Therefore, C�v ∨ C� = C�u ∨ C� . By
induction, the clause C�u ∨ C� has already been derived.
If v is labeled with a variable x that does not appear in �, then for both
of the children of v, call them v1, v2, the paths �v1 and �v2 are consistent
with �. Moreover,C�v1 ∨C� = x∨C�v ∨C� and C�v2 ∨C� = ¬x∨C�v ∨C� .
Resolving these two previously derived clauses gives us C�v ∨C� . ⊣
Corollary 9.5. Let C be a set of clauses of width ≤ h, let Γ be a Res (k)
refutation of C, and let � be a partial assignment so that for every line F of Γ,
h(F ↾�) ≤ h. Then w(C ↾�) ≤ kh.
9.3. Lower bounds the 2n to n weak pigeonhole principle. Here we prove:

Theorem 9.6. For every c > 1, there exists ǫ > 0 so that for all n sufficiently
large, if k ≤

√

log n/ log log n, then every Res(k) refutation of PHPcnn has

size at least 2n
ǫ

.

We contrast this with the known upper bounds for PHP2nn : Maciel, Pitassi
and Woods [110] demonstrate quasipolynomial size refutations of PHP2nn
in Res(polylog(n)). Our results show that super-constant sized conjunc-
tions are necessary for sub-exponential size proofs of the weak pigeonhole
principle.
Alexander Razborov has announced an improvement of Theorem 9.6:

Theorem 9.7. [145] For every c > 1, there exists ǫ, � > 0 so that for all
n sufficiently large, if k ≤ ǫ log n/ log log n, then every Res(k) refutation of

PHPcnn has size at least 2
n� .

His proof uses a switching lemma that is less general (in particular, it
does not clearly apply to random 3-CNFs as we need in Section 10). For
this reason we present the version based upon the more general switching
lemma.
As in Subsection 8, we perform the analysis on PHP(G) where G is a
suitable bipartite graph. (See Definition 8.2 for the definition of PHP(G).)
First, all Res (k) refutations are put into a normal form in which no term
of any DNF asks that two pigeons be mapped to the same hole.

Definition 9.3. [20] Let G = (U ∪ V,E) be a bipartite graph. A term
is said to be in pigeon-normal-form if it does not contain two literals xu,v
and xu′,v with u 	= u′. A DNF is said to be in pigeon-normal-form if all of
its terms are in pigeon-normal-form and a Res (k) refutation is said to be in
pigeon normal form if every line is in pigeon-normal-form.

Every Res (k) refutation of PHP(G) can be transformed into a refutation
in pigeon normal form which at must doubles the number of lines in the
proof. When there is an AND-introduction inference that creates a line not
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in pigeon normal form, say

(A ∨ xu,v) (A ∨ xu′,v) . . .
(

A ∨ lj
)

A ∨
(

xu,v ∧ xu′,v ∧
∧j
i=3 li

) .

Replace the inference by a derivation that resolves A ∨ xu′,v with ¬xu,v ∨
¬xu′,v to obtain A ∨ ¬xu,v. Resolve this with A ∨ xu,v to obtain A. We
may proceed through the rest of the proof with A because it subsumes

A ∨ xu,v ∧ xu′,v ∧
∧j
i=3 li .

Now we define our family of random restrictions.

Definition 9.4. For a bipartite graph G = (U ∪ V,E) and a real number
p ∈ [0, 1], letMp(G) denote the distribution on partial assignments � given
by the following experiment:
Independently, for each v ∈ V , with probability 1 − p choose to match v
and with probability p leave v unmatched. If v is matched, uniformly select a
neighbor u of v, set xu,v to 1, and for every w 	= u that is a neighbor of v, set
xw,v to 0. Moreover, for each v

′ 	= v, set xu,v′ = 0.
Let V� be the set of vertices of V matched by �, let U� be the set of vertices
of U matched by �, and let S� = U� ∪ V�.
It is easy to check that for any � ∈ Mp(G), we have that PHP(G) ↾�=
PHP(G − S�).
Lemma 9.8. Let p ∈ [0, 1], i ∈ [k] be given. Let G = (U ∪ V,E) be a
bipartite graph with ∆ = ∆(G). Let F be an i-DNF in pigeon-normal-form:

Pr�∈Mp(G)

[

F ↾� 	= 1
]

≤ 2−
(log e)(1−p)i c(F )

i∆i+1 .

Proof. For a term T , define the holes of T as Holes(T ) = {v | xu,v ∈
T or ¬xu,v ∈ T}. We say that two terms T and T ′ are hole-disjoint if
Holes(T ) ∩Holes(T ′) = ∅.
Because F contains at least c(F )/i many variable-disjoint terms, and each
hole v ∈ V appears in at most ∆ many variables, F must contain at least
c(F )/i∆ many hole-disjoint terms.
The events of satisfying hole-disjoint terms are independent, and for a
given term, T , the probability that T ↾�= 1 is at least (1 − p)i/∆i . This
is because with probability (1 − p)i , every hole of T is matched, and with
probability at least 1/∆i the holes are matched in a way that satisfies T (here
we use that F is in pigeon-normal-form). Therefore, we have that:

Pr�
[

F ↾� 	= 1
]

≤
(

1− (1− p)i/∆i
)

c(F )
i∆

≤
(

e−(1−p)
i/∆i

)
c(F )
i∆
= 2

− (log e)(1−p)
i c(F )

i∆i+1 . ⊣
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For the proof to work, we need that after the application of a random
restriction �, with high probability, G − S� contains a good boundary ex-
pander as a subgraph (and therefore PHP(G) ↾� requires large width to
refute). We call such graphs robust.

Definition 9.5. A bipartite graph G with m left vertices, n right ver-
tices, and maximum right degree d is said to be (p, r, �)-robust, if when �
is selected from Mp(G), with probability at least

1
2 , G − S� contains an

(m − (1− p)n, pn, d, r, �)-boundary expander as a subgraph.
All we need for the size lower bound is the following lemma, which is
proven in [152]. The proof is a straightforward probabilistic construction:
A random subgraph of a random graph is itself a random graph, random
graphs are good expanders.

Lemma 9.9. [152] For all c > 1, there exists d, c1, c2 > 0 so that for n
sufficiently large, there exists a bipartite graph G on vertex sets [cn] and [n]
that is (3/4, c1(n/ ln n), c2 ln n)-robust and has ∆(G) ≤ d log n.
Lemma 9.10. For any c > 1andd, c1, c2 > 0, there exists ǫ > 0 so that for all
n sufficiently large, ifk≤

√

log n/ log log n andG is a (3/4, c1(n/ ln n), c2 ln n)-
robust bipartite graph with vertex sets of sizes cn and n and ∆(G) ≤ d log n,
then Sk(PHP(G)) ≥ 2n

ǫ

.

Proof. By Lemma 9.8, for each i ∈ [k] and every i-DNF F ,

Pr�∈M3/4(G)

[

F ↾� 	= 1
]

≤ 2−
(log e)(1−3/4)i c(F )

i(d log n)i+1 = 2
− (log e)c(F )

i·4i (d log n)i+1 .

In the interest of obtaining a better bound, we will not appeal to Corol-
lary 9.3, but directly apply Theorem 9.2. We define sequences s0, . . . , sk and
p1, . . . , pk for use in the switching lemma. Set s0 =

3
4k (c1c2n/2 − 1). For

each i ∈ [k], set si = si−1 ·
(

log e

2i4i (d log n)i+1

)

. For each i ∈ [k] set pi = 2−2si .
For every i-DNF F so that c(F ) > si−1, we have the following inequality:

Pr�∈M3/4(G)

[

F ↾� 	= 1
]

< 2
−

(log e)si−1

i·4i (d log n)i+1 = 2
−2

(log e)si−1

2i4i (d log n)i+1 = 2−2si = pi .

An easy calculation (presented below in Lemma 9.12) shows that there
exists ǫ > 0 so that for sufficiently large n, sk ≥ nǫ. Suppose that Γ is a
Res(k) refutation of PHP(G) of size less than 2n

ǫ

. By an application of
Theorem 9.2 and the union bound, we have:

Pr�∈M3/4(G)

[

∃F ∈Γ, h(F ↾�)>
k−1
∑

i=0

si

]

≤2nǫ
k

∑

i=1

pi2
Pk−1
j=i sj

≤2sk
k

∑

i=1

pi2
Pk−1
j=i sj=

k
∑

i=1

pi2
Pk
j=i sj .
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We now bound pi2
Pk
j=i sj for each i > 0. For each i , si+1 <

1
4si so

∑k−1
j=i sj ≤ 4

3si . This gives us the following inequality:

pi2
Pk−1
j=i sj = 2

Pk−1
j=i sj−2si ≤ 2(4/3−2)si = 2−(2/3)si ≤ 2−(2/3)sk ≤ 2−(2/3)nǫ .

Therefore:

Pr�∈M3/4(G)

[

∃F ∈ Γ, h(F ↾�) > (c1c2n/2− 1)/k
]

≤ Pr�∈M3/4(G)

[

∃F ∈ Γ, h(F ↾�) >
k−1
∑

i=0

si

]

≤
k

∑

i=1

pi2
Pk−1
j=i sj ≤

k
∑

i=1

2−(2/3)n
ǫ ≤ k2−(2/3)nǫ = 2logk−(2/3)nǫ .

For n sufficiently large, this probability is strictly less than 1/2. Because
G is a (3/4, c1(n/ ln n), c2 ln n)-robust for � ∈ M3/4(G), with probability

at least 1/2, G − S� contains a ((c − 1/4)n, (3/4)n, d, c1(n/ ln n), c2 ln n)-
boundary expander. Let 
 be the assignment that zeroes out the edges
not in the expanding subgraph, and by Lemma 8.7, w(PHP(G) ↾�) ≥
w(PHP(G) ↾�∪
) ≥ c1(n/ ln n)c2 ln n

2 = c1c2n
2 . However, ∀F ∈ Γ, h(F ↾�) ≤

1
k (c1c2n/2 − 1), so by Corollary 9.5, there is a resolution refutation of
PHP(G) ↾� of width ≤ c1c2n/2− 1. Contradiction. ⊣
Theorem 9.11. [152] For each c > 1, there exists ǫ > 0 so that for all n
sufficiently large, if k ≤

√

log n/ log log n, then every Res(k) refutation of

PHPcnn has size at least 2
nǫ .

Proof. Apply Lemma 9.9 and choose d so that for sufficiently large n,
there exists a (3/4, c1(n/ ln n), c2 ln n)-robust graph G on vertex sets cn and
n, with ∆(G) ≤ d log n. By Lemma 9.10, there exists ǫ > 0 so that for k ≤
√

log n/ log log n, Sk(PHP(G)) ≥ 2n
ǫ

. Because PHP(G) can be obtained
by setting some of the variables of PHPcnn to 0, every Res (k) refutation of
PHPcnn can be converted into a Res (k) refutation of PHP(G) of the same
or lesser size. Therefore, all Res (k) refutations of PHPcnn must have size at

least 2n
ǫ

. ⊣
Lemma 9.12. There exists ǫ > 0, so that all n sufficiently large, with
k ≤

√

log n/ log log n and s0, . . . , sk defined as in the proof of Lemma 9.10,
sk ≥ nǫ.
Proof. The recursive definition of the si ’s gives:

sk =
1

2k
(log e)

k 1

k!

(

1

4

)

Pk
j=1 j

(

1

d log n

)

Pk+1
j=2 j 3

4k
(n/24 − 1).
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Because k ≤
√

log n/ log log n, we have that 1
2k
(log e)

k 1
k!

(

1
4

)

Pk
j=1 j 3

4k =

n−o(1). Therefore:

sk = n
−o(1)(1/d log n)

(k+2)(k+1)/2(n/24 − 1)
= n−o(1)2−(log(d log n))(k

2+3k+2)/2(n/24− 1).
Because k ≤

√

log n/ log log n and d is a constant, for n sufficiently large,
(log(d log n))(k2 + 3k + 2)/2 = (log n)(1 + o(1))/2. Therefore,

sk = n
−o(1)2−(log n)(1+o(1))/2(n/24 − 1)

and there exists ǫ > 0 so that for all n sufficiently large, sk ≥ nǫ. ⊣

§10. Expansion clean-up and random 3-CNFs. In this section we study
the sizes of refutations needed to refute random 3-CNFs (as given by the
distribution F ∆,n3 described in Subsection 4.2). In particular, we give the
proof (due to Misha Alekhnovich) that that random 3-CNFs of constant
clause density almost surely require exponentially large Res (k) refutations,

for k ≤
√

log n/ log log n. TheRes (k) systems are among themost powerful
propostional proof systems for which non-trivial lower bounds are known
for the refutation of random 3-CNFs.

Theorem 10.1. [8] Let ∆ be a constant. For n sufficiently large with respect
to ∆, with probability 1− o(1) over 3-CNFs F chosen according to F ∆,n3 , every
Res

(

√

n/ log log n
)

refutation of F has size at least 2n
1−o(1)
.

The proof of Theoerem 10.1 uses the the small restriction switching lemma
(Theorem 9.2), but with a twist. As in other applications of Theorem 9.2,
a random restriction is used to transform a small Res (k) refutation into a
narrow resolution refutation. In order to get a contradiction, it is shown that
the surviving system of equations is still expanding and therefore requires
high-width to refute. This is ensured via an expansion clean-up procedure
that is applied after the random restriction. Expansion clean-up techniques
have proved useful for other bounds in proof complexity and the zero-one
optimization [13, 11, 9].
As in [8], we prove the stronger result that systems of linear equations over
GF2, Ax = b, require exponentially large Res (k) refutations when A is a
(∆n, n,Θ(1),Θ(n),Θ(1)) boundary expander. This simplifies the analysis of
the random restrictions, cf. Lemma 10.11.

10.1. From 3-CNFs to systems of linear equations.

Definition 10.1. Let F be a 3-CNF in variables x1, . . . , xn. The system
AF x = bF overGF2 is defined as follows: Translate each clause x

ǫ1
j1
∨xǫ2
j2
∨xǫ3
j3

into the equation xj1 + xj2 + xj3 = ǫ1 + ǫ2 + ǫ3 over GF2.
For a system of equations over GF2, Ax = b, we create an equivalent CNF,

CA,b , as follows: Each equation xi + xj + xk = b is encoded as four clauses
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of width 3: Let B = {(ǫ1, ǫ2, ǫ3) ∈ GF 32 | ǫ1 + ǫ2 + ǫ3 	= b}, and identify
xi + xj + xk = b with

∧

�ǫ∈B(x
1−ǫ1
i ∨ x1−ǫ2

j ∨ x1−ǫ3
k ). Let CA,b denote the set

of clauses obtained by applying this transformation to all equations ofAx = b.

We state some easy observations without proof:

Lemma 10.2. Let F be a 3-CNF in variables x1, . . . , xn. If the system
AF x = bF is satisfied, then F is also satisfied, but not necessarily vice-versa.
For every system of equations Ax = b, the CNF CA,b is satisfied if and only if
the system of equations Ax = b is satisfied. For any 3-CNF F , F ⊆ CAF ,bF .
If there is a size S Res (k) refutation of F , then there is a size S Res (k)
refutation of CAF ,bF .
10.2. Expansion and expansion clean-up.

Lemma 10.3. Let Ax = b be a system of equations so that A is an (r, �)-
boundary expander with � > 0. For every I ⊆ [m] with |I | ≤ r, AIx = bI is
satisfiable.

Proof. Otherwise, by linear algebra, there is I ′ ⊆ I with ∑

i∈I ′ Aix −
bi = 1. Notice that I

′ 	= ∅ and ∂A(I ′) = ∅. However, by the expansion of A,
|∂AI ′| > �|I ′| > 0; contradiction. ⊣
Definition 10.2. Let A ∈ {0, 1}m×n be an (r, �)-boundary expander, and
let J ⊆ [n] be given. Define the relation ⊢eJ on subsets of [m] as:

I1 ⊢eJ I2 ⇐⇒ |I2| ≤ (r/2) ∧
∣

∣

∣
∂A(I2) \

(

⋃

i∈I

Ai ∪ J
)
∣

∣

∣
< (�/2)|I2|. (1)

Define the expansion closure of J , eclA(J ), via the following iterative pro-
cedure: Initially let I = ∅. So long as there exists I1 so that I ⊢eJ I1, let I1
be the lexicographically first such set, replace I by I ∪ I1 and remove all rows
in I1 from the matrix A. Set eclA(J ) to be the value of I after this process
stops. The matrix A is often clear from the context, and we accordingly drop
the subscript. Let the clean up of A after removing J , CLJ (A), be the matrix
that results by removing all rows of ecl(J ) and all columns of

⋃

i∈eclA(J )
Ai

from A.

Lemma 10.4. Let A ∈ {0, 1}m×n and J ⊆ [n] be given. If CLJ (A) is
non-empty, then CLJ (A) is an (r/2, �/2)-boundary expander.

Proof. Suppose that I1 is a set of ≤ r/2 many rows of CLJ (A) such
that |∂CLJ (A)(I1)| < (�/2)|I1|. Consider a column j ∈ ∂A(I1). There is
exactly one i ∈ I1 with Ai,j = 1, so clearly there is at most one i ∈ I1
with (CLJ (A))i,j = 1. Moreover, if j /∈ J ∪ ⋃

i∈ecl(J )Ai , then j is incident

with exactly one row i ∈ I1 in CLJ (A), so j ∈ ∂CLJ (A)(I1). Therefore:
∂A(I1) ⊆ ∂CLJ (A)(I1) ∪

⋃

i∈ecl(J )Ai ∪ J . Therefore:

|∂A(I1) \
⋃

i∈ecl(J )

Ai ∪ J | ≤ |∂CLJ (A)(I1) \
⋃

i∈ecl(J )

Ai ∪ J | < (�/2)|I1|.
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So ecl(J ) ⊢eJ I1, contrary to the definition of ecl(J ). ⊣
Lemma 10.5. Let A ∈ {0, 1}m×n be an (r, �)-boundary expander, and let
J ⊆ [n] be given. If |J | < �r/4 then | eclA(J )| < (2/�)|J |.
Proof. Suppose for the sake of contradiction that | ecl(J )| ≥ (2/�)|J |.
Let I1, . . . , It be the sequence of subsets of [m] that are taken in cleaning
procedure, with each |Ii | ≤ r/2.
First we inductively show that for each s ≤ t, |∂A

(
⋃s
i=1 Ii) \ J | ≤

(�/2)|⋃si=1 Ii |. For the base case, Equation 1 yields |∂A(I1) \ J | ≤ (�/2)|I1|.
For the induction step, assume that |∂A

(
⋃s
i=1 Ii) \ J | ≤ (�/2)|

⋃s
i=1 Ii | for

an arbitrary s < t. By Equation 1, |∂A(Is+1) \
(

J ∪ ⋃

i∈
Ss
i=1 Ii
Ai

)

| ≤
(�/2)|Is+1|. Because rows added to ecl(J ) are removed from the matrix after
each stage of cleaning, the sets I1, . . . , It are pairwise disjoint, thus:

∣

∣

∣
∂A

(

s+1
⋃

i=1

Ii

)

\ J
∣

∣

∣
≤

∣

∣

∣
∂A

(

s
⋃

i=1

Ii

)

\ J
∣

∣

∣
+

∣

∣

∣
∂A(Is+1) \

(

J ∪
⋃

i∈
Ss
i=1 Ii

Ai

)∣

∣

∣

≤ (�/2)
∣

∣

∣

s
⋃

i=1

Ii

∣

∣

∣
+ (�/2)

∣

∣

∣
Is+1

∣

∣

∣
= (�/2)

∣

∣

∣

s+1
⋃

i=1

Ii

∣

∣

∣

Now, let i0 be the first index with |⋃i0i=1 Ii | > (2/�)|J |. Note that
|⋃i0i=1 Ii | ≤ |⋃i0−1i=1 Ii | + |Ii0 | ≤ (2/�)|J | + r/2 ≤ (2/�)(�r/4) + r/2 = r.
Therefore by expansion, |∂A

(

⋃i0
i=1 Ii

)

| > �|⋃i0i=1 Ii |. Therefore:

∣

∣

∣
∂A

(

i0
⋃

i=1

Ii

)

\ J
∣

∣

∣
≥ �

∣

∣

∣

i0
⋃

i=1

Ii

∣

∣

∣
− |J | > �

∣

∣

∣

i0
⋃

i=1

Ii

∣

∣

∣
− (�/2)

∣

∣

∣

i0
⋃

i=1

Ii

∣

∣

∣

= (�/2)
∣

∣

∣

i0
⋃

i=1

Ii

∣

∣

∣
.

This contradicts the previously established fact that |∂A
(

⋃i0
i=1 Ii

)

\ J | ≤
(�/2)|⋃i0i=1 Ii |. ⊣
Lemma 10.6. Let A ∈ {0, 1}m×n be an (r, �)-boundary expander, and let
J ⊆ [n] be given. For all I0 ⊆ [m], if ∂A(I0) ⊆ J then I0 ⊆ eclA(J ).
Proof. We show that for every I ⊆ [m], I ⊢eJ (I0 \ I ). The claim follows
by induction, as eventually every row of I0 will be added to ecl(J ). LetA

∗ be
the submatrix of A with the rows of I deleted. Let j ∈ ∂A∗(I0 \ I ) be given.
If j ∈ ∂A(I0), then by the hypothesis ∂A(I0) ⊆ J , j ∈ J . Otherwise, there
are i1, i2 ∈ I0 with Ai1,j = Ai2,j = 1, but i2 is not a row of A∗, that is, i2 ∈ I .
Therefore, j ∈ ⋃

i∈I Ai . Thus we have that ∂A∗(I0 \ I ) ⊆ J ∪
⋃

i∈I Ai so that
I ⊢eJ (I0 \ I ). ⊣
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10.3. Extracting an expanding matrix with bounded column degree.

Lemma 10.7. For all constants ∆ > 0, there are constants c, d > 0 so that
with probability 1 − o(1) over F chosen by the distribution F ∆,n3 , there exists
a partial assignment � so that CAF ,bF ↾� is a sub-CNF of CÂ,b̂ where Â is an

(m′, n, d, cn, 2/5)-boundary expander with m′ ≥ m/2.
Proof. By Lemma 7.2, there is a constant c > 0 so that with probability
1 − o(1), in the system AFx = bF , the matrix AF is a (cn, 0.8)-boundary
expander. Set r = cn. Let J be r/5 many columns of largest hamming
weight in A. Let Â = CLJ (A). By Lemma 10.4, Â is an (r/2, 2/5)-
boundary expander. Let b be the maximum number of ones in a column
of A that does not belong to J . Because there are 3∆n many ones in the
matrix A, (r/5)b = |J |b ≤ 3∆n. Therefore, b ≤ 3∆n

r/5 =
15∆n
cn =

15∆
c . Set

d = 15∆
c . The matrix Â contains at least m/2 rows because by Lemma 10.5,

| ecl(J )| ≤ (2/c)|J | ≤ (2/(4/5))(r/5) = r/2, and thus themaximumnumber
of rows deleted is r/2 < m/2.
Because | ecl(J )| ≤ r/2 < r, by Lemma 10.3, there exists a partial assign-
ment � to the variable of

⋃

i∈ecl(J )Ai that satisfies every equation Aix = bi
with i ∈ ecl(J ). Consider the system of equations (Ax = b) ↾�. If an
equation Aix = bi is not satisfied by �, then i /∈ ecl(J ), and the restriction
of Aix = bi by � is Âix = b̂i for some b̂i ∈ {0, 1} (possibly bi 	= b̂i ). There-
fore, (Ax = b) ↾� is a subsystem of Âx = b̂, and thus CA,b ↾� is sub-CNF
of CÂ,b̂ . ⊣
10.4. Local consistency and a normal form.

Definition 10.3. Let t be a term. We define ecl(t) to be ecl(Vars(t)). We
say that t is locally consistent if for the formula t ∧ [Aecl(t)x = becl(t)] is
satisfiable.

Lemma 10.8. Let t be a locally consistent term. For every I ⊆ [m] with
|I | < r/2, the formula t ∧ [AIx = bI ] is satisfiable.
Proof. Suppose that t ∧ [AIx = bI ] is unsatisfiable. By linear algebra,
there are I ′ ⊆ I and t′ ⊆ t so that:

∑

i∈I ′

(Ai − bi) +
∑

x
ǫj
j ∈t′

(xj − ǫj) = 1.

This forces ∂A(I
′) ⊆ Vars(t′), so that by Lemma 10.6, I ′ ⊆ ecl(t). This

contradicts the hypothesis that t is locally consistent. ⊣
Definition 10.4. ADNF F is said to be in normal form if every term t ∈ F
is locally consistent.

Lemma 10.9. Let A be an (m, n, d, r, �) boundary expander. Let Γ be a
Res (k) refutation of CA,b . There is a refutation Γ′ of CA,b so that the set of
k-DNFs appearing in Γ′ can be partitioned into two sets, Γ′0 and Γ

′
1 satisfying:
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1. Every formula in Γ′0 is a clause of width ≤ 6k
� .

2. |Γ′1| ≤ k|Γ| and every DNF in Γ′1 is locally consistent.
Proof. First, we show that for every term t =

∧l
j=1 x

ǫj

ij
that is locally

inconsistent with respect to Ax = b, there is a width ≤ (6l/�) resolution
derivation of

∨l
j=1 x

1−ǫj

ij
from CA,b . By Lemma 10.5, | ecl(t)| ≤ 2l/�, so

Aecl(t)x = becl(t) is a system of at most 2l/� many equations, with each
equation contains at most 3 variables. Therefore, the set of clauses encoding
Aecl(t)x = becl(t) is a set of width 3 clauses in at most 6l/c many variables.

Because
(

Aecl(t)x = becl(t)
)

|= ∨l
j=1 x

1−ǫj

ij
, by the implicational completeness

of resolution with subsumption, there is a width ≤ 6l/eta derivation of
∨l
j=1 x

1−ǫj

ij
.

The refutation Γ′ is constructed as follows:

1. For every locally inconsistent term t =
∧l
j=1 x

ǫj

ij
that appears in Γ,

derive
∨l
j=1 x

ǫj

ij
using a derivation of width at most 6k/�. These are

the clauses of Γ′0.
2. Let � be the partial assignment that falsifies every locally inconsistent
literal l , that is, �(l) = 0 if l is locally inconsistent and all other variables
are unset. For every locally inconsistent literal l , resolve ¬l against all
clauses of CA,b that contain l , thus deriving CA,b ↾�. These clauses are
locally consistent, and are placed into Γ′1.

3. Now follow the proof structure of Γ ↾�, but do not construct any locally

inconsistent terms of size ≥ 2: Inferences of the form x
ǫ1
i1

∨G ···x
ǫl
il
∨G

t∨G are

replaced by resolution inferences against x1−ǫ1
i1

∨ · · · ∨ x1−ǫl
il
to derive

G . These clauses are placed in Γ′1.

⊣
10.5. Random restrictions and the switching lemma.

Definition 10.5. Let A ∈ {0, 1}m×n be an (r, �)-boundary expander and
let b ∈ {0, 1}m be given. Let �A,b be partial assignment to the variables
x1, . . . , xn generated by the following experiment: Uniformly select a subset
X1 ⊆ {x1, . . . , xn} of size �r4 . Let Î = ecl(X1) and let x̂ = X1 ∪ {xj |
∃i ∈ Î , Ai,j = 1}. The restriction �A,b is a uniformly selected assignment to
x̂ satisfying AÎ x̂ = bÎ .

In the above definition, take note that |X1| ≤ �r/4, so that by Lemma 10.5,
| ecl(X1)| < (2/�)|X1| = (2/�)(�r/4) = r/2 < r. Therefore, byLemma10.3,
the system of equations AÎx = bÎ is satisfiable.

Definition 10.6. Let A be a system of equation in variables V . Let GA be
the bipartite graph whose left vertices are V and whose right vertices are the
equations ofA. The distance between two variables u and v, dA(u, v), is their
distance in the graph GA. The distance between two terms t1 and t2, dA(t1, t2),
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is the minimum distance between variables u and v with u appearing in t1 and v
appearing in t2.

Lemma 10.10. Let A be an (r, �) boundary expander. Let I be a set of rows
with |I | < r/2 and let t be a term so that the formula t ∧ [AIx = bI ] is
satisfiable. The for any satisfiable term t1 with |t1| ≤ k and dA(ecl(t), t1) >
4k/�, the formula t1 ∧ t ∧ [AIx = bI ] is also satisfiable.
Proof. Suppose that t∧ t1∧ [AIx = bI ] is unsatisfiable. By linear algebra,
there is t′ ⊆ t, t′1 ⊆ t1 and I ′ ⊆ I so that

∑

i∈I ′

(Axi − bi ) +
∑

x
ǫj
j ∈t′

(xj − ǫj) +
∑

x
ǫk
k

∈t′1

(xk − ǫk) = 1.

We immediately have that ∂A(I
′) ⊆ Vars(t′) ∪ Vars(t′1). Furthermore, be-

cause (AIx = bI ) ∧ t and t1 are both satisfiable, there is a path connecting
t1 to t in GAI .
Case 1. |I ′ \ ecl(t)| > 2k/�. In this case,

∣

∣

∣
∂A(I

′) \
(

⋃

i∈ecl(t)

Ai ∪Vars(t)
)
∣

∣

∣
≤ |t1| ≤ k

= (�/2)(2k/�) < (�/2)|I ′ \ ecl(t)|.
In light of this and the fact that |I ′| ≤ |I | < r/2, ecl(t) ⊢et I ′ \ ecl(t). This
contradicts the property that ecl(t) is closed.
Case 2. |I ′ \ ecl(t)| ≤ 2k/�. The minimum length path joining t1 to
ecl(t) passes through at most |I ′ \ ecl(t)| many variables not in ecl(t) before
reaching in ecl(t), and thus it has length at most ≤ 2(2k/�) = 4k/�. This
contradicts the hypothesis dA(ecl(t), t1) > 4k/�. ⊣
Lemma 10.11. Let Y ⊆ X be a set of variables. Assume that b is a partial
assignment to Y that is distributed uniformly over some affine subspace of
{0, 1}X . For any term t in l many Y variables, either Prb[t ↾b= 1] = 0 or
Prb [t ↾b= 1] ≥ 2−l .
Proof. Let a + L be the affine subspace of {0, 1}X over which b is dis-
tributed. Write t =

∧l
i=1 x

ǫi
i . Choose a basis extending the independent

variables of t, ie. choose I ⊆ [l ] and vectors {ei | i ∈ I } ⊆ {0, 1}X that are
linearly independent modulo L, and so that for i ∈ [l ] \ I , bi is equal to an
affine combination of {bj | j < i}. We immediately have that the probability
that the term t is satisfied is either 0 or 2−|I | ≥ 2−l . ⊣
Lemma 10.12. LetA be an (m, n, d, r, �)-boundary expander such thatd ≥ 2.
Let b ∈ {0, 1}m be arbitrary. There exists a > 0 (dependent upon only � and
the ratio r/n, and increasing in both quantities) such that for any k-DNF F so
that F is in normal form:

Pr�A,b [F ↾�A,b 	= 1] < 2−c(F )/d
ak
.
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Proof. Let F be a k-DNF in normal form with covering number c(F ).
Let �A,b , X1 and Î be generated as in Definition 10.5. The DNF F contains
at least c(F )/k many variable disjoint terms, and each of these has its
variables contained inX1 with independent probability (�r/4n)

k . Therefore,
there expected number of variable disjiont terms from F whose variables

are contained in X1 is at least c(F )/k(�r/4n)
k = c(F )

k(�r/4n)k
. Let B1 denote

the event that there are strictly fewer than c(F )
2k(�r/4n)k

many terms of F whose

variables are contained in X1. By the Chernoff bounds, Corollary 7.4, the

probability of B1 is at most e
− c(F )

16k(�r/4n)k .
Consider the event that B1 fails. Denote the set of variable disjoint
terms from F whose variables are contained in X1 as F0. Define M =

⌊ �·c(F )
4k2d⌈4k/�⌉(�r/4n)k

⌋. Let t1 be the first term in F0. Because t1 is locally consis-
tent, by Lemma 10.8, t1∧[AÎx = bÎ ] is satisfiable, and thus by Lemma10.11,
t1 is satisfied by �A,b with probability at least 2

−k . If t1 is satisfied, terminate
the process. Otherwise, we repeat as follows: Suppose that we have consid-
ered terms t1, . . . , tl from F0. Let t

(l) be the term corresponding to the values
given toVars(t1)∪· · ·∪Vars(tl ) by�A,b . In the followingparagraph it is shown
that so long as l ≤M , there is a term t ∈ F0 with dA(t, ecl(t(l))) > 4k/�; let
tl+1 be such a term. By Lemma 10.10, tl+1 is consistent withAÎx = bÎ ∧ t(l),
and thus by Lemma 10.11, tl+1 is satisfied by �A,b with probability at least
2−k . LetB2 denote the event that none of the terms t1, . . . , tM are satisfied by
�: Multiplying out the conditional probabilities shows that the probability

of B2 is at most (1− 2−k)M ≤ e−M/2k .
Nowwe show that for any term t with |t| < Mk, there exists a term t′ ∈ F0
so that d (ecl(t), t′) > 4k/�. Let V ∗ be the set of all variables at distance

≤ 4k/� from ecl(t). Because |t| < Mk ≤ ⌊ �·c(F )
4k2d⌈4k/�⌉(�r/4n)k

⌋ · k ≤ �r/4, by
Lemma 10.5, | ecl(t)| ≤ 2|t|/� < 2Mk/�. Because |V ∗| ≤ d ⌈4k/�⌉| ecl(t)| <
d ⌈4k/�⌉2Mk/� < d ⌈4k/�⌉2⌊ �·c(F )

4k2d⌈4k/�⌉(�r/4n)k
⌋k/� ≤ c(F )

2k(�r/4n)k
≤ |F0|, and F0

contains only variable disjoint terms, there exists a term t′ ∈ F0withVars(t)∩
V ∗ = ∅. In other words, d (ecl(t), t′) > 4k/�.
The event that F ↾� 	= 1 is contained within B1 ∪ B2. Therefore, the
probability that F ↾� 	= 1 is at most

e
− c(F )

16k(�r/4n)k + e
−⌊ �·c(F )

4k2d⌈4k/�⌉(�r/4n)k
⌋/2k

Taking a sufficiently small with respect to � and r/n completes the
proof. ⊣
10.6. Width bound for expanding systems of linear equations.

Lemma 10.13. If A is an (m, n, d, r, �)-boundary expander, then w(CA,b) ≥
r�
2 .
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Proof. For each i ∈ [m], let Ei denote the conjunction of clauses equiv-
alent to Aix = bi . Define the measure of a clause C as 
(C ) = min{|I |:
∧

i∈I Ei |= C}. Observe that 
 : Γ → {0, . . . , m} maps each clause of CA,b
to 1. Furthermore, 
(∅) ≥ r by Lemma 10.3. Finally, 
 is subadditive with
respect to the resolution rule: 
(A ∨ B) ≤ 
(A ∨ x) + 
(B ∨ ¬x).
Choose a clause C in Γ with r/2 ≤ 
(C ) < r. Choose I0 ⊆ [m] so that

|I0| = 
(C ) and
∧

i∈I0
Ei |= C . Let j0 ∈ �(I0) be given and let i0 ∈ I0 be the

unique neighbor of j0 in I0. Suppose for the sake of contradiction that no
variable of C contains the variable xj0 . Choose an assignment α satisfying
∧

i∈I0\{i0}
Ei and falsifying C . Define the assignment α

′ to agree with α off

xj0 and to set xj0 to 1. BecauseC does not contain the variable xj0 , α
′ 	|= C .

However, α′ |= ∧

i∈I0
Ei . Thus we contradict the defining property of I0, so

for every i0 ∈ �(I0) there is some variable Xi0,j0 present in C and thus the
width of C is at least |�(I0)| ≥ �r

2 . ⊣
10.7. Proving Theorem 10.1.

Proof (of Theorem 10.1). By Lemma 10.7, there are constants c, d > 0
so that with probability 1 − o(1) over F selected by the distribution F ∆,n3 ,
there exists a partial assignment κ so that CAF ,bF ↾κ is a sub-CNF of CÂ,b̂
for some (m′, n, d, cn, 0.4)-boundary expander Â with m′ ≥ m/2. Consider
n sufficiently large so that 15k ≤ (1/k)((cn/40) − 1). We show that in
this event, the minimum size of any Res (k) refutation of CAF ,bF is at least

S = (d ak/k2)2
(1/k)((cn/40)−1)

2dak
2 . Suppose for the sake of contradiction that Γ is

Res (k) refutation ofCAF ,bF of size strictly less than S. By application of the
partial assignment κ, Γ ↾κ is a refutation of CÂ,b̂ .

By Lemma 10.9, there is a refutation Γ′ of CÂ,b̂ so that the DNFs of Γ
′

can be partitioned into sets Γ′0 and Γ
′
1 so that every formula in Γ

′
0 is a clause

of width at most 6k0.4 = 15k, all DNFs in Γ
′
1 are locally consistent, and

|Γ′1| ≤ k|Γ| < kS.
Apply a random restriction � = �Â,b̂ to Γ

′. By Lemma 10.11, there
is a constant a > 0 so that every locally consistent k-DNF F has that

Pr�[F ↾� 	= 1] < 2−c(F )/d ak . Thus, by Corollary 9.3, for every k-DNF F ,
Pr�[h(F ↾�) > (1/k)((cn/40) − 1)] < k

d ak
2
− (1/k)((cn/40)−1)

2dak
2 = 1/(kS). By

the union bound, there exists � so that every F ∈ Γ′1 is strongly repre-
sented by a decision tree of height at most (1/k)((cn/40) − 1). Moreover,
every clause in Γ′0 is strongly represented by a decision tree of height at
most (1/k)((cn/40) − 1) because each such clause has width ≤ 15k ≤
(1/k)((cn/40)− 1). Therefore, by Theorem 9.4, there is a resolution refuta-
tion of CÂ,b̂ ↾� of width at most (cn/40) − 1.
On the other hand, CÂ,b̂ ↾� is a sub-CNF of CA∗,b∗ where A

∗ is an

(r/4, 0.2)-boundary expander. By Lemma 10.13, all resolution refutations
of CA∗,b∗ must have width ≥ cn/40. Contradiction. ⊣
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§11. Resolution pseudowidth and very weak pigeonhole principles. We do
not obtain meaningful bounds for resolution refutations of PHPmn by using
the techniques of Subsection 8.1 when m ≥ n2. Restricting to PHP(G)
where is G is a suitably expanding m to n bipartite graph, does not work
because each pigeon must be allowed at least one hole and that forces the
number of variables to be at least n2, so that Corollary 8.2 yields only

that s(PHPmn ) ≥ s(PHP(G)) ≥ 2Θ((n−iw(PHP(G)))
2/n2) = Θ(1) (where s(F )

denotes the minimum resolution refutation size of F ). Similar difficulties
are encountered when one tries to extend the bottleneck counting approach
of [87, 60].
The first superpolynomial size lower bound for resolution refutations of
PHPmn , with m ≥ n2, was shown by Ran Raz [137] (building upon similar
bounds for regular resolution [131]). Subsequently, Alexander Razborov
found a short proof based on the analysis of a parameter that he dubbed the
pseudowidth [143]. Here we present the simplest version of this argument;
stronger versions appear in [143, 142, 146].

Theorem 11.1. [143] For all natural numbers m > n ≥ 1, every resolution
refutation of PHPmn has size at least 2

√
n/(512(log2 m)

2). Moreover, regardless of

the value ofm, every resolution refutation of PHPmn has size at least 2
4
√
n/4096.

11.1. A monotone normal form.

Definition 11.1. [58] The monotone calculus is refutation system for re-
futing instances of PHPmn . Its lines are positive clauses in the variables xi,j ,
i ∈ [m], j ∈ [n]. It has one inference rule, the monotone rule. Whenever
I0, I1 ⊆ [m] with I0 ∩ I1 = ∅, and C0, C1 and C are positive clauses with
C0 ∪ C1 ⊆ C :

C0 ∨
∨

i∈I0
xi,j C1 ∨

∨

i∈I1
xi,j

C
.

A monotone calculus refutation of PHPmn is a sequence of positive clauses
such that each clause is either

∨n
j=1 xi,j for some i ∈ [m], or follows from

two preceding clauses by the application of the monotone rule. The size of a
monotone calculus refutation is the number of clauses that it contains. Let
sMC (PHP

m
n ) denote the minimum size of a monotone calculus refutation of

PHPmn .

Lemma 11.2. [58] For everym and n, sR(PHP
m
n ) ≥ sMC (PHPmn ).

Proof. Let Γ be a resolution refutation of PHPmn with |Γ| = sR(PHPmn ).
Replace every clause C in Γ by the positive clause CM defined as fol-
lows: The clause CM contains every positive literal contained in C , and
for every negative literal ¬xi,j that appears in C , CM contains the disjunc-
tion

∨

k∈[n]\{j} xi,k. Notice that whenever A ⊆ B , AM ⊆ BM , and that
∅M = ∅. The initial clauses ∨

j∈[n] xi,j remain unchanged by the transfor-

mation C �→ CM but the initial clauses of the form ¬xi,k ∨ ¬xj,k become
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∨

l∈[n]\{k} xi,l ∨
∨

l∈[n]\{k} xj,l . The latter clauses are not legal initial clauses

for a monotone calculus derivation, so we throw them away. Let ΓM denote
Γ with the initial clauses ¬xi,k ∨ ¬xj,k removed, and every other clause C
replaced by CM . Notice that the number of lines in ΓM is no more than the
number of lines in Γ.
We now show that ΓM is a valid monotone calculus refutation of PHPmn .
Consider a clause C = A ∨ ¬xk,j that follows by resolving A ∨ xi,j with an
initial clause ¬xi,j ∨ ¬xk,j . Notice that when we combine (A ∨ xi,j)M =
AM ∨ xi,j with the initial clause

∨

l∈[n] xl,j = xk,j ∨
∨

l∈[n]\{j} xk,l using the

monotone rule, we obtain AM ∨ ∨

l∈[n]\{j} xk,l = C
M . Finally, consider a

clauseC = A∨B that follows fromA∨xi,j andB∨¬xi,j by an application of
the resolution rule andB is not an initial clause of the form ¬xi,j∨¬xk,j . We
have that (A∨xi,j)M = AM ∨xi,j , that (B∨¬xi,j)M = BM ∨∨

k∈[n]\{j} xi,k,

and that CM ⊆ BM ∨ AM . Applying the monotone rule derives CM . ⊣
11.2. Pseudowidth.

Definition 11.2. Let C be a positive clause. For each i ∈ [m], the holes
for pigeon i in C is defined as Ji(C ) = {j ∈ [n] | xi,j occurs in C }. The
degree for pigeon i in C is di(C ) := |Ji(C )|. Let �d ∈ [n]m be given; we
call �d a filter. A �d -axiom is a clause

∨

j∈J xi,j with |J | ≥ di . Let � be
given. We say that pigeon i ∈ [m] passes the filter if di(C ) < di , and that
it narrowly passes the filter �d if 0 < di − di(C ) ≤ �. Define the set of
narrowly-passing pigeons for a positive clause C with filter �d and margin �
as I �d,�(C ) = {i ∈ [m] | di − � ≤ di(C ) < di}. The pseudo-width of C
with respect to �d and �, w �d ,�(C ), is the number of pigeons in C that narrowly

pass the filter: w �d ,� = |I �d ,�(C )|. The pseudo-width of a monotone calculus
refutation is the maximum pseudowidth of its clauses.

11.3. Reducing the pseudowidth of a small refutation.

Lemma 11.3. Let m and n be integers, with m > n ≥ 1, and define � =
n

2 log2 m
. Suppose that there exists a monotone calculus refutation Γ of PHPmn

that has size≤ S. There exists an integer vector �d ∈ [n]m so that (1) for each
i ∈ [m], di > �, and (2) there exists a monotone calculus refuation Γ′ of a set
of �d -axioms which also has size ≤ S and has w �d ,�(Γ′) ≤ 16 lnS.
Proof. For each clause C of Γ, define the vector �r(C ) ∈ [n]m as ri (C ) =

⌊(n−di (C ))/�⌋+1. LetW (C ) =
∑m
i=1 2

−ri (C ). Belowwe use a probabilistic

construction to generate �d so that for every clause C of Γ:

W (C ) ≥ 2 lnS ⇒ ∃i ∈ [m], di ≤ di(C ),
W (C ) ≤ 2 lnS ⇒ |{i ∈ [m] | d − di ≤ �}| ≤ 16 lnS.
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Call this property “Property A”. Set t = ⌊log2m⌋−1and letD be the random
variable that takes the value n−�r with probability 2−r (for r = 1, . . . , t−1),
and that takes the value n − �t with probability 21−t . Choose the vector �d
usingm independent trials ofD. Notice that property (1) is satisfied because
the smallest each di can be is n − �t = n − � (⌊log2m⌋ − 1) = � + n −
�⌊log2m⌋ ≥ � + n − � log2m = � + n − (n/2 log2m) log2m = � + n/2 > �.
Consider each clause C with W (C ) ≥ 2 lnS. Let H = {i ∈ [m] |
ri (C ) ≤ t}. Clearly,

∑

i∈[m]\H 2
ri (C ) ≤ m2−t+1 = m2−⌊log2 m⌋+1 ≤ 2, so

that
∑

i∈H 2
−ri (C ) ≥ 2 lnS − 2. Now consider one of the events di(C ) ≥ di

with i ∈ H . Because di(C ) = n − �
(

n−di (c)
�

)

≥ n − �
(

⌊n−di (c)� ⌋+ 1
)

=

n − �ri(C ), we have that Pr[di(C ) ≥ di ] ≥ Pr[n − �ri (C ) ≥ di ] ≥ 2−ri (C ).
Because the events di(C ) ≥ di are independent for distinct i :

Pr[∀i ∈ [m], di(C ) < di ] ≤ Pr[∀i ∈ H, di(C ) < di ] =
∏

i∈H

(1− 2−ri (C ))

≤ e−
P

i∈H 2
−ri (C ) ≤ e−(2 lnS−2) < S−1.

Consider each clause with W (C ) ≤ 2 lnS. Note that for all i ∈ [m],
�(ri (C )− 1) ≤ n− di(C ). For each i ∈ [m], Pr[di(C ) ≥ di − �] = Pr[di ≤
di (C )− �] ≤ Pr[di ≤ n − �ri(C )] ≤ 22−ri (C ). Therefore:

E[|{i ∈ [m] | di(C ) ≥ di − �}|] ≤ 4
m

∑

i=1

2−ri (C ) = 4W (C ) ≤ 8 lnS.

Because the events are independent, by Corollary 7.4 (Chernoff–Hoeffding
bounds), the probability that |{i ∈ [m] | di(C ) ≥ di − �}| ≥ 16 lnS is
≤ e−(3/8)8 lnS ≤ e−3 lnS < S−1.
Because there are atmostS clauses in the refutationΓ, andPropertyA fails

at each clause with probability< S−1, there is a choice of �d so that Property
A holds for every clause of Γ. Every clauseC such that ∃i ∈ [m], di ≤ di(C )
is subsumed by some �d -axiom

∨

j∈J xi,j . ReplaceC by one of the subsuming
�d -axioms, the pseudowidth of the �d -axiom is one. Notice that replacing C
by C ′ ⊆ C preserves all applications of the monotone inference rule when
C is a hypothesis. We remove any inferences in which C is a consequent

because it has been replaced by a �d -axiom. ⊣
11.4. A lower bound on pseudowidth.

Lemma 11.4. Let A be a set of �d -axioms and let � > 0 be given with
� < mini∈[m] di . Every monotone refutation R of A satisfies wd,�(R) ≥
�2/(8n ln |A|).
Proof. Let w0 =

�2

8n ln |A| . Suppose for the sake of contradiction that Γ is

a monotone calculus refutation of PHPmn with pseudowidth < w0.
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For each assignment a let Ji(a) = {j ∈ [m] | ai,j = 1}. Set l = ⌈ �4w0 ⌉.
Let D be the set of partial assignments a such that ∀i1, i2 ∈ [m], i1 	= i2 ⇒
Ji1(a) ∩ Ji2(a) = ∅ and ∀i ∈ [m], |Ji(a)| ≤ l .
Let |= denote entailment with respect to the assignments of D: Let S be
a set of positive clauses and let C be a positive clause. If for all a ∈ D,
(

∀B ∈ S, B(a) = 1)⇒
(

C (a) = 1), then we write S |= C .
For each i ∈ [m] letAi be the set of axioms fromA of the form∨

j∈J xi,j .

For i ⊆ [m], letAI =
⋃

i∈I Ai . For eachC letAC = AI �d ,�(C ). We now show
that for all C ∈ R, AC |= C . This is a contradiction because ∅ ∈ Γ, yet A∅

is the empty set of clauses so A∅ 	|= ∅.
For C ∈ A, we have C ∈ AId,�(C ) = AC and thus AC |= C . Now
consider the induction step: AC0 |= C0, AC1 |= C1, and C follows from
C0 and C1 via the monotone rule. By soundness of the monotone rule,
AI �d ,�(C0) ∪ AI �d,�(C1) |= C . Let I ⊆ I �d,�(C0) ∪ I �d,�(C1) be of minimal size
so that AI |= C . Below we show that I ⊆ I �d ,�(C ), which guarantees that
AI �d ,�(C ) |= C .
We now show that I ⊆ Id,�(C ). Suppose not and choose i0 ∈ I \ Id,�(C ).
By minimality,AI \{i0} 	|= C . Choose a ∈ D, so that a satisfies AI \{i0} but a
does not satisfy C . Because all clauses in Γ are positive, we may assume that
aij = 0 for all i /∈ I \{i0}. Set J0 =

⋃

i∈I Ji(a)∪Ji0(C ) and set J1 = [n]\J0.
Notice that for every j ∈ J1, the assignment a ∪ ai0,j = 1 also falsifies C ,
and that we have |J1| ≥ n − (2w0l + di0 − �) ≥ n − di0 + �/2.
Uniformly select an set J from

(

J1
l

)

. Extend a to aJ by setting ai0,j = 1

for all j ∈ J . Notice that for all J ∈
(

J1
l

)

, aJ ∈ D because |J | = l , and
J ⊆ J1 ⊆ [n]\

(
⋃

i∈I Ji(a)
)

. ConsiderA ∈ Ai0 . Since |Ji0(A)| ≥ di0 we have
that |Ji0(A) ∩ J1| ≥ �/2, and thus |Ji0(A) ∩ J1| ≥ ⌈�/2⌉. Therefore:

PrJ [A(a
J ) 	= 1] = PrJ [Ji0(A) ∩ J = ∅] ≤

⌈�/2⌉
∏

k=1

(

1− l

|J1| − k

)

<

⌈�/2⌉
∏

k=1

(

1− l

n − di0 + �/2− k

)

<

⌈�/2⌉
∏

k=1

(

1− l
n

)

≤ e− �l
2n = e−

�⌈�/4w0⌉

2n ≤ e−
�2

8n(�2/(8n ln |A|))

= e− ln |A| = |A|−1.

By the union bound, the probability over choices of J that there exists
A ∈ Ai0 that is not be satisfied is < 1. Therefore there is some J ∈

(

J1
l

)

such that aJ satsfies every clause of Ai0 . Moreover, because aJ extends a,
aJ satisfies every clause of AI \{i0}. On the other hand, because J ⊆ J1, aJ



COMPLEXITY OF PROPOSITIONAL PROOFS 471

falsifies C . We have demonstrated aJ ∈ D such that aJ satisfies every clause
of AI but aJ falsifies C , so AI 	|= C , contradicting the choice of I . ⊣
11.5. The proof of Theorem 11.1. Let Γ be a monotone calculus refu-

tation of PHPmn of size S. Apply Lemma 11.3 and choose
�d with � =

n/2 log2m so that w �d ,�(Γ) ≤ 16 lnS. By Lemma 11.4, however, w �d ,�(Γ) ≥
�2/(8n lnS) = (n/2 log2m)

2/8n lnS = n/(32(log2m)
2(lnS)). Therefore

16 lnS ≥ n2/(32(log2m)2(lnS)), and thus lnS ≥
√

n
512(log2 m)

2 .

Because a monotone calculus refutation of size S can use at most S
axioms, each mentioning at most two pigeons, we always have the relation

that m ≤ 2S. Therefore lnS ≥
√

n
512(log2 2S)

2 . Rearranging (and bounding

some sloppy constants) reveals that 8 ln4 S ≥ n
512 so that lnS ≥ 4

√

n
4096 . By

Lemma 11.2, these bounds also apply to resolution refutations of PHPmn .

Part 3. Open problems, further reading, acknowledgments.

There are several propositional proof systems for which we do not yet
have superpolynomial size lower bounds. Of particular interest are the the
Lovász–Schrijver systems and constant-depth Frege systems with modular
counting gates, as superpolynomial formula size bounds are known for the
formulas of these proof systems but no superpolynomial size lower bounds
are known for the proof systems. Lower bounds forFrege proofs conditioned
upona complexity theoretic assumptionweaker thanNP 	= coNPwould also
be very interesting.
Are there polynomial size, constant-depth Frege refutations of PHP2nn ?
And if so, can I∆0(R) prove prove php

2n
n (R)? A positive resolution to this

problem would solve the long-standing open problem of whether or not I∆0
can prove the infinitude of the primes, and its negative resolution would
require new techniques that distinguish between computability by constant-
depth formulas and provability by constant-depth proofs [136].
There are several propositional proof systems for which the complexity
of refuting random 3-CNFs is unknown, such as cutting planes, Lovász–
Schrijver refutations, OBDD refutations and constant-depth Frege systems.
Results for any of these would be interesting. Moreover, it would be nice if
size lower bounds for refuting random 3-CNFs by arbitrary propositional
proof systems could be established under a plausible complexity theoretic
conjecture.
The current notion of automatizability considers only the time complex-
ity of finding reasonably small refutations when very small refutations are
known to exist. However, as discussed in Subsection 6.1, for many satisfia-
bility algorithms, space consumption is also a bottleneck. So what can be
said about automatizability that takes to accout both time and space?
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Our understanding of whether or not there exists a p-optimal propo-
sitional proof system is still somewhat hazy. It would be wonderful if the
(non)-existence of a p-optimal system could be shown to follow from a plau-
sible hypothesis or to entail an implausible consequence. Metamathematical
aspects could be worth investigating as well.
Further reading. For more on theories of bounded arithmetic, consult [50,
134, 100]. A survey by Alexander Razborov [144] provides further material
on the proof complexity of the propositional pigeonhole principle, and gives
proofs for a connection with the provability of circuit lower bounds. A
survey by Jacobo Torán [158] provides further information on connections
between between resolution space, size, and width.
This is not the only survey on propositional proof complexity, and the
others offer a different emphasis. Results prior to 1995 are more thoroughly
covered in [159] and [100]. Parallels between circuit and proof complexity are
dealt with more thoroughly in [31]. Feasible interpolation, automatizability,
and lower bounds for constant-depth systems via Håstad’s switching lemma
are covered more thoroughly in [26] than in this article.
Acknowledgments. The author wishes to thank Paul Beame for answering
some questions on [33] and [2], and also for providing Figure 8. Thanks also
go to Sam Buss for a helpful conversation on I∆0, and Jakob Nordström for
providing comments on an early draft.
On August 5th, 2006, propositional proof complexity lost one of its lead-
ing young contributors when Misha Alekhnovich was killed in a kayaking
accident in Russia. This survey is dedicated to his memory.

Appendix. Notation.

For a binary string s we let |s | denote the length of s . For a set S and a
natural number k we write

(

S
k

)

to denote the set of all size k subsets of S.
For a graph G , we will write ∼G to denote the adjacency relation of G .
A literal is a variable or its negation. For a variable x, we sometimes write
x0 to denote the literal ¬x and x1 to denote the literal x. The literal x is
said to be positive, and the literal ¬x is said to be negative.
A clause is a constant 0 or 1 or a disjunction of literals. Our convention is
that a clause is specified as a set of literals, with 0 corresponding to the empty
set and 1 to any literal and its negation. We say that a clause C contains a
literal l if l ∈ C , and that a clause C contains a variable x if either x ∈ C or
¬x ∈ C . Dually, a term is a constant 0 or 1 or a conjunction of literals. Our
convention is that a term is specified as a set of literals, with 1 corresponding
to the empty set and 0 to any literal and its negation. We say that a term
T contains a literal l if l ∈ T , and that a term T contains a variable x if
either x ∈ T or ¬x ∈ T . We often identify literals with clauses and terms
of size one, and will write l instead of {l}. A DNF is a disjunction of terms,
specified as a set of terms. A k-DNF is a DNF whose terms are each of size
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at most k. A clause is a 1-DNF, i.e., a disjunction of literals. The width of a
clause C , written w(C ), is the number of literals appearing in C . The width
of a set of clauses is the maximum width of any clause in the set. A CNF is
a conjunction of clauses, specified as a set of clauses. A k-CNF is a CNF
whose clauses are each of width at most k. Two terms t and t′ are consistent
if there is no literal l with l ∈ t and ¬l ∈ t′.
The notation

∨m
i=1 Fi denotes the disjunction of formulas Fi and the nota-

tion
∧m
i=1 Fi denotes their conjunction; the order of parenthesization is not

relevant in contexts that use this notation.
For a Boolean formula F , the alternation depth of F , written dp(F ), is the
maximum number of alternations between connectives along any path from
F ’s root connective to a literal. A literal has depth zero.
A substitution is a mapping from propositional variables to propositional
formulas. When F is a formula and � is a substitution, F [�] denotes the
formula obtained by simultaneously replacing every variable by its image
under �. There is no further simplification of the formula.
A restriction is a mapping from a set of variables to {0, 1, ∗}. This is
thought of as a substition that maps every x to either 0, 1 or x (where
�(x) = ∗ in the event that x maps to x- “x is unset”). For a formula F and
a restriction �, the restriction of F by �, F ↾� is defined a defined as usual,
simplifying when a sub-expression has become explicitly constant. For any
restriction �, let dom(�) denote the set of variables to which � assigns the
value 0 or 1. Sometimes, we represent a restriction by a set of literals �, with
the interpretation that a variable x maps to 0 if ¬x ∈ �, to 1 if x ∈ � and it
is unchanged otherwise.
When F and G are Boolean formulas we write G |= F to mean that
whenever G is satisfied, then F is also satisfied. Similarly, if S is a set of
formulas and F is a formula, S |= F means that whenever every formula of
S is satisfied, F is also satisfied.
Let f and g be functions from N to N. We write f = O(g) if there exists
c > 0 and n0 ∈ N so that ∀n ≥ n0, f(n) ≤ c · g(n). We write f = Ω(g) if
there exists c > 0 and n0 ∈ N so that ∀n ≥ n0, g(n) ≤ c · f(n). We write
f = Θ(g) if f = O(g) and f = Ω(g).
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automatizability of bounded-depth Frege proofs, Computational Complexity, vol. 13 (2004),
no. 1–2, pp. 47–68.



476 NATHAN SEGERLIND

[44]M. L. Bonet, J. L. Esteban, N. Galesi, and J. Johannsen,On the relative complexity
of resolution refinements and cutting planes proof systems, SIAM Journal on Computation,
vol. 30 (2000), no. 5, pp. 1462–1484.
[45] R.Boppana andM.Sipser,The complexity of finite functions,Handbook of theoretical

computer science, volume A, Elsevier and MIT Press, 1990.
[46] R. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans-

actions on Computers, vol. C-35 (1986), no. 8, pp. 677–691.
[47] , Symbolic boolean manipulation with ordered binary decision diagrams, ACM

Computing Surveys, vol. 24 (1992), no. 3, pp. 293–318.
[48] J. Buresh-Oppenheim, M. Clegg, R. Impagliazzo, and T. Pitassi, Homogenization

and the polynomial calculus, Computational Complexity, vol. 11 (2002), no. 3–4, pp. 91–108.
[49] J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi, Rank bounds

and integrality gaps for cutting planes procedures, Theory of Computing, vol. 2 (2006), pp. 65–
90.
[50] S. Buss, Bounded arithmetic, Studies in Proof Theory, vol. 3, Bibliopolis, 1986.
[51] , Polynomial size proofs of the propositional pigeonhole principle, The Journal

of Symbolic Logic, vol. 52 (1987), no. 4, pp. 916–927.
[52] , Propositional consistency proofs, Annals of Pure and Applied Logic, vol. 52

(1991), no. 1–2, pp. 3–29.
[53] , Bounded arithmetic and propositional proof complexity, Logic and computa-

tion (H. Schwichtenberg, editor), Springer-Verlag, 1997, pp. 67–122.
[54] , Lower bounds on Nullstellensatz proofs via designs, Proof complexity and

feasible arithmetics (S. Buss and P. Beame, editors), American Mathematical Society, 1998,
pp. 59–71.
[55] , Bounded arithmetic, proof complexity and two papers of Parikh, Annals of

Pure and Applied Logic, vol. 96 (1999), no. 1–3, pp. 43–55.
[56] S. Buss, D. Grigoriev, R. Impagliazzo, and T. Pitassi, Linear gaps between degrees

for the polynomial calculus modulo distinct primes, Journal of Computer and System Sciences,
vol. 62 (2001), pp. 267–289.
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