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Overview

● Motivation
○ Fairness beyond classification: decision making & causal models
○ Long-term fairness

• Current work in fair dynamical systems

• Background: Causal DAGs 
○ Interventions
○ Counterfactuals
○ Example
○ Upsides of causal DAGs

● Existing papers as causal DAGs, with policy interventions



Motivation: Fairness beyond classification

● For applications with societal impacts, data-driven prediction changes the environment

○ Contrast: image classification where predictions have no effect on input images

○ Example: Lending -- Loan applicant features -> Predicted credit-worthiness   ->  loan 
approval/denial -> financial outcomes for applicant

● Not fair classification but fair decision making [Barabas et al 2018].

● Decision-making modeling captures previous fairness concerns (disparate treatment vs 
impact, statistical independences) but also causal effects and long-term outcomes



Motivation: Long-term fairness

Automated decisions have lasting impacts

Feedback loops: many deployed ML systems make several decisions over time

Past predictions affect future state, predictions

Current fair classifiers could have long-term effects that are distinct from their short-

term effects 

Need to take into account for long-term fair policy (“policy” := data-driven prediction) 

system



“Fairness Without Demographics in Repeated Loss

Minimization” (Hashimoto et al, ICML 2018)

● Domain: recommender systems (speech recognition, text auto-complete)

● Suppose we have a majority group (A = 1) and minority group (A = 0) – each 

with proportion ⍺ and unique input/output distribution

● Binary classifier repeatedly trained – w/o knowledge of group membership

● Our recommender system may have high overall accuracy but low accuracy 

on the minority group

● This can happen due to empirical risk minimization (ERM)

● Can also be due to repeated decision-making



Repeated Loss Minimization
● When we give bad recommendations, people leave our system
● Assume:

○ People decide to leave system independently, based on per-group expected loss

○ Classifier is not aware of group membership

● Over time, the low-accuracy group will shrink – disparity amplification



Distributionally Robust Optimization

● Upweight examples with high loss in order to improve the worst case group 
loss

● In the long run, this will prevent clusters from being underserved

● This ends up being equal to
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“Delayed Impact of Fair Machine Learning” 
(Liu et al, ICML 2018)

● Aim to consider feedback loops, downstream effect of decisions

● Analysis limited to single step of dynamics

● Motivating example: credit scoring

● Individual with group membership A receives credit score X, applies to bank 

for loan

● Bank makes binary decision T

● Binary potential outcome Y (non-default); only applies if T=1

● Loan defaults impacts bank profit, also group welfare (credit score)



Single step effects

● Loan defaults impacts bank profit, also group welfare (credit score)

● Bank makes decision based on comparing score to group-specific threshold 

● Assume ! " is the probability of non-default for score x

● Expected utility to bank depends on #$/& (profit/loss based on repay/default)

● Score change model similar, depends on credit score change with repay/not

● Different thresholds satisfy different criteria: maximizing profit; demographic 

parity; equal opportunity



Policy impact on group
● Key statistic – change in mean score for group. 

● Compare outcome for group relative to utility maximizing policy



Simulation
● FICO score data – similar repay prob

per group, different score histograms

● Set parameters (such as !"/ !# )



“
“A Short-term Intervention for Long-term
Fairness in the Labor Market”  (Hu & Chen, WWW 2018)

● Addressing racial inequities in labor market

● Dynamic reputational model – reinforcing nature of asymmetric outcomes, based

party on group’s different access to resources, investment 

● Cohort of workers initialized with attributes \phi, journeys thru labor markets:

○ Temporary Labor Market – ensure statistical parity of groups entering market

○ Permanent Labor Market – firms hire who they want

● Hiring markets have global state – wages, reputations and proportion of good 

workers in PLM per group

● Long-term aim: group equality in labor market outcomes



Setup

● N workers pass thru labor market over time

● Number of workers in each of 2 groups stable

● Worker abilities same, stable across groups; reputations vary – depends on 

proportion of workers producing good outcomes

● Workers select education investment – trade off cost versus expected reward 

(wages) – hired into TLM based on investment level



Setup (cont.)
● Workers born with per-group ability level \theta

● Workers from disadvantaged groups face higher costs of investment

● At each step workers respond to current wages by exerting effort (high

qualified and ability workers can exert high effort w/ low cost)

● Worker’s effort leads to outcomes, which are accumulated to form reputation

● Hired into PLM based on reputation -- > affects g, quality of workersà affects 

wages w (more good workers will lower wages)



Hiring dynamics 

Proportion of workers w/ good outcomes

● Argue unconstrained dynamics produce inequality

● Disadvantaged workers less likely to invest à leads to worse outcomes à lower 

reputation à raise investment cost

● If TLM must hire equal numbers of workers per group, will carry over to PLM



Fairness & Causality

● Many fairness problems (e.g., loans, medical diagnosis) are actually causal 
inference problems

● We talk about the label Y – however, this is not always observable
● For instance, we can’t know if someone would return a loan if we don’t give 

them one
● This means if we just train a classifier on historical data, our estimate will be 

biased (biased both in the fairness sense and the technical sense)

● General takeaway: if your data is generated by past decisions, think very 
hard about the output of your ML model

● Now we can re-examine the fair dynamics models from causal perspective



Motivation: Off-policy evaluation

Implementing “fair” policies in production is high-risk

● Bad assumption or hyperparameters could harm users

We want to know how a new (“fair”?) policy will do in production without running 
experiments, control trials 

Only data from the old policy are available



Framework for dynamical fairness models

Markov decision processes (MDPs) are a natural 
model for sequential decision making

● Optimize policy (state -> action mapping) to 
maximize expected reward 
○ Open research question: long-term 

definitions of fairness

Adopt causal formulation – one modeling 
framework is Structural Causal Models (SCMs)

Buesing et al 2018



Background: PGMs 
vs. SCMs

Probabilistic Graphical Models (PGMs) 
encode the conditional independences 
in a data generative process

● Good for inference problems

Structural Causal Models (SCMs) 
encode conditional independencies 
and causal assumptions

● Structural equations specify 
functional form for causal 
mechanisms 
○ Y = f_Y(U_Y, X, T)

● Good for intervention problems



Interventions
How do outcomes change in response 
to a forced change to the environment?
(contrast against conditioning)

Atomic interventions

● change the value of one variable
● remove influence of parents

Policy interventions

● Change the functional form of 
one structural equation

● For example change a naive 
policy to a “fair” one

Multiple interventions model distinct 
strategic actors in the environment



Counterfactuals

Using observations to infer the 
scenario, how would the outcomes 
have been different under 
intervention?

1. Infer: Condition on 
observations and infer 
distribution over exogenous 
noise (i.e. latents) 

2. Intervene: Carry out an atomic 
or policy intervention

3. Outcomes: Re-sample 
exogenous noise and compute 
outcomes



X represents a confounding 
covariate

T represents treatment

Y represents outcome

Certain choices of p induce 
Simpson’s paradox, where p(Y|T)
differs from p(Y|T,X=x)

Ex: Treatment model
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Fair ML: Dynamical systems and causality
Dynamical Systems

● Economics models for long-term policy 
effects, e.g., affirmative action [Coate and 
Lowry 1993, Foster and Vohra 1992]

● Feedback loops [Lum and Isaac 2017]

● Fair bandits [Joseph et al 2016] and RL 
[Jabbari et al 2017] algorithms

● Applications described above (and below)]

● Fairness gym: datasets -> simulation

Causality & fairness

● Fairness as counterfactual stability [Kusner
et al 2017]

● Fair feature selection and adjustment given 
causal DAG [Kilbertus et al 2017]

● Fair inference [Nabi and Shipser 2018]



Causal Modeling in ML

Causal effect estimation

● Propensity scoring [Rosenbaum and Rubin 
1983]

● Latent variable models for effect estimation 
[Louisoz et al 2017, Madras et al 2018]

● Measuring path-specific causal effects [Nabi
and Shipster 2018]

Policy evaluation and optimization

● Refactor POMDPs as SCMs for evaluation 
and policy iteration via counterfactuals 
[Buesing et al 2018]

● Robustness of counterfactual policy 
evaluation to model misspecification 
[Oberst and Sontag 2019]



1. Visualization
a. exposes assumptions underlying the model 
b. communicates its content to others, especially non-mathematical stakeholders

2. Introspection
a. explicit causal assumptions invite scrutiny by modelers, domain experts

i. safeguard against blind solutionism (don’t overclaim in fairness papers)
b. Inspecting CDAG of existing model can suggest new policies, interventions, and robustness 

questions

3. Evaluation
a. Specifying a joint distribution as a causal DAG enables causal reasoning. 

i. Off-policy evaluation: estimate policy impact without incurring risk of deployment
ii. Simulate “what-if” scenarios with counterfactual generation

Why Causal DAGs for Fairness?



Limitations of Causal DAGs

1. No guarantees under incorrect assumptions
a. Causal assumptions are often untestable (especially in fairness applications)

i. Emphasizes dependence on a correct domain expert
b. degrees of misspecification: graph structure mismatch vs structural equations mismatch
c. A special concern: unobserved confounding

2. Sophisticated models induce tangled graphs
a. For effective communication to non-experts we need the right level of abstraction
b. Inspecting CDAG of existing model can suggest new policies, interventions, and robustness 

questions

3. Lack of tooling
a. Need flexible inference/intervention/simulation for counterfactual reasoning



Domain Paper Features

Lending Liu et al 2018. 
Delayed Impact of Fair Machine Learning. 

* Dynamics in individual credit scores
* Treat bank policy (loan predictor) as supervised problem
* Evaluated one-step fairness of various constrained 
classifiers

Repeated 
classification

Hashimoto et al 2018.
Fairness without demographics in repeated loss 
minimization.

* Demographic group mixture model
* Group membership unobserved
* Dynamics in group sizes
* Evaluated learning via distributionally robust optimization

Hiring Hu and Chen 2018.
A short-term intervention for long-term fairness in 
the labor market.

* Models strategy of employees & employers
* Hiring model with temporary and permanent workers
* Evaluated effectiveness of intervention in short-term market

Causal DAG Formulations of Existing Work



Liu et al 2018
Delayed Impact of Fair ML
Dynamics in individual credit scores

Treat bank policy (loan predictor) as supervised 
problem

Evaluated one-step fairness of various 
constrained classifiers

^ Per-group score change for 
various bank policies

Structural eqns:

Bank policy T = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j
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Delayed Impact of Fair ML

Structural eqns:

Credit bureau policy \hat X = f_{\hat X}(X)
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Potential outcome Y = f_Y(U_Y, X, A)
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Liu et al 2018
Delayed Impact of Fair ML

Institutional and group outcomes under double intervention -> 



Liu et al 2018
Delayed Impact of Fair ML

Multi-step structural eqns:

Bank policy T = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j



Liu et al 2018
Delayed Impact of Fair ML

Multi-step structural eqns:

Robustness intervention: f_Y -> f_{\hat Y}

Bank policy T = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j



Liu et al 2018
Delayed Impact of Fair ML

Structural eqns:

Robustness intervention: f_Y -> f_{\hat Y}

Bank policy T = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j

Evaluating policy robustness via potential outcome intervention ->



Hashimoto et al 2018
Fairness w/o Demographics...

Structural eqns:

Latent group membership Z_i

Mixture components (X_i,Y_i) = f_{(X_i,Y_i)}(Z_i == k, P_k)

Learning algorithm \theta = f_\theta(U_\theta, {X_i, Y_i})

Predictions \hat Y_i = f_{\theta, \hat Y_i, X_i)

Latent per-group risk R_i = f_R(Z_i == k, Y_i == \hat Y_i)

Latent group dynamics 

\lamba_k^t+1 = f_\lambda(\lambda^t, R_k^t)

Demographic group mixture model

Group membership unobserved

Dynamics in group sizes

Evaluated learning via distributionally 
robust optimization

^ Population dynamics lead to classifier 
ignoring demographic minority
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Structural eqns:

Latent group membership Z_i

Mixture components (X_i,Y_i) = f_{(X_i,Y_i)}(Z_i == k, P_k)
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Latent per-group risk R_i = f_R(Z_i == k, Y_i == \hat Y_i)

Latent group dynamics

\lamba_k^t+1 = f_\lambda(\lambda^t, R_k^t)

Demographic group mixture model

Group membership unobserved

Dynamics in group sizes

Evaluated learning via distributionally 
robust optimization

^ Population dynamics lead to classifier 
ignoring demographic minority

Extensions of interest:
1. Intervene on group dynamics
2. Intervene on group distributions
3. Add dynamics to group distns
4. Off-policy evaluation:

Can performance of a fair policy 
be estimated using trajectories 
recorded under a different 
policy?



Hu and Chen 2018
A Short-term intervention...

Models strategy of employees & employers

Hiring model with temporary and permanent workers

Evaluated effectiveness of intervention in short-term 
market

TLM = temporary labor market, PLM = permanent labor market

Micro-level DAG
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Macro-level DAG



Hu and Chen 2018
A Short-term intervention...

TLM = temporary labor market, PLM = permanent labor market

Micro-level DAG
Macro-level DAG

Extensions of interest:
1. Intervene on cost of 

investment
2. Intervention on wages
3. Intervention on cost of 

effort



Summary

Causal DAGS are a unifying framework for recent work on long-term fairness

Causal DAGS enable :1. Visualization 2. Introspection 3. Evaluation  

Some experimental procedures to consider:

● check robustness via interventions
○ models should exhibit robustness to some drift in test distribution
○ see also Invariant Risk Minimization [Arkjovsky et al 2019]  

● off-policy evaluations
○ can we accurately estimate how new “fair” algorithms will perform in the real world? 
○ see also counterfactual policy evaluation [Buesing et al 2018] 



Future Work


