Fairness in Dynamical Systems

Richard Zemel CSC 2541 October 29, 2019

Overview

- Motivation
 - Fairness beyond classification: decision making & causal models
 - Long-term fairness
- Current work in fair dynamical systems

Background: Causal DAGs

- Interventions
- Counterfactuals
- Example
- Upsides of causal DAGs
- Existing papers as causal DAGs, with policy interventions

Motivation: Fairness beyond classification

- For applications with societal impacts, data-driven prediction *changes the environment*
 - Contrast: image classification where predictions have no effect on input images
 - Example: Lending -- Loan applicant features -> Predicted credit-worthiness -> loan approval/denial -> financial outcomes for applicant
- Not fair classification but fair *decision making* [Barabas et al 2018].
- Decision-making modeling captures previous fairness concerns (disparate treatment vs impact, statistical independences) but also *causal effects* and *long-term outcomes*

Motivation: Long-term fairness

Automated decisions have lasting impacts

Feedback loops: many deployed ML systems make several decisions over time

Past predictions affect future state, predictions

Current fair classifiers could have long-term effects that are distinct from their shortterm effects

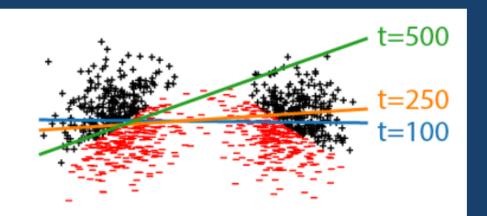
Need to take into account for long-term fair policy ("policy" := data-driven prediction)

"Fairness Without Demographics in Repeated Loss Minimization" (Hashimoto et al, ICML 2018)

- Domain: recommender systems (speech recognition, text auto-complete)
- Suppose we have a majority group (A = 1) and minority group (A = 0) each with proportion α and unique input/output distribution
- Binary classifier repeatedly trained w/o knowledge of group membership
- Our recommender system may have high overall accuracy but low accuracy on the minority group
- This can happen due to empirical risk minimization (ERM)
- Can also be due to repeated decision-making

Repeated Loss Minimization

- When we give bad recommendations, people leave our system
- Assume:
 - People decide to leave system independently, based on per-group expected loss
 - Classifier is not aware of group membership
- Over time, the low-accuracy group will shrink disparity amplification



Distributionally Robust Optimization

- Upweight examples with high loss in order to improve the worst case group loss
- In the long run, this will prevent clusters from being underserved

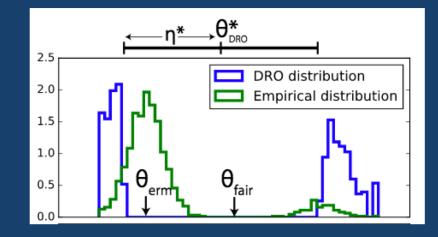
$$\mathcal{R}_{\mathrm{dro}}(\theta; r) := \sup_{Q \in \mathcal{B}(P, r)} \mathbb{E}_{Q}[\ell(\theta; Z)].$$

• This ends up being equal to

$$\inf_{\eta \in \mathbb{R}} \left\{ F(\theta; \eta) := C \left(\mathbb{E}_P \left[\left[\ell(\theta, Z) - \eta \right]_+^2 \right] \right)^{\frac{1}{2}} + \eta \right\}$$

Distributionally Robust Optimization

- Upweight examples with high loss in order to improve the worst case
- In the long run, this will prevent clusters from being underserved



"Delayed Impact of Fair Machine Learning" (Liu et al, ICML 2018)

- Aim to consider feedback loops, downstream effect of decisions
- Analysis limited to single step of dynamics
- Motivating example: credit scoring
- Individual with group membership A receives credit score X, applies to bank for loan
- Bank makes binary decision T
- Binary potential outcome Y (non-default); only applies if T=1
- Loan defaults impacts bank profit, also group welfare (credit score)

Single step effects

- Loan defaults impacts bank profit, also group welfare (credit score)
- Bank makes decision based on comparing score to group-specific threshold
- Assume $\rho(x)$ is the probability of non-default for score x
- Expected utility to bank depends on $u_{+/-}$ (profit/loss based on repay/default) $u(x) = u_+ \rho(x) + u_-(1 - \rho(x))$

• Score change model similar, depends on credit score change with repay/not

$$\boldsymbol{\Delta}(x) = c_{+}\boldsymbol{\rho}(x) + c_{-}(1 - \boldsymbol{\rho}(x))$$

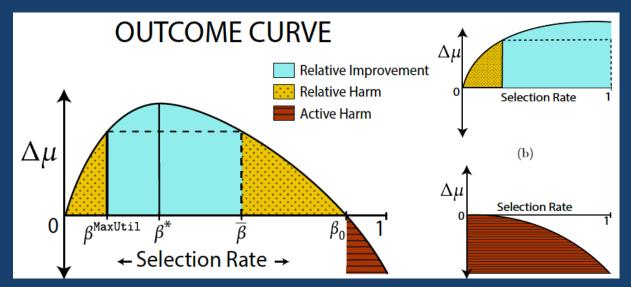
• Different thresholds satisfy different criteria: maximizing profit; demographic parity; equal opportunity

Policy impact on group

• Key statistic – change in mean score for group.

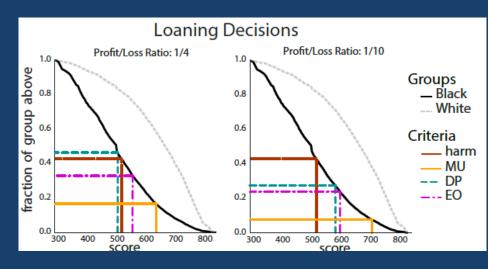
$$\Delta \mu_{\mathbf{j}}(\boldsymbol{\tau}) := \sum_{x \in \mathcal{X}} \pi_{\mathbf{j}}(x) \boldsymbol{\tau}_{\mathbf{j}}(x) \boldsymbol{\Delta}(x)$$

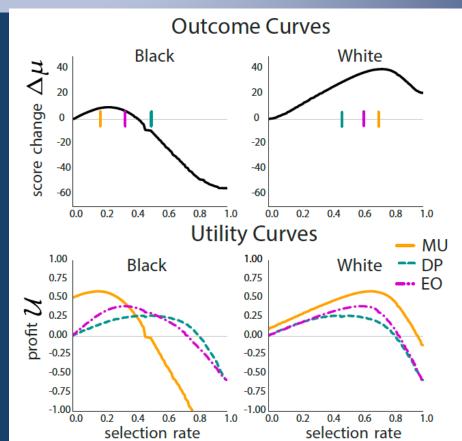
• Compare outcome for group relative to utility maximizing policy



Simulation

- FICO score data similar repay prob per group, different score histograms
- Set parameters (such as c_+/c_-)

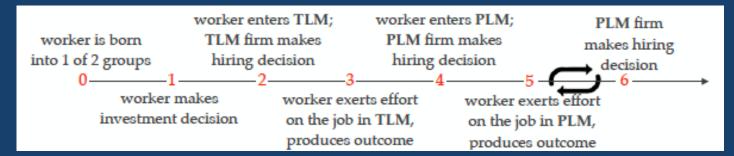




"A Short-term Intervention for Long-term Fairness in the Labor Market" (Hu & Chen, WWW 2018)

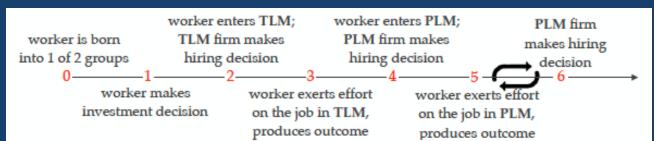
- Addressing racial inequities in labor market
- Dynamic reputational model reinforcing nature of asymmetric outcomes, based party on group's different access to resources, investment
- Cohort of workers initialized with attributes \phi, journeys thru labor markets:
 - Temporary Labor Market ensure statistical parity of groups entering market
 - Permanent Labor Market firms hire who they want
- Hiring markets have global state wages, reputations and proportion of good workers in PLM per group
- Long-term aim: group equality in labor market outcomes

- N workers pass thru labor market over time
- Number of workers in each of 2 groups stable
- Worker abilities same, stable across groups; reputations vary depends on proportion of workers producing good outcomes
- Workers select education investment trade off cost versus expected reward (wages) – hired into TLM based on investment level



Setup (cont.)

- Workers born with per-group ability level \theta
- Workers from disadvantaged groups face higher costs of investment
- At each step workers respond to current wages by exerting effort (high qualified and ability workers can exert high effort w/ low cost)
- Worker's effort leads to outcomes, which are accumulated to form reputation
- Hired into PLM based on reputation -- > affects g, quality of workers → affects wages w (more good workers will lower wages)



Hiring dynamics

Proportion of workers w/ good outcomes $g_t^{\mu} = p_H [1 - F(\widehat{\theta_Q})\gamma_t^{\mu} - F(\widehat{\theta_U})(1 - \gamma_t^{\mu})] + p_Q F(\widehat{\theta_Q})\gamma_t^{\mu}$ $+ p_U F(\widehat{\theta_U})(1 - \gamma_t^{\mu})$ where $\widehat{\theta_{\rho}} = e_{\rho}^{-1}(w_t(p_H - p_{\rho}))$ and $g_{t'} = \sigma_{\mu}\ell g_{t'}^{\mu} + (1 - \sigma_{\mu})\ell g_{t'}^{\nu}$

Notation	Significance
$F(\theta)$	CDF of ability levels θ
π^{μ}	group μ reputation
σ_{μ}	group μ population share
w _t	wage at time <i>t</i>
g_t^{μ}	proportion of group μ workers
	producing good outcomes at time t
η	investment level
рн, р <i>Q</i> , ри	probability of producing G given effort level
$c_{\pi^{\mu}_{t}}(\theta,\eta)$	cost of investment
$\gamma(\eta)$	probability of being qualified
$\rho \in \{Q, U\}$	hidden qualification status
$e_{\rho}(\theta)$	cost of effort exertion
Π_{i}^{t}	individual reputation at time <i>t</i>
•	

- Argue unconstrained dynamics produce inequality
- Disadvantaged workers less likely to invest → leads to worse outcomes → lower reputation → raise investment cost
- If TLM must hire equal numbers of workers per group, will carry over to PLM

Fairness & Causality

- Many fairness problems (e.g., loans, medical diagnosis) are actually causal inference problems
- We talk about the label Y however, this is not always observable
- For instance, we can't know if someone would return a loan if we don't give them one
- This means if we just train a classifier on historical data, our estimate will be biased (biased both in the fairness sense and the technical sense)
- General takeaway: if your data is generated by past decisions, think very hard about the output of your ML model
- Now we can re-examine the fair dynamics models from causal perspective

Motivation: Off-policy evaluation

Implementing "fair" policies in production is high-risk

• Bad assumption or hyperparameters could harm users

We want to know how a new ("fair"?) policy will do in production without running experiments, control trials

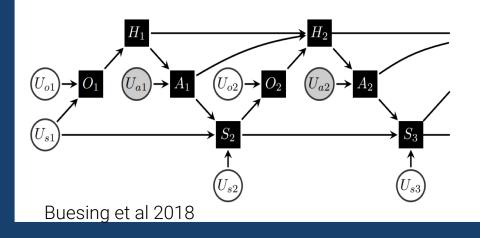
Only data from the old policy are available

Framework for dynamical fairness models

Markov decision processes (MDPs) are a natural model for sequential decision making

- Optimize policy (state -> action mapping) to maximize expected reward
 - Open research question: long-term definitions of fairness

Adopt causal formulation – one modeling framework is Structural Causal Models (SCMs)



Background: PGMs vs. SCMs

Probabilistic Graphical Models (PGMs) encode the conditional independences in a data generative process

• Good for *inference problems*

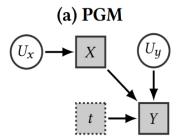
Structural Causal Models (SCMs) encode conditional independencies **and** causal assumptions

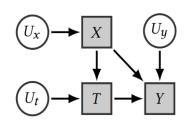
 Structural equations specify functional form for causal mechanisms

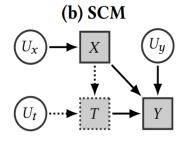
 $\circ \quad \mathsf{Y} = \mathsf{f}_\mathsf{Y}(\mathsf{U}_\mathsf{Y},\mathsf{X},\mathsf{T})$

• Good for *intervention problems*









(c) SCM under do(T = t)

(d) SCM under $\operatorname{do}(f_T \to \hat{f}_T)$

Interventions

How do outcomes change in response to a forced change to the environment? (contrast against conditioning)

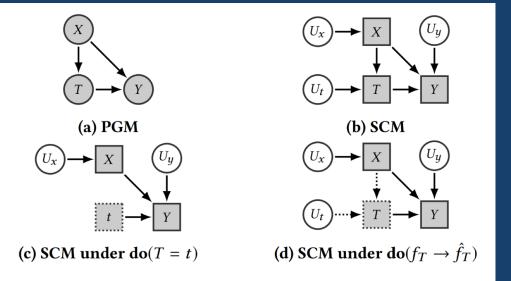
Atomic interventions

- change the value of one variable
- remove influence of parents

Policy interventions

- Change the functional form of one structural equation
- For example change a naive policy to a "fair" one

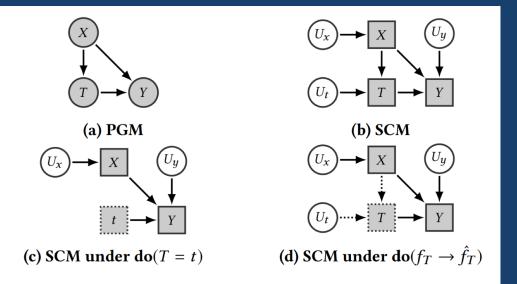
Multiple interventions model distinct strategic actors in the environment



Counterfactuals

Using observations to infer the scenario, how would the outcomes have been different under intervention?

- Infer: Condition on observations and infer distribution over exogenous noise (i.e. latents)
- 2. *Intervene:* Carry out an atomic or policy intervention
- **3. Outcomes**: Re-sample exogenous noise and compute outcomes



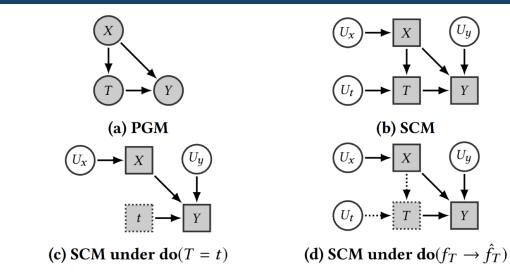
Ex: Treatment model

X represents a confounding covariate

T represents treatment

Y represents outcome

Certain choices of **p** induce **Simpson's paradox**, where **p(Y|T)** differs from **p(Y|T,X=x)**



Ex: Treatment model

X represents a confounding covariate

T represents treatment

Y represents outcome

Certain choices of p induce *Simpson's paradox*, where p(Y|T) differs from p(Y|T,X=x)

Table 1.1 Results of a study into a new drug, with gender being taken into account				
	Drug	No drug		
Men Women Combined data	81 out of 87 recovered (93%) 192 out of 263 recovered (73%) 273 out of 350 recovered (78%)	234 out of 270 recovered (87%) 55 out of 80 recovered (69%) 289 out of 350 recovered (83%)		
(\mathbf{a})	PGM	$(U_x) \rightarrow X \qquad (U_y)$ $\downarrow \qquad \downarrow \qquad$		
(c) SCM u	$t \rightarrow Y$ nder do $(T = t)$	$(U_t) \cdots \rightarrow T \longrightarrow Y$ (d) SCM under do $(f_T \rightarrow \hat{f}_T)$		

Ex: Treatment model

joint:

p(X,T,Y) = p(X)p(T|X)p(Y|X,T)

conditional:

$$p(Y|T=t) = \mathbb{E}_{p(X|T=t)}\left[p(Y|X,T=t)
ight]$$

interventional:

$$p_{\mathrm{do}(T
ightarrow t)}(Y|T=t) = \mathbb{E}_{p(X)}\left[p(Y|X,T=t)
ight]$$

causal effect:

$$\mathbb{E}_{p_{ ext{do}(T
ightarrow t')}}\left[Y|T=t'
ight] - \mathbb{E}_{p_{ ext{do}(T
ightarrow t^*)}}\left[Y|T=t^*
ight]$$

counterfactual:

$$p_{\mathrm{do}(T o t')|Y=y^*}(Y|T=t') = \mathbb{E}_{p(X|Y=y^*)} \left[p(Y|X,T=t')
ight]$$

Table 1.1 Results of a study into a new drug, with gender being taken into account				
Drug	No drug			
Men81 out of 87 recovered (939)Women192 out of 263 recovered (7)Combined data273 out of 350 recovered (7)	(3%) 55 out of 80 recovered (69%)			
(a) PGM	$(U_x) \longrightarrow X \qquad (U_y)$ $\downarrow \qquad \downarrow \qquad$			
$(U_x) \rightarrow X \qquad (U_y) \qquad (c) SCM under do(T = t)$	p(Y=1 T=0) 0.826 p(Y=1 T=1) 0.780 p_do(T->0)(Y=1 T=0) 0.779 p_do(T->1)(Y=1 T=1) 0.833			
Figure 2: Treatment model e (2b). We also show the SCM and policy intervention (2d).	p_do(T->0 Yobs=1)(Y=1 T=0) 0.775 p_do(T->1 Yobs=1)(Y=1 T=1) 0.828			

Fair ML: Dynamical systems and causality

Dynamical Systems

- Economics models for long-term policy effects, e.g., affirmative action [Coate and Lowry 1993, Foster and Vohra 1992]
- Feedback loops [Lum and Isaac 2017]
- Fair bandits [Joseph et al 2016] and RL [Jabbari et al 2017] algorithms
- Applications described above (and below)]
- Fairness gym: datasets -> simulation

Causality & fairness

- Fairness as counterfactual stability [Kusner et al 2017]
- Fair feature selection and adjustment given causal DAG [Kilbertus et al 2017]
- Fair inference [Nabi and Shipser 2018]

Causal Modeling in ML

Causal effect estimation

- Propensity scoring [Rosenbaum and Rubin 1983]
- Latent variable models for effect estimation [Louisoz et al 2017, Madras et al 2018]
- Measuring path-specific causal effects [Nabi and Shipster 2018]

Policy evaluation and optimization

- Refactor POMDPs as SCMs for evaluation and policy iteration via counterfactuals [Buesing et al 2018]
- Robustness of counterfactual policy evaluation to model misspecification [Oberst and Sontag 2019]

Why Causal DAGs for Fairness?

1. Visualization

- a. exposes assumptions underlying the model
- b. communicates its content to others, especially non-mathematical stakeholders

2. Introspection

- a. explicit causal assumptions invite *scrutiny* by modelers, domain experts
 - i. safeguard against blind solutionism (*don't overclaim* in fairness papers)
- b. Inspecting CDAG of existing model can suggest new policies, interventions, and robustness questions

3. Evaluation

- a. Specifying a joint distribution as a causal DAG enables causal reasoning.
 - i. Off-policy evaluation: estimate policy impact without incurring risk of deployment
 - ii. Simulate "what-if" scenarios with counterfactual generation

Limitations of Causal DAGs

1. No guarantees under incorrect assumptions

- a. Causal assumptions are often untestable (especially in fairness applications)
 - i. Emphasizes dependence on a *correct* domain expert
- b. degrees of misspecification: graph structure mismatch vs structural equations mismatch
- c. A special concern: *unobserved confounding*

2. Sophisticated models induce tangled graphs

- a. For effective communication to non-experts we need the right level of abstraction
- b. Inspecting CDAG of existing model can suggest new policies, interventions, and robustness questions

3. Lack of tooling

a. Need flexible inference/intervention/simulation for counterfactual reasoning

Causal DAG Formulations of Existing Work

Domain	Paper	Features		
Lending	Liu et al 2018. Delayed Impact of Fair Machine Learning.	 * Dynamics in individual credit scores * Treat bank policy (loan predictor) as supervised problem * Evaluated one-step fairness of various constrained classifiers 		
Repeated classification	Hashimoto et al 2018. Fairness without demographics in repeated loss minimization.	 * Demographic group mixture model * Group membership unobserved * Dynamics in group sizes * Evaluated learning via distributionally robust optimization 		
Hiring	Hu and Chen 2018. A short-term intervention for long-term fairness in the labor market.	 * Models strategy of employees & employers * Hiring model with temporary and permanent workers * Evaluated effectiveness of intervention in short-term market 		

Dynamics in individual credit scores

Treat bank policy (loan predictor) as supervised problem

Evaluated one-step fairness of various constrained classifiers

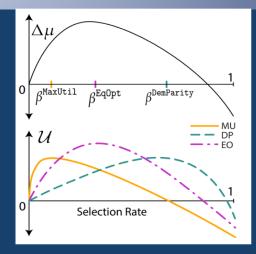
Structural eqns:

Bank policy *T* = *f*_*T*(*U*_*T*, *A*, *X*)

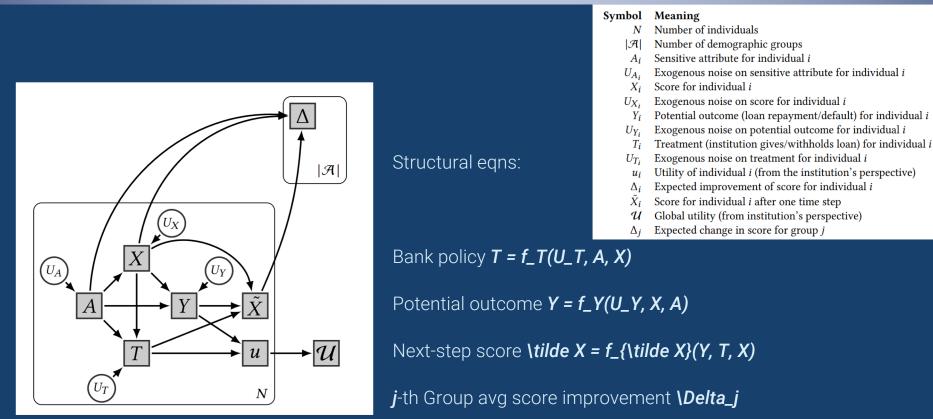
Potential outcome **Y** = **f_Y(U_Y, X, A**)

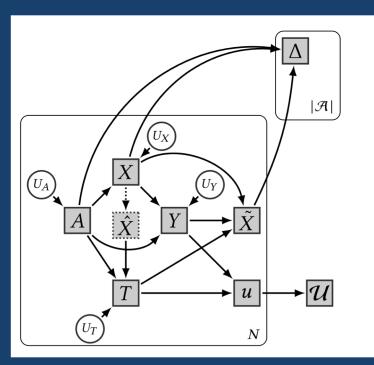
Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j



^ Per-group score change for various bank policies





Structural eqns:

Symbol Meaning

- *N* Number of individuals
- $|\mathcal{A}|$ Number of demographic groups
- A_i Sensitive attribute for individual *i*
- U_{A_i} Exogenous noise on sensitive attribute for individual *i*
- X_i Score for individual *i*
- U_{X_i} Exogenous noise on score for individual *i*
- Y_i Potential outcome (loan repayment/default) for individual *i*
- U_{Y_i} Exogenous noise on potential outcome for individual *i*
- T_i Treatment (institution gives/withholds loan) for individual i
- U_{T_i} Exogenous noise on treatment for individual *i*
- u_i Utility of individual *i* (from the institution's perspective)
- Δ_i Expected improvement of score for individual *i*
- \tilde{X}_i Score for individual *i* after one time step
- \mathcal{U} Global utility (from institution's perspective)
- Δ_j Expected change in score for group *j*

Credit bureau policy $hat X = f_{hat X}(X)$

Bank policy *T* = *f*_*T*(*U*_*T*, *A*, *X*)

Potential outcome Y = f_Y(U_Y, X, A)

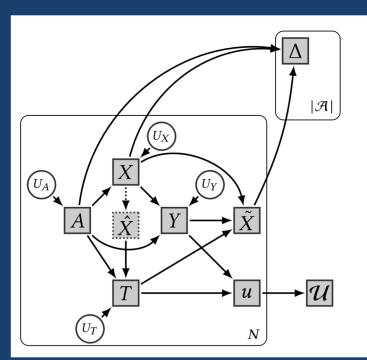
Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j

in at al 2018

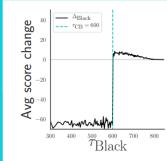
Institutional and group outcomes under double intervention ->

Delayed impact of rail ML

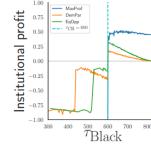


Structural eqns: Credit bureau policy \ha Bank policy $T = f_T(U_T)$ Potential outcome Y = f(c) Profit as fn. of min. thresh. Next-step score \tilde X

i-th Group avg score imp



(a) Score change, min. group.



MaxProf Institutional profit DemPar EqOpp $\tau_{CB} = 600$ 0.500.25

(b) Score change, maj. group.

 Δ_{White}

 $\tau_{\rm CB}=600$

man

400 500 600 700

 $\tau_{\rm White}$

change

score

Avg

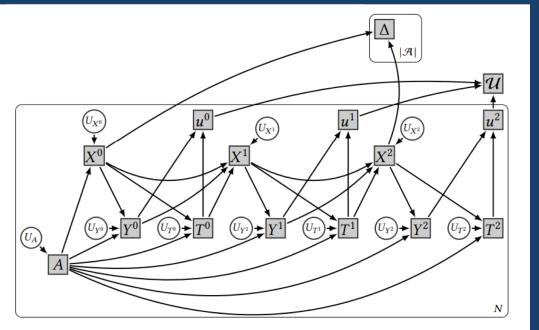
-20

300

-1.00 $au_{ ext{White}}^{ ext{500}}$ 300 400

(d) Profit as fn. of maj. thresh.

Figure 9: Policy evaluation under credit bureau intervention $\hat{f}_{\hat{X}}(X) = \min(X, \tau_{CB})$ with $\tau_{CB} = 600$. Group score change–formally $\mathbb{E}_{p^{do(f_{\hat{X}} \to \hat{f}_{\hat{X}}, f_T \to \hat{f}_T)}} [\Delta_j] \forall j \in \{\text{Black}, \text{White}\}$ and institutional profits–formally $\mathbb{E}_{p^{do(f_{\hat{X}} \rightarrow \hat{f}_{\hat{X}}, f_T \rightarrow \hat{f}_T)}[\mathcal{U}]$ –are shown as functions of the two group thresholds $\{\tau_i\}$. Bank profits depend on its fairness criteria.



Symbol Meaning

- N Number of individuals
- $|\mathcal{A}|$ Number of demographic groups
- A_i Sensitive attribute for individual i
- U_{A_i} Exogenous noise on sensitive attribute for individual *i*
- X_i Score for individual *i*
- U_{X_i} Exogenous noise on score for individual *i*
- Y_i Potential outcome (loan repayment/default) for individual i
- U_{Y_i} Exogenous noise on potential outcome for individual i
- T_i Treatment (institution gives/withholds loan) for individual i
- U_{T_i} Exogenous noise on treatment for individual *i*
- u_i Utility of individual *i* (from the institution's perspective)
- Δ_i Expected improvement of score for individual i
- \tilde{X}_i Score for individual *i* after one time step
- ${\cal U}$ Global utility (from institution's perspective)
- Δ_j Expected change in score for group j

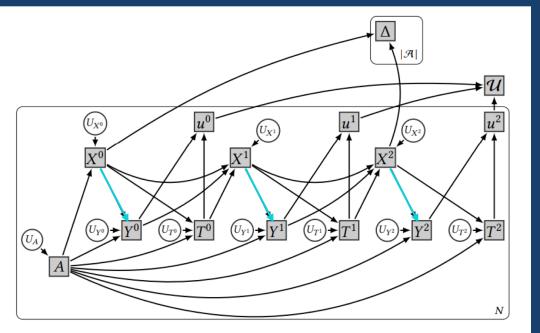
Multi-step structural eqns:

Bank policy **T** = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement *Delta_j*



Symbol Meaning

- N Number of individuals
- $|\mathcal{A}|$ $\;$ Number of demographic groups
- A_i Sensitive attribute for individual i
- U_{A_i} Exogenous noise on sensitive attribute for individual *i*
- X_i Score for individual *i*
- U_{X_i} Exogenous noise on score for individual *i*
- Y_i Potential outcome (loan repayment/default) for individual i
- U_{Y_i} Exogenous noise on potential outcome for individual i
- T_i Treatment (institution gives/withholds loan) for individual i
- U_{T_i} Exogenous noise on treatment for individual i
- u_i Utility of individual *i* (from the institution's perspective)
- Δ_i Expected improvement of score for individual *i*
- \tilde{X}_i Score for individual *i* after one time step
- ${\cal U}$ Global utility (from institution's perspective)
- $\Delta_j \quad \text{Expected change in score for group } j$

Multi-step structural eqns:

Robustness intervention: $f_Y \rightarrow f_{\mathrm{At} Y}$

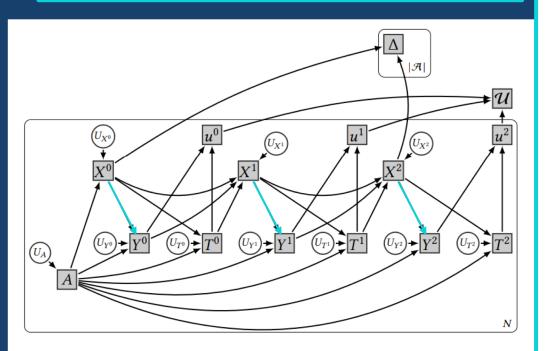
Bank policy T = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j

Evaluating policy robustness via potential outcome intervention ->



Symbol Meaning

- *N* Number of individuals
- $|\mathcal{A}|$ $\;$ Number of demographic groups
- A_i Sensitive attribute for individual i
- U_{A_i} Exogenous noise on sensitive attribute for individual i
- X_i Score for individual *i*
- U_{X_i} Exogenous noise on score for individual i
- Y_i Potential outcome (loan repayment/default) for individual i
- U_{Y_i} Exogenous noise on potential outcome for individual i
- $T_i \quad$ Treatment (institution gives/withholds loan) for individual i
- U_{T_i} Exogenous noise on treatment for individual *i*

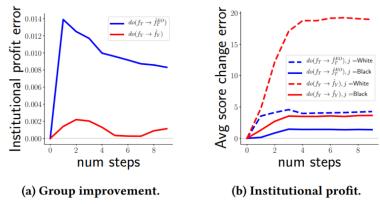


Figure 10: Evaluating multi-step policy robustness to distribution shift for various choice of intervention distribution q. Sensitivity of institutional utility—formally $|\mathbb{E}_q[\mathcal{U}] - \mathbb{E}[\mathcal{U}]|$ —and sensitivity of group avg. score change—formally $|\mathbb{E}_q[\Delta_j] - \mathbb{E}[\Delta_j]|$ —are shown as a function of steps. Expected profit is relatively robust to both interventions, whereas the expected per-group score changes are relatively more sensitive to these interventions.

Hashimoto et al 2018 Fairness w/o Demographics...

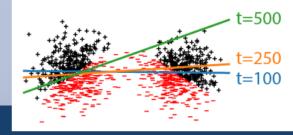
starting at
$$\lambda_k^{(0)} = b_k$$
 is governed by:
 $\lambda_k^{(t+1)} := \lambda_k^{(t)} \nu(\mathcal{R}_k(\theta^{(t)})) + b_k$
 $\alpha_k^{(t+1)} := \frac{\lambda_k^{(t+1)}}{\sum_{k' \in [K]} \lambda_{k'}^{(t+1)}}$

Demographic group mixture model

Group membership unobserved

Dynamics in group sizes

Evaluated learning via distributionally robust optimization



^ Population dynamics lead to classifier ignoring demographic minority

Structural eqns:

Latent group membership **Z_i**

Mixture components $(X_i, Y_i) = f_{(X_i, Y_i)}(Z_i == k, P_k)$

Learning algorithm $theta = f_theta(U_theta, {X_i, Y_i})$

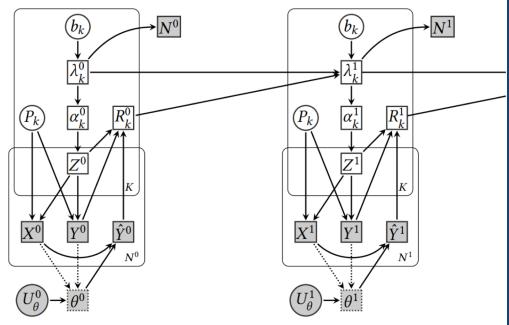
Predictions \hat Y_i = f_{\theta, \hat Y_i, X_i)

Latent per-group risk **R_i = f_R(Z_i == k, Y_i == \hat Y_i)**

Latent group dynamics

\lamba_k^t+1 = f_\lambda(\lambda^t, R_k^t)

Hashimoto et al 2018 Fairness w/o Demographics...



indexes groups

distribution over (X, Y) for group k

expected group-k baseline population growth at each step

expected population for group k at time t

 α_k^i N^i mixing coeff for group k at time t

Total population at time *t*

indicator of individual belonging to *k*-th group

 Z_k^t X^t input features for an individual at time t

 Y^t label for an individual at time *t*

 U_{θ}^t θ^t Exogenous noise in learning algo. (e.g., random seed)

Estimated classifier parameters at time t

Ŷt Predicted label for an individual at time t

Classification error for group *k* at time *t* (unobserved)

Latent group membership **Z_i**

Mixture components $(X_i, Y_i) = f_{(X_i, Y_i)}(Z_i == k, P_k)$

Learning algorithm $theta = f_t(U_theta, {X_i, Y_i})$

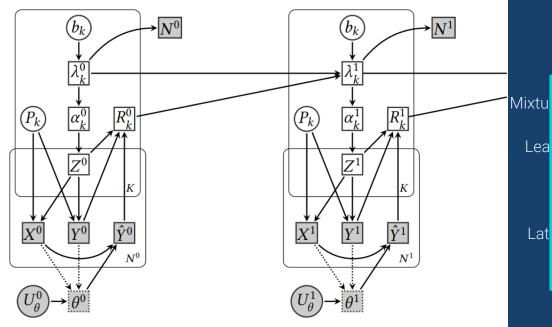
Predictions \hat Y_i = f_{\theta, \hat Y_i, X_i)

Latent per-group risk **R_i** = f_R(Z_i == k, Y_i == \hat Y_i)

Latent group dynamics

\lamba_k^t+1 = f_\lambda(\lambda^t, R_k^t)

Hashimoto et al 2018 Fairness w/o Demographics...



indexes groups

- distribution over (X, Y) for group k
- expected group-k baseline population growth at each step
- λ_{L}^{t} expected population for group k at time t
- α_1^t mixing coeff for group k at time t
- $N^{\hat{t}}$ Total population at time t
- $Z_k^t X^t$ indicator of individual belonging to *k*-th group
- input features for an individual at time t
- Y^t label for an individual at time *t*
- U_{ρ}^{t} Exogenous noise in learning algo. (e.g., random seed)
- θ^t Estimated classifier parameters at time t
- Predicted label for an individual at time *t* \hat{Y}^t
- R_{L}^{t} Classification error for group *k* at time *t* (unobserved)

Latent group membership Z_i

Extensions of interest:

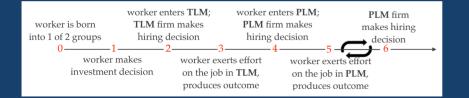
- Intervene on group dynamics
- Intervene on group distributions
 - 3. Add dynamics to group distns
 - Off-policy evaluation: 4.

Can performance of a fair policy be estimated using trajectories recorded under a different policy?

\lamba_k^t+1 = f_\lambda(\lambda^t, R_k^t)

Hu and Chen 2018 A Short-term intervention...

TLM = temporary labor market, PLM = permanent labor market



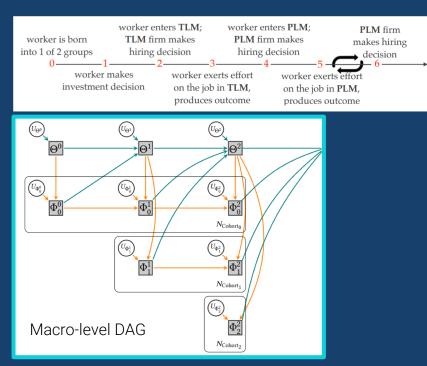
Models strategy of employees & employers

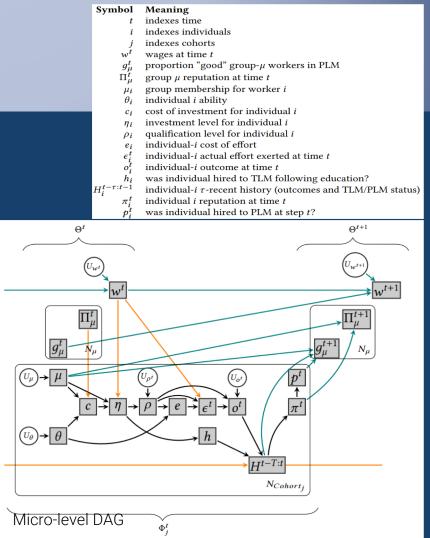
- Hiring model with temporary and permanent workers
- Evaluated effectiveness of intervention in short-term market

Symbol Meaning indexes time indexes individuals indexes cohorts wages at time tw proportion "good" group- μ workers in PLM group μ reputation at time t Π^t group membership for worker i μi individual *i* ability θ_i cost of investment for individual i investment level for individual i qualification level for individual *i* individual-*i* cost of effort individual-i actual effort exerted at time tindividual-i outcome at time twas individual hired to TLM following education? $H_i^{t-\tau:t-1}$ individual- $i \tau$ -recent history (outcomes and TLM/PLM status) individual *i* reputation at time *t* was individual hired to PLM at step *t*? Θ^{t+1} Θ^t Π^t_μ N_{μ} n ρ π^{i} $H^{t-T:t}$ NCohort Micro-level DAG Φ_i^t

Hu and Chen 2018 A Short-term intervention...

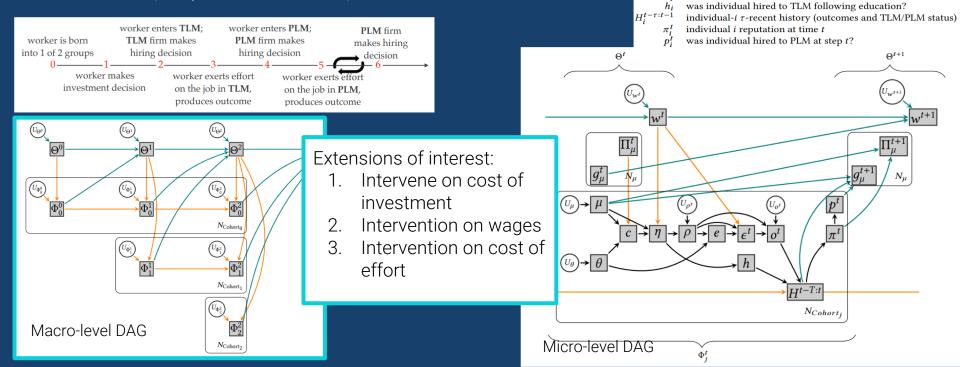
TLM = temporary labor market, PLM = permanent labor market





Hu and Chen 2018 A Short-term intervention...

TLM = temporary labor market, PLM = permanent labor market



Symbol Meaning

 Π^t

Цi

indexes time indexes individuals indexes cohorts wages at time *t*

proportion "good" group- μ workers in PLM

individual-i actual effort exerted at time t

group μ reputation at time *t* group membership for worker *i*

cost of investment for individual *i* investment level for individual *i* qualification level for individual *i* individual-*i* cost of effort

individual-*i* outcome at time *t*

individual *i* ability

Causal DAGS are a unifying framework for recent work on long-term fairness

Causal DAGS enable :1. Visualization 2. Introspection 3. Evaluation

Some experimental procedures to consider:

- check robustness via interventions
 - o models should exhibit robustness to some drift in test distribution
 - see also Invariant Risk Minimization [Arkjovsky et al 2019]
- off-policy evaluations
 - can we accurately estimate how new "fair" algorithms will perform in the real world?
 - see also counterfactual policy evaluation [Buesing et al 2018]

Future Work

- **Reinforcement learning and fairness:** Finding off-policy estimation methods better for low data, high-stakes regimes
- Causal inference and dynamical systems: Characterizing identifiability of long-term effects of policy interventions in terms of graphical criterion
- **Reinforcement learning and causal inference:** Developing methods for sensitivity analysis to estimate uncertainty of policy evaluations under confounding
- **Causal inference and visualization:** Visualizing complex, many-variable graphical models of policy problems
- Fairness and decision science: Integrating theoretical models of fairness in into scenario-based planning procedures