AI and Ethics in Healthcare

Shalmali Joshi (Postdoc, Vector Institute)

AI and Ethics: Mathematical Foundations and Algorithms Fall, 2019 (CSC 2541F)

Overview

- Ethics in healthcare
 - Challenges
 - Bioethics: Foundation of ethics in healthcare
- AI in the mix
 - Limitations of algorithmic fairness
 - Overview of fairness in AI and healthcare
 - Where can AI really help?
 - Beyond Classification

Challenges

TECHNOLOGY

Google's Totally Creepy, Totally Legal Health-Data Harvesting

Google is an emerging health-care juggernaut, and privacy laws weren't written to keep up.

SIDNEY FUSSELL NOVEMBER 14, 2019

MORE STORIES

Did Body Cameras Backfire?

SIDNEY FUSSELL

Why Politicians Want Your Smart-TV Data

SIDNEY FUSSELL

The Toxic Bubble of Technical Debt Threatening America

ALEXIS C. MADRIGAL

Privacy

Challenges: Systemic bias, disparity, generalizability

< Previous Article

May 2016 Volume 149, Issue 5, Pages 1128–1130

Next Article >

POINT: Do Randomized Controlled Trials Ignore Needed Patient Populations? Yes

Katherine Courtright, MD* MD

Pulmonary, Allergy and Critical Care Division, Hospital of the University of Pennsylvania, Philadelphia, PA

Cause-specific infant mortality rates per 1,000 live births coded according to modified International Collaborative Effort grouping, by Indigenous identity, singleton births, Canada, 2004 through 2006

International Collaborative Effort grouping	Non-Indigenous			Indigenous											
				Total			First Nations			Métis			Inuit		
	Rate	95% confidence interval		Rate	95% confidence interval		Rate	95% confidence interval		Rate	95% confidence interval		Rate	95% confidence interval	
		from	to		from	to		from	to		from	to		from	to
Congenital anomalies	1.3	1.1	1.5	2.2	1.6	3.0	1.9	1.5	2.5	3.1	1.4	6.6	x	x	х
Asphyxia-related conditions	0.6	0.4	8.0	0.6	0.3	1.1	0.4	0.2	0.6	x	x	x	x	x	х
Immaturity-related conditions	1.2	1.0	1.4	1.6	1.0	2.5	2.0	1.2	3.4	x	x	x	x	x	х
Infactions	0.0	0.0	0.4	4.4	0.0	2.4	1.0	0.5	1.9	х	×	х	x	х	х
Harvard Heart Letter													0.5		

The heart attack gender gap

Heart attacks strike men at younger ages than women. But survival rates are worse in women. Why?

ared with the non-

:han twice as high

Compared with men, women are less likely to recognize and act upon the symptoms of a heart attack Image: zaganDesign/Thinkstock

Bioethics: Foundation of ethics in healthcare

Nonmaleficence

Beneficence

Justice

Autonomy

AI in the mix: Limitations

• Focus: Systemic bias, disparity, generalizability

Algorithmic fairness in ML hasn't operationalized these for classification (some exceptions!)

Identify sources of disparity

95% confidence intervals for error rates in ICU mortality prediction on MIMIC-III clinical notes

95% confidence intervals for error rates in ICU mortality prediction on MIMIC-III clinical notes

95% confidence intervals for error rates in psychiatric readmission prediction on a New England hospital cohort

Predicting mortality and psychiatric readmission from unstructured clinical notes

Identify sources of disparity

White: 4456 patients 453 patients

(b) Vasopressors White: 4456 patients Black: 453 patients p = 0.059

Non-compliance derived cohort and aggressive care reflected in treatment durations

Autopsy derived cohort and aggressive care reflected in treatment durations

Mistrust between patients and caregivers reflects disparity in End-of-life care Mistrust reflected in i) non-compliance, and ii) autopsy rates

Algorithmic solutions to fairness in healthcare

$$p(\hat{Y}_{A\leftarrow a}(U)|X=x,Y_{A\leftarrow a}=y,A=a)=p(\hat{Y}_{A\leftarrow a'}(U)|X=x,Y_{A\leftarrow a'}=y,A=a)$$

Individual Equalized odds Counterfactual Fairness (IECF)

$$p(\hat{Y}_{A\leftarrow a}(U)|X=x,A=a)=p(\hat{Y}_{A\leftarrow a'}(U)|X=x,A=a)$$

Counterfactual Fairness (CF)

$$V(h(x,a),y) = 1 - \alpha_0 p(\mathbf{1}[h(x,a) \ge T] = 1|Y=0)p(Y=0|X=x,A=a)$$
$$-\alpha_1 p(\mathbf{1}[h(x,a) \ge T] = 0|Y=0)p(Y=1|X=x,A=a)$$
 Utility of a predictor - reasonable for a clinical policy

Difference: Utility of a predictor under CF is not a function of true outcome and Y=1 is preferred

Counterfactual Reasoning for Fair Clinical Risk Prediction (MIMIC-III Mortality Prediction task)

Algorithmic solutions to fairness in healthcare

$$p(f(X)|A = A_i, Y = Y_k) = p(f(X)|A = A_j, Y = Y_k) \forall A_i, A_j \in A; Y_k \in Y$$

Equalized odds for Risk Scoring (Enforce the same ROC Curve for protected groups)

Training procedure:

- 1. Learn regressor to predict risk
- 2. Leverage adversarial learning to match group specific distribution of scores

$$f: \mathbb{R} \to [0,1]$$
 (parametrized by θ_f)
$$min_{\theta_f} L_{cls} - \lambda L_{adv}$$

$$g: \mathbb{R} \times \mathcal{Y} \to [0,1]^k \text{ (parametrized by } \theta_g)$$

$$min_{\theta_g} L_{adv}$$

Atherosclerotic cardiovascular disease risk stratification model

• Focus: Systemic bias, disparity, generalizability

Algorithmic fairness in ML hasn't operationalized these for classification (some exceptions!)

Operationalizing bioethical principles

Beneficence

Beneficence: Decoupled classifiers — i.e., train a classifier for each group using data from that group

Nonmaleficence: Loosely similar to *preference guarantees* — i.e. each group should prefer their assigned model to (i) a pooled model that ignores group membership (rationality) and (ii) the model assigned to any other group (envy-freeness)

• Reliable risk estimation for identifiable and intersectional subgroups in healthcare is critical

Where can AI/ML really help?

• Audit existing algorithms - Bias in referrals to costly care management programs

Commercial algorithm for targeting patients for "high risk care management" underestimated the needs of black patients

Where can AI/ML really help?

Audit existing algorithms - Understanding and fixing bias in knee pain

- Higher prevalence of painful conditions
 - By income
 - By education

What if instead of learning from the radiologist...

We trained the algorithm to listen to the patient?

Simulation: Who would get surgery... if the algorithm were in charge, not the doctor?

- Identify patients with severe pain and
 - High disease severity according to human
 - High disease severity according to algorithm

More - Black knees eligible for surgery

Less - Black knees, severe pain but ineligible for surgery

Severe pain + no surgery + high algorithm score = most likely to be on oral pain medicine incl. opiates

Slide courtesy - Ziad Obermeyer from https://blogs.worldbank.org/impactevaluations/machine-learning-pain-relief
Grol-Prokopczyk, *Pain* 2017, Baldassari et al., *Osteoarthritis and Cartilage* 2014

Pierson, Emma, et al. "Using machine learning to understand racial and socioeconomic differences in knee pain" Under Review at JAMA 2019.

Beyond Classification

• Ignoring sources of implicit bias in observational healthcare data

Model performance

$$\sqrt{\epsilon_{PEHE}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{y}_1(\mathbf{x}_i) - \hat{y}_0(\mathbf{x}_i) - (y_1(\mathbf{x}_i) - y_0(\mathbf{x}_i)))^2}$$

$$\epsilon_{ATE} = \left| \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_1(\mathbf{x}_i) - \hat{y}_0(\mathbf{x}_i)) - \frac{1}{n} \sum_{i=1}^{n} (y_1(\mathbf{x}_i) - y_0(\mathbf{x}_i)) \right|$$

Disparity in causal effect estimation

$$\Delta_{\sqrt{\epsilon_{PEHE}}} = |\sqrt{\epsilon_{PEHE}}_{A=0} - \sqrt{\epsilon_{PEHE}}_{A=1}|$$

$$\Delta_{\epsilon_{ATE}} = |\epsilon_{ATEA=0} - \epsilon_{ATEA=1}|$$

- Always consider implicit bias when doing covariate selection for causal effect estimation
- Conventional propensity scoring models Protected attribute inclusion improves effect estimations unless there is exclusive treatment disparity
- Flexible models like deep neural networks are more amenable to misspecification of generative assumptions but use all covariates!

Conclusion

- To tackle disparities:
 - Leverage mathematical foundations of AI for better science in healthcare
 - Formulate the right problem / task (think beyond models)
 - Heart attack gender gap
 - Endometriosis diagnosis delays
 - Black and indigenous infant and maternal mortality
 - Operationalize bioethical principles as fairness metrics for evaluation