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Simpson’s	Paradox



The	Monty	Hall	Problem



The	Monty	Hall	Problem

1. Three	doors	– 2	have	goats	behind	them,	1	has	a	car	(you	want	to	
win	the	car)

2. You	choose	a	door,	but	don’t	open	it
3. The	host,	Monty,	opens	another door	(not	the	one	you	chose),	and	

shows	you	that	there	is	a	goat	behind	that	door
4. You	now	have	the	option	to	switch	your	door	from	the	one	you	

chose	to	the	other	unopened	door
5. What	should	you	do?	Should	you	switch?



The	Monty	Hall	Problem



What’s	Going	On?



Causation	!=	Correlation

• In	machine	learning,	we	try	to	learn	correlations	from	data
• “When	can	we	predict	X	from	Y?”

• In	causal	inference,	we	try	to	model	causation
• “When	does	X	cause Y?”

• These	are	not	the	same!
• Ice	cream	consumption	correlates	with	murder	rates
• Ice	cream	does	not	causemurder	(usually)



Correlations	Can	Be	Misleading

https://www.tylervigen.com/spurious-correlations



Causal	Modelling

• Two	options:
1. Run	a	randomized	experiment



Causal	Modelling

• Two	options:
1. Run	a	randomized	experiment
2. Make	assumptions	about	how	our	data	is	generated



Causal	DAGs

• Pioneered	by	Judea	Pearl
• Describes	generative	
process	of	data



Causal	DAGs

• Pioneered	by	Judea	Pearl
• Describes	(stochastic)	
generative	process	of	data



Causal	DAGs

• T	is	a	medical	treatment
• Y	is	a	disease
• X	are	other	features	about	
patients	(say,	age)

• We	want	to	know	the	
causal	effect of	our	
treatment	on	the	disease.



Causal	DAGs

• Experimental	data:	randomized	experiment
• We	decide	which	people	should	take	T

• Observational	data:	no	experiment
• People	chose	whether	or	not	to	take	T

• Experiments	are	expensive	and	rare
• Observations	can	be	biased
• E.g.	What	if	mostly	young	people	choose	T?



Asking	Causal	Questions
• Suppose	T	is	binary	(1:	received	treatment,	0:	did	not)
• Suppose	Y is	binary	(1:	disease	cured,	0:	disease	not	cured)
• We	want	to	know	“If	we	give	someone	the	treatment	(T	=	1), what	is	
the	probability	they	are	cured	(Y	=	1)?”

• This	is	not equal	to	P(Y	=	1	|	T	=	1)
• Suppose	mostly	young	people	take	the	treatment,	and	most	were	
cured,	i.e.	P(Y	=	1	|	T	=	1)	is	high
• Is	this	because	the	treatment	is	good?	Or	because	they	are	young?



Correlation vs.	Causation

• Correlation

• In	the	observed	data,	how	often	do	people	
who	take	the	treatment	become	cured?
• The	observed	data	may	be	biased!!



Correlation	vs.	Causation

• Let’s	simulate a	randomized	experiment
• i.e.	
• Cut	the	arrow	from	X	to	T
• This	is	called	a	do-operation

• Then,	we	can	estimate	causation:



Correlation	vs.	Causation

• Correlation

• Causation	– treatment	is	independent of	X



Inverse	Propensity	Weighting

• Can	calculate	this	using	inverse	
propensity	scores
• Rather	than	adjusting	for	X,	
sufficient	to	adjust	for	P(T	|	X)

P(T	|	X)



Inverse	Propensity	Weighting

• Can	calculate	this	using	inverse	propensity	scores
• These	are	called	stabilized	weights



Matching	Estimators

• Match	up	samples	with	different	
treatments	that	are	near	to	each	
other
• Similar	to	reweighting



Review:	What	to	do with	a	causal	DAG

The	causal	effect	of	T	on	Y	is

This	is	great!	But	we’ve	made	some	assumptions.



Simpson’s	Paradox,	Explained



Simpson’s	Paradox,	Explained

Size

Trmt Y



Simpson’s	Paradox,	Explained

Size

Trmt Y



Monty	Hall	Problem,	Explained

Boring	explanation:



Monty	Hall	Problem,	Explained

Causal	explanation:
• My	door	location	is	

correlated	with	the	car	
location,	conditioned on	
which	door	Monty	opens!

Car	LocationMy	Door

Opened	Door

https://twitter.com/EpiEllie/status/1020772459128197121



Monty	Hall	Problem,	Explained

Causal	explanation:
• My	door	location	is	

correlated	with	the	car	
location,	conditioned on	
which	door	Monty	opens!

• This	is	because	Monty	won’t	
show	me	the	car

• If	he’s	guessing	also,	then	
correlation	disappears

Car	LocationMy	Door

Monty’s	Door



Structural	Assumptions

• All	of	this	assumes	that	our	assumptions	about	the	DAG	that	
generated	our	data	are	correct

• Specifically,	we	assume	that	there	are	no	hidden	confounders
• Confounder:	a	variable	which	causally	effects	both	the	treatment	(T)	and	the	
outcome	(Y)
• No hidden	confounders	means	that	we	have	observed	all	confounders

• This	is	a	strong	assumption!



Hidden	Confounders

• Cannot	calculate	P(Y	|	do(T))	here,	since	U	
is	unobserved

• We	say	in	this	case	that	the	causal	effect	is	
unidentifiable
• Even	in	the	case	of	infinite	data	and	
computation,	we	can	never	calculate	this	
quantity

X

T Y

U



What	Can	We	Do	with	Hidden	Confounders?

• Instrumental	variables
• Find	some	variable	which	effects	only the	treatment

• Sensitivity	analysis
• Essentially,	assume	some	maximum	amount	of	confounding
• Yields	confidence	interval

• Proxies
• Other	observed	features	give	us	information	about	the	hidden	confounder



Instrumental	Variables

• Find	an	instrument – variable	which	only	affects	treatment
• Decouples	treatment	and	outcome	variation

• With	linear	functions,	solve	analytically
• But	can	also	use	any	function	approximators



Sensitivity	Analysis

• Determine	the	relationship	between	
strength	of	confounding	and	causal	
effect
• Example:	Does	smoking	cause	lung	
cancer?	(we	now	know,	yes)
• There	may be	a	gene	that	causes	lung	
cancer	and smoking
• We	can’t	know	for	sure!
• However,	we	can	figure	out	how	strong	
this	gene	would	need	to	be	to	result	in	
the	observed	effect
• Turns	out	– very	strong

X Gene

Smoking Cancer



Sensitivity	Analysis

• The	idea	is:	parametrize	your	uncertainty,	and	then	decide	which	
values	of	that	parameter	are	reasonable



Using	Proxies

• Instead	of	measuring	the	
hidden	confounder,	measure
some	proxies	(V	=	fprox(U))
• Proxies:	variables	that	are	
caused	by	the	confounder
• If	U	is	a	child’s	age,	V	might	be	
height

• If	fprox is	known	or	linear,	we	
can	estimate	this	effect

X

T

U

Y V



Using	Proxies

• If	fprox is	non-linear,	we	might	
try	the	Causal	Effect	VAE
• Learn	a	posterior	distribution	
P(U	|	V)	with	variational	
methods
• However,	this	method	does	
not	provide	theoretical	
guarantees
• Results	may	be	unverifiable:	
proceed	with	caution!

X

T

U

Y V



Causality	and	Other	Areas	of	ML

• Reinforcement	Learning
• Natural	combination	– RL	is	all	about	taking	actions	in	the	world
• Off-policy	learning	already	has	elements	of	causal	inference

• Robust	classification
• Causality	can	be	natural	language	for	specifying	distributional	robustness

• Fairness
• If	dataset	is	biased,	ML	outputs	might	be	unfair
• Causality	helps	us	think	about	dataset	bias,	and	mitigate	unfair	effects



Quick	Note	on	Fairness	and	Causality

• Many	fairness	problems	(e.g.	loans,	medical	diagnosis)	are	actually	
causal	inference	problems!
• We	talk	about	the	label	Y	– however,	this	is	not	always	observable
• For	instance,	we	can’t	know	if	someone	would return	a	loan	if	we	don’t	give	
one	to	them!
• This	means	if	we	just	train	a	classifier	on	historical	data,	our	estimate	will	be	
biased
• Biased	in	the	fairness	sense	and the	technical	sense

• General	takeaway:	if	your	data	is	generated	by	past	decisions,	think	
very	hard	about	the	output	of	your	ML	model!



Feedback	Loops

• Takes	us	to	part	2…	feedback	loops
• When	ML	systems	are	deployed,	they	make	many	decisions	over	time
• So	our	past	predictions	can	impact	our	future	predictions!
• Not	good



Unfair	Feedback	Loops

• We’ll	look	at	“Fairness	Without	Demographics	in	Repeated	Loss	
Minimization”	(Hashimoto	et	al,	ICML	2018)
• Domain:	recommender	systems
• Suppose	we	have	a	majority	group	(A	=	1)	and	minority	group	(A	=	0)
• Our	recommender	system	may	have	high	overall	accuracy	but	low	
accuracy	on	the	minority	group
• This	can	happen	due	to	empirical	risk	minimization	(ERM)

• Can	also	be	due	to	repeated	decision-making



Repeated	Loss	Minimization

• When	we	give	bad	recommendations,	people	leave	our	system
• Over	time,	the	low-accuracy	group	will	shrink



Distributionally Robust	Optimization

• Upweight examples	with	high	loss	in	order	to	improve	the	worst	case
• In	the	long	run,	this	will	prevent	clusters	from	being	underserved

• This	ends	up	being	equal	to



Distributionally Robust	Optimization

• Upweight examples	with	high	loss	in	order	to	improve	the	worst	case
• In	the	long	run,	this	will	prevent	clusters	from	being	underserved



Conclusion

• Your	data	is	not	what	it	seems
• ML	models	only	work	if	your	training/test	set	actually	look	like	the	
environment	you	deploy	them	in
• This	can	make	your	results	unfair
• Or	just	incorrect

• So	examine	your	model	assumptions	and	data	collection	carefully!


