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-

Why Privacy Matters

Threat models for non-private ML
ML+DP

Recap: DP setting, basic mechanisms
Private logistic regression

Private neural net weights with DPSGD




Learning Objectives

We want you to understand the following:

DP+ML: Why? (security motivations)

o Exploiting language models
o Modelinversion

Basic tradeoffs and design choices at play
DP+ML: How? (applying basic mechanisms)
The Gaussian Mechanism and its applications:
o Stochastic Gradient Descent
Composition: how to analyze a sequence of mechanisms

Private neural nets:
o Implementation difficulties
o Recent advances




Part 1: Security concerns

Slides in this section due to David Madras



Making Privacy Concrete




Whatis a Threat Model?

 Wikipedia: “Threat modeling is a process by which potential threats
can be identified ... all from a hypothetical attacker’s point of view.”

* Best way to talk about the security of our model is to specify a threat
model — how might we be vulnerable?

* In this talk, I'll try to convince you privacy is a real security threat by
presenting a concrete threat model



Let’s Talk About Model Inversion!

* A trained ML model with parameters w is released to the public
W = training_procedure(X)
* Trainingdata X is hidden

* Can we recover some of X just through access to w?

e X' =training_procedure!(w) <--- notational abuse
* That would be bad

* Intersection of security and privacy



What Model Inversion Looks Like

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the
victim (right). The attacker is given only the per-
son’s name and access to a facial recognition system
that returns a class confidence score.



Two Examples We’ll Discuss

* “The Secret Sharer: Measuring Unintended Neural Network
Memorization & Extracting Secrets”, Carlini et al., 2018

* “Model Inversion Attacks that Exploit Confidence Information and
Basic Countermeasures”, Fredrikson et al., 2015



Example 1. The Secret Sharer (cainieta

 Step 1: Find some training text containing sensitive information (e.g.
credit card numbers)

* “My credit card number is 3141-9265-3587-4001" € Trainingtext

e Step 2: Train your language model without really thinking too hard
e State-of-the-art log-likelihood!

e Step 3: Profit ... for hackers
* Sounds bad



Extracting Secrets

* “My credit card number is X” € Training text
* Hacker is given black-box access to the model

* Prompt the model with ‘My credit card numberis’ and generate!

* $555555555

* Note: This isn’t exactly how they do it in the paper
 Many annoying details in implementation



This Attack Kind of Works

Number of Unique Phrases
1 10 50 100 500

2 1| 80% 1% 2% 1% 0.1%
2 2 | 100% 38% 18% 16% 1%
2 5 | 100% 100% 100% 100%  98%
& 10| 100% 100% 100% 100% 100%

Table 4: Expected percentage of phrases that are uniquely extractable.
Each inserted secret has the same format.



This Attack Kind of Works (Part I1)

User Secret Type Exposure Extracted?

A CCN 52 v
B SSN 13

SSN 16
C SSN 10

SSN 22

SSN 32 v
F SSN 13

CCN 36
G CCN 29

CCN 48 v

Table 5: Summary of results on the Enron email dataset. Three secrets
are extractable in under an hour; all are heavily memorized.



How to Defend?

* Maybe regularization?
* Memorization relates to generalization
e Authorstry weight decay, dropout, and quantization — none work
* The problem seems distinct from overfitting

* Maybe sanitization?

* This makes sense: if you know what the secret looks like, just remove it before
training
* But you may not know all possible secret formats — this is heuristic



How to Defend?

* Differential Privacy!
* Each token inthe training text = “a record in the database”

Testing Estimated

Optimizer € Loss  Exposure
RMSProp 0.65 1.69
RMSProp  1.21 1.59
~ RMSProp  5.26 1.41
< RMSProp 89 1.34
= RMSProp 2 x 10® 1.32
RMSProp 1 x 10° 1.26
SGD 00 2.11
a®
2 sSGD N/A 1.86 9.5
Z. RMSProp N/A 1.17 31.0




Example 2: Targeted Model Inversion in
C|aSSIerrS (Fredrikson et al.)

e Step 1. Train classifier parameters w on some secret dataset X
 Step 2. Release w to the public (white-box)

 Step 3. A hacker can recover parts of your training set by targeting
specific individuals
* That would be bad



Attacking a CNN

* Target: specific output (e.g. person’s identity, sensitive feature)
 Start with some random input vector

* Use gradient descent in input space to maximize model’s confidence
in the target prediction




Attacking a Decision Tree using Auxiliary
Information

* Given a trained decision tree where we know person X was in the the training set
* Assume we know x, ... x; for X, and want to find the value of x; (sensitive)

The following estimator characterizes the probability that
X1 = v given that x traverses one of the paths si,...,sm
and x K =VK.

Prixi=v| (s1V--Vsm) AXKk = VK |

pidi(v) - Pr[xg = vk ] -Pr[x; =v]
> Z S i (v)

! o Z pigi(v) - Prixi =v] (1)

X m



Decision Tree Experiments

* Trying to uncover the values of sensitive answers like:

risk-taking behaviors [17]. To support the analysis, FiveThir-
tyEight commissioned a survey of 553 individuals from Sur-
veyMonkey, which collected responses to questions such as:
“Do you ever smoke cigarettes?”, “Have you ever cheated
on your significant other?”, and of course, “How do you like
your steak prepared!’. Demographic characteristics such as

a v

and 11 variables, including basic demographic information

and responses to questions such as, “How happy are you in
your marriage?” and “Have you watched X-rated movies in
the last year?” We discarded rows that did not contain re-




Decision Tree Results

FiveThirtyEight GSS
algorithm acc. prec. rec. | acc. prec. rec.
whitebox 86.4 100.0 21.1 [ 80.3 100.0 0.7
blackbozx 85.8 85.7 21.1 | 80.0 38.8 1.0
random 50.0 50.0 50.0 | 50.0 50.0  50.0
baseline 82.9 0.0 0.0 82.0 0.0 0.0
1deal 99.8 100.0 98.6 | 80.3 61.5 2.3

Figure 4: MI results for for BigML models. All

numbers shown are percentages.



Defending Against Model Inversion

* Decision trees: split on sensitive features lower down

* CNNs: no concrete suggestions
* But this paper came out before DP-SGD

* | think differential privacy would protect against both these attacks
* As always, consider tradeoffs with dataset size and accuracy



Conclusion

* If your software works, great!

* If your software works but can be hacked —
* Then your software doesn’t work! &

* Hopefully, this presentation convinced you that privacy is a realistic
security issue by providing a concrete threat model

* Not everyone needs to think about privacy all the time

* But some peopleneed to think about it some of the time
* Or bad things will happen! © © ©



Part 2: Making ML Private



Tradeoffs in DP+ML

Privacy

Data Size Accuracy

[Chaudhuri & Sarwate 2017 NIPS tutorial]




Tradeoffs in DP+ML

Y

>, privacy barrier
> : f(w,-) risk functional
Private (5, (5) I
data set |
DP estimate of I R ] ]
@—b argmin f (w, D) : > WA private est|m*ator
sample size n w ! Elf(w,2)] - E[f(w",z)]

Statistical estimation: estimate a parameter or
predictor using private data that has good expected
performance on future data.

ichaudhuris sarwate 2017 Nipsorial - G@0@l: Good privacy-accuracy-sample size tradeoff



Private Empirical Risk Min.

1 n
* — i - e 19 Yq )\R
W = argmin ,&E 1 (W, (xi,9:)) + AR(w)

* Empirical Risk Minimization (ERM) is a common paradigm
for prediction problems.

* Produces a predictor w for a label/response y given a
vector of features/covariates X.

« Typically use a convex loss function and regularizer to
“prevent overfitting.”




Private ERM

Q easy for adversary to tell the

difference between D and D’

Private
data set

D D or D/.
\
\_/

D

/ adversary

= Private

! _ + data set

é Vs ‘\_ — E D/

P\, - . P [CMSII,RBHTI2]

[Chaudhuri & Sarwate 2017 NIPS tutorial]




Kernel Approaches Even Worse

* Kernel-based methods produce a classifier that is a
function of the data points.

- Even adversary with black-box access to w could
potentially learn those points. ;------------7---m-m s |

n ; + ¥ ++ =
w(x) =) ok(x,x;) —_ )
; g a T

1
|
[Chaudhuri & Sarwate 2017 NIPS tutorial] E [CMSI I]

________________________________



Privacy & Learning Compatible

* Good learning algorithms generalize to the population
distribution, not individuals.

« Stable learning algorithms generalize [BEO2].

- Differential privacy can be interpreted as a form of stability
that also implies generalization [DFH+15,BNS+16].

 Two parts of the same story:
Privacy implies generalization asymptotically.
Tradeoffs between privacy-accuracy-sample size for finite n.

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Revisiting ERM
= argmm — Z o(w, (X3,9;)) + AR(w)

- Learning using (convex) optimization uses three steps:
|. read in the data input perturbation
2. form the objective function  objective perturbation
We will discuss this one --> 3. perform the minimization output perturbation

* We can try to introduce privacy in each step!

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Typical Empirical Results
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(a) Regularized logistic regression, KDDCup99
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[Chaudhuri & Sarwate 2017 NIPS tutorial]

In general:

Objective perturbation
empirically outperforms output
perturbation.

Gaussian mechanism with (g, d)
guarantees outperform Laplace -
like mechanisms with &-
guarantees.

Loss vs. non-private methods is
very dataset-dependent.



Output Perturbation

non-private
— preprocessing

|

|

|

|

* |
|

. ———p | private I
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|

|

o optimization

D v

noise addition

A
—_— or > W
. randomization| | output

(E y 0 ) privacy
barrier

« Compute the minimizer and add noise.
* Does not require re-engineering baseline algorithms

Noise depends on the sensitivity of the argmin. [CMS| |, RBHT 2]



Private Logistic Regression

N
1
L(w) = Z CrossEntropy(a(wa,-), y;i) + EﬂwTw
i=1

What is A L(w), the sensitivity of the loss?

https://stackoverflow.com/questions/28256058/plotting-dec'lysion-boundary-of—logistic-regression




Private Logistic Regression

N
1

Lin) = Z CrossEntropy(a(wai), yi) + EAwTw

i=1 . Vv - \ v}

A—strongly convex

h(w) is convex iff VZh(w) = O (its Hessian is positive semi-definite)
h(w) is A—strongly convex iff (VA(x) — VA()  (x — y) > A||x — | |%

The sum of a convex function and a A-strongly convex function is A-strongly convex.




Private Logistic Regression

Lemma 7 Let G(f) and g(f) be two vector-valued functions, which are continuous, and differen-
tiable at all points. Moreover, let G(f) and G(f) + g(f) be \-strongly convex. If f; = argmin; G(f)
and £, = argming G(f) + g(f), then

1
- LE )
£~ £al] < 5 max Vg (D)

llllll




Private Logistic Regression

h(w) is A—strongly convex iff (VA(x) — VA3))T (x — y) > A||x — y||3

The sum of a convex function and a A-strongly convex function is A-strongly convex.

L(w) = % Eie{l..N} CrossEntropy(c(w” x;), y;) + %/lew

L'(w) = (% Yic(1.n)\; CrossEntropy(o(w’ x;), y,-)) + CrossEntropy(c(w” x;), ;) + %ﬂwTw
L'(w) = L(w) + g(w)

g(w) = % (CrossEntropy(s(w” x;), y7) — CrossEntropy(c(w” x;), y;))

Assuming ||x|| < 1, we have Vg(w) < %

—>AL=NL/1




Private Logistic Regression

Algorithm:

T _ g
sensitivity AL = <

1) solve w* = arg min,, L(w)

2) draw n with p(n) exp(—ﬁ ||n]]) (vector analogue of Laplace draw)

€

3 returnw = w* + 7




Private Non-Convex Learning

For non-convex losses:

e Wedon't know whether our optimizer will
(asymptotically) find the global optimum

e We can not bound the loss function at the optimum or
anywhere else

Instead we will make every step of the iterative optimization
algorithm private, and somehow account for the overall
privacy loss at the end




Private Non-Convex Learning

To discuss DPSGD algorithm, we need to understand

e Basic composition of mechanisms
e “Advanced” composition in an adaptive setup
e Privacy amplification by subsampling

e Per-example gradient computation




Recall Composition Theorem

> ——
> A| (617 51)
(=)\
datajest o | Az |(e2.0) f—s (D ) 6)
(=< () 7
D o [ ...
R i )
A

Total privacy loss is the sum of privacy losses

(Better composition possible — coming up later)



Advanced Composition

What is composition?

e Repeated use of DP algorithms on the same database

e Repeated use of DP algorithms on the different
databases that nevertheless may contain shared
information about individuals

We can show that the privacy loss over all possible outcomes
has a Markov structure, which hints at a better composition




Advanced Composition

Theorem 3.20 (Advanced Composition). For all €, 4§, 6" > 0, the class of
(¢, 0)-differentially private mechanisms satisfies (¢’, kd + §’)-differential
privacy under k-fold adaptive composition for:

e = \/2kIn(1/8")e + ke(e — 1).




Privacy by Subsampling

Lemma 3 (Amplification via sampling) If 4 is ] -differentially private, then for any ¢ < ((), 1)
A’(e.-) is 92 —differentiallv private.

Suppose 4 isa ] -differentially private algorithm that expects data sets from a domain /) as input.
Consider a new algorithm A’ , which runs 4 on arandom subsample of =~ en points from its input:

Proof: Fix an event S in the output space of 4’ , and two data sets . 2’ that differ by a single individual,
say x=2a'U{i}.

Consider arun of A’ oninput x .If 4 is notincluded in the sample 7 , then the output is distributed

the sameasarunof A’ on 2/ =z \ {i} , since the inclusion of ; in the sample is independent of the

inclusion of other elements. On the other hand, if ; is included in the sample T , then the behavior of A

on T isonly afactor of e off from the behaviorof 4 on T \ {1} . Again, because of independence, the

distribution of T'\ {1} is the same as the distribution of 7" conditioned on the omission of ; . For a set
T C D ,let pr denote the distribution of A(T) . In symbols, we have that for any event g :

p(S|igT)=pu(S) and p.(S|ie€T)e e p.(S).

We can put the pieces together, using the fact that ; isin 7" with probability only € :

Pe(S) = (1—¢€) pe(S|igT)+e pu(S|i€T)

< (1—¢€) po(S)+e-e-pus(S)

= (1+e(e—1)p(S)

< exp(2e) - pu(S)
We can get a similar lower bound: https://adamdsmith.wordpress.com/2009/09/02/
Pe(S) = (1—€) - pu(S|igT)+e p(S|ieT) sample-secrecy/

2 (1-€) po(S) +e- L pa(S)

= (I-e(l—e™)) pu(S)

> exp(—€) - pw(S)

The last inequality uses the factthat ¢ < 1. [J



Moments accountant improves bounds
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Differentially Private SGD

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
+ >, L(0,x;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly

Guarantees final parameters don’t
depend too much on individual

for t € [T] do training examples
Take a random sample L; with sampling probability
é/ozilpute gradient Gaussian noise added to the
For each i € Ly, compute g;(2:) < Ve, L(0r, 1) parameter update at every iteration
Clip gradient
g:(z;) < gi(x;)/ max (17 IIgt(gi)llz)
Add noise Privacy loss accumulates over time
g« 1 (3=, 8i(z:) + N(0,0°C?T))
Descent
Or41 < Or — nef The “moments accountant” provides

Output Or and compute the overall privacy cost (e, )
using a privacy accounting method.

better empirical bounds on (g,)

[Abadi et al. 2016]




Differentially Private SGD

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L£(0) =
+ >, L(0,x;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly
for t € [T] do
Take a random sample L; with sampling probability
L/N
Compute gradient
For each i € Ly,|compute g;(z;) < Vo,

L0,z:) | < when can we efficiently compute

Clip gradient per-example gradients?
g:(z;) + gi(x;)/ max (17 ||gt(2i)||2)

Add noise

g « 1 (X, 8(z:) + N(0,0%C1))

Descent

Or+1 < O0r — Mgt
Output Or and compute the overall privacy cost (e, )
using a privacy accounting method.

[Abadi et al. 2016]




PATE

Jane Smith.
m Private Aggregation of Teacher
Yy Noisy aggregation Ensembles [Papel’not et al 2017,

OO0

Papernot et al 2018]
. h 5.32'53 Partly labeled data O O
= : BN A Key idea: instead of adding noise to

“—— gradients, add noise to labels

Student

Healthy
Cancer

Unlabeled data

Unlabeled data Unlabeled
public data




PATE

Jane Smith

Start by partitioning private data into
disjoint sets

Jane Smith

Each teacher trains (non-privately)
on its corresponding subset

8 J o 7 \ J
Y Y

Private data Partitions Teachers




PATE

Jane Smith does
not have cancer \‘.

w Healthy —___

222 \ Add
AN Gaussian
= Cancer — noise to Class with
each vote most noisy
count votes
|

" Healthy

>
&

Cancer
Cancer

+
- [
Record Healthy ‘3
similar to |

Jane’s

Test input Teachers Teacher predictions  Teacher vote counts Noisy vote counts Prediction

Private predictions can now be
generated via the exponential
mechanism, where the “score” is
computed with an election amongst
teachers - output the noisy winner

We now have private inference, but
we lose privacy every time we
predict. We would like the privacy
loss to be constant at test time.




Jane Smith

PATE

Noisy aggregation

=

Healthy
Cancer

Data labeled

with privacy Partly labeled data O

Unlabeled data

Unlabeled data

Unlabeled
public data

OO

% <

\ﬂ_/

Student

O

We can instead use the noisy labels
provided by the teachers to train a
student

We leak privacy during training but at
test time we lose no further privacy
(due to post-processing thm)

Because the student should use as
few labels as possible, unlabeled
public datais leveragedin a
semi-supervised setup.




Aggregation test accuracy (%)

100 -

80 -

60 -

40 -

PATE
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0~

Queries Privacy Accuracy
SRR, NN RO i - Dataset | Aggregator answered | bound £ | Student | Baseline
r }/.T LNMax (Papernot et al., 2017 100 2.04 98.0%
// MNIST | LNMax (Papernot et al., 2017 1,000 8.03 98.1% 99.2%
T e Confident-GNMax (7=200, o1=150, 52=40) 286 1.97 98.5 %
o B0 R (EEEE R LNMax (Papernot et al., [2017) 500 5.04 82.7%
—e— 1000 teachers (Gaussian)
e~ 5000 teachers (Gaussian) SVHN LNMax (Papernot et al.,[2017 1,000 8.19 90.7% 92.8%
el Homvprivote model paseine)) Confident-GNMax (T'=300, o =200, =40) 3,098 4.96 91.6%
Privacy cost of 4000 queries (¢ at 6 = 1078) aduyy | LNMax (Papernot et al]| 2017) 500 266 | 830% | o0 o
Confident-GNMax (7'=300, o1=200, 55=40) 524 1.90 83.7%
LNMax 4,000 4.3 72.4%
Glyph | Confident-GNMax (7'=1000, o1=500, 02=100) 10,762 2.03 75.5% 82.2%
Interactive-GNMax, two rounds 4,341 0.837 73.2%

https://arxiv.org/pdf/1802.08908.pdf




