
Overview
➔ Why Privacy Matters

Threat models for non-private ML

➔ ML+DP

Recap: DP setting, basic mechanisms

Private logistic regression

Private neural net weights with DPSGD



Learning Objectives
We want you to understand the following:

● DP+ML: Why? (security motivations)
○ Exploiting language models

○ Model inversion

● Basic tradeoffs and design choices at play
● DP+ML: How? (applying basic mechanisms)
● The Gaussian Mechanism and its applications:

○ Stochastic Gradient Descent

● Composition: how to analyze a sequence of mechanisms
● Private neural nets:

○ Implementation difficulties

○ Recent advances



Part 1: Security concerns

Slides in this section due to David Madras



Making	Privacy	Concrete



What	is	a	Threat	Model?

• Wikipedia:	“Threat	modeling	is	a	process	by	which	potential	threats	
can	be	identified	…	all	from	a	hypothetical	attacker’s	point	of	view.”

• Best	way	to	talk	about	the	security of	our	model	is	to	specify	a	threat	

model	– how	might	we	be	vulnerable?

• In	this	talk,	I’ll	try	to	convince	you	privacy	is	a	real	security threat	by	
presenting	a	concrete	threat	model



Let’s	Talk	About	Model	Inversion!

• A	trained	ML	model	with	parameters	w	is	released	to	the	public
• W	=	training_procedure(X)
• Training	data	X	is	hidden

• Can	we	recover	some	of	X	just	through	access	to	w?
• X’	=	training_procedure-1 (w)	<--- notational	abuse
• That	would	be	bad

• Intersection	of	security	and	privacy



What	Model	Inversion	Looks	Like



Two	Examples	We’ll	Discuss

• “The	Secret	Sharer:	Measuring	Unintended	Neural	Network	

Memorization	&	Extracting	Secrets”,	Carlini et	al.,	2018

• “Model	Inversion	Attacks	that	Exploit	Confidence	Information	and	

Basic	Countermeasures”,	Fredrikson et	al.,	2015



Example	1.	The	Secret	Sharer	(Carlini et	al.)

• Step	1:	Find	some	training	text	containing	sensitive	information	(e.g.	

credit	card	numbers)

• “My	credit	card	number	is	3141-9265-3587-4001”	∈ Training	text

• Step	2:	Train	your	language	model	without	really	thinking	too	hard

• State-of-the-art	log-likelihood!

• Step	3:	Profit	…	for	hackers
• Sounds bad



Extracting	Secrets

• “My	credit	card	number	is	X”	∈ Training	text

• Hacker	is	given	black-box	access	to	the	model

• Prompt	the	model	with	‘My	credit	card	number	is’	and	generate!

• $$$$$$$$$$

• Note:	This	isn’t	exactly	how	they	do	it	in	the	paper	
• Many	annoying	details	in	implementation



This	Attack	Kind	of	Works



This	Attack	Kind	of	Works	(Part	II)



How	to	Defend?

• Maybe	regularization?

• Memorization	relates	to	generalization

• Authors	try	weight	decay,	dropout,	and	quantization	– none	work
• The	problem	seems	distinct	from	overfitting

• Maybe	sanitization?

• This	makes	sense:	if	you	know	what	the	secret	looks	like,	just	remove	it	before	

training

• But	you	may	not	know	all	possible	secret	formats	– this	is	heuristic



How	to	Defend?

• Differential	Privacy!
• Each	token	in	the	training	text	=	“a	record	in	the	database”



Example	2:	Targeted	Model	Inversion	in	
Classifiers	(Fredrikson et	al.)
• Step	1.	Train	classifier	parameters	w	on	some	secret	dataset	X

• Step	2.	Release	w	to	the	public	(white-box)

• Step	3.	A	hacker	can	recover	parts	of	your	training	set	by	targeting	
specific	individuals

• That	would	be	bad



Attacking	a	CNN
• Target:	specific	output	(e.g.	person’s	identity,	sensitive	feature)
• Start	with	some	random	input	vector

• Use	gradient	descent	in	input	space to	maximize	model’s	confidence	

in	the	target	prediction



Attacking	a	Decision	Tree	using	Auxiliary	
Information

• Given	a	trained	decision	tree	where	we	know	person	X	was	in	the	the	training	set

• Assume	we	know	x2 …	xd for	X,	and	want	to	find	the	value	of	x1 (sensitive)



Decision	Tree	Experiments

• Trying	to	uncover	the	values	of	sensitive	answers	like:



Decision	Tree	Results



Defending	Against	Model	Inversion

• Decision	trees:	split	on	sensitive	features	lower	down
• CNNs:	no	concrete	suggestions
• But	this	paper	came	out	before	DP-SGD	

• I	think	differential	privacy	would	protect	against	both	these	attacks
• As	always,	consider	tradeoffs	with	dataset	size	and	accuracy



Conclusion

• If	your	software	works,	great!J
• If	your	software	works	but	can	be	hacked	–
• Then	your	software	doesn’t	work!	L

• Hopefully,	this	presentation	convinced	you	that	privacy	is	a	realistic	
security	issue	by	providing	a	concrete	threat	model	

• Not	everyone	needs	to	think	about	privacy	all	the	time

• But	some	people	need	to	think	about	it	some	of	the	time

• Or	bad	things	will	happen!	JJJ



Part 2: Making ML Private



Tradeoffs in DP+ML

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Tradeoffs in DP+ML

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Private Empirical Risk Min. 
Minimization



Private ERM

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Kernel Approaches Even Worse

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Privacy & Learning Compatible

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Revisiting ERM

[Chaudhuri & Sarwate 2017 NIPS tutorial]

We will discuss this one -->



Typical Empirical Results

[Chaudhuri & Sarwate 2017 NIPS tutorial]



Output Perturbation



Private Logistic Regression

https://stackoverflow.com/questions/28256058/plotting-decision-boundary-of-logistic-regression



Private Logistic Regression



Private Logistic Regression



Private Logistic Regression



Private Logistic Regression



Private Non-Convex Learning

For non-convex losses:

● We don’t know whether our optimizer will 
(asymptotically) find the global optimum

● We can not bound the loss function at the optimum or 
anywhere else

Instead we will make every step of the iterative optimization 
algorithm private, and somehow account for the overall 
privacy loss at the end



Private Non-Convex Learning

To discuss DPSGD algorithm, we need to understand

● Basic composition of mechanisms
● “Advanced” composition in an adaptive setup
● Privacy amplification by subsampling
● Per-example gradient computation



Recall Composition Theorem



Advanced Composition

What is composition? 

● Repeated use of DP algorithms on the same database
● Repeated use of DP algorithms on the different 

databases that nevertheless may contain shared 
information about individuals

We can show that the privacy loss over all possible outcomes 
has a Markov structure, which hints at a better composition



Advanced Composition



Privacy by Subsampling

https://adamdsmith.wordpress.com/2009/09/02/
sample-secrecy/



Differentially Private SGD

Guarantees final parameters don’t 

depend too much on individual 

training examples

Gaussian noise added to the 

parameter update at every iteration

Privacy loss accumulates over time

The “moments accountant” provides 

better empirical bounds on (ε,δ)

[Abadi et al. 2016]

MNIST epoch vs accuracy/privacy

Moments accountant improves bounds

CIFAR-10 epoch vs accuracy/privacy



Differentially Private SGD

[Abadi et al. 2016]

← when can we efficiently compute 
    per-example gradients?



PATE

Private Aggregation of Teacher 

Ensembles [Papernot et al 2017, 

Papernot et al 2018]

Key idea: instead of adding noise to 

gradients, add noise to labels



PATE

Start by partitioning private data into 

disjoint sets

Each teacher trains (non-privately) 

on its corresponding subset



PATE

Private predictions can now be 

generated via the exponential 

mechanism, where the “score” is 

computed with an election amongst 

teachers - output the noisy winner

We now have private inference, but 

we lose privacy every time we 

predict. We would like the privacy 

loss to be constant at test time.



PATE

We can instead use the noisy labels 

provided by the teachers to train a 

student

We leak privacy during training but at 

test time we lose no further privacy 

(due to post-processing thm)

Because the student should use as 

few labels as possible, unlabeled 

public data is leveraged in a 

semi-supervised setup.



PATE

https://arxiv.org/pdf/1802.08908.pdf


