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Overview of This Lecture
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• Background
➢ Study of fairness in economics

➢ Fairness in resource allocation (cake-cutting and 
indivisible goods)

• Adaptation to machine learning
➢ Classification

➢ Clustering

➢ Future work



Study of Fairness in Economics
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• Almost a century old
➢ Started from the work of Steinhaus in 1948

➢ Introduced fairness in the classic cake-cutting setting

• Notions of individual fairness
➢ Proportionality (Prop) [Steinhaus, 1948]

➢ Envy-freeness (EF) [Foley, 1967]

➢ Equitability (EQ) [Pazner and Schmeidler, 1978]
o More generally, “egalitarian-equivalence”

➢ Maximin share (MMS) [Budish, 2011]



Study of Fairness in Economics
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• Extended to groupwise notions of fairness
➢ Stronger than individual fairness

➢ The core [Varian, 1974]
o Implies proportionality

➢ Group envy-freeness (GEF) 
[Berliant, Thomson, Dunz, 1992]
o Implies envy-freeness

➢ Group fairness (GF) 
[Conitzer, Freeman, Shah, Wortman-Vaughan, 2019]
o Implies both core and group envy-freeness



Study of Fairness in Economics
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• Often, approximate versions are sought when exact  
versions cannot be guaranteed

➢ Proportionality up to one (Prop1)
[Conitzer, Freeman, Shah, 2017]

➢ Envy-freeness up to one (EF1) [Budish 2011]

➢ Core up to one (Core1) [Munagala, Fain, Shah, 2018]

➢ Group fairness up to one (GF1)
[Conitzer, Freeman, Shah, Wortman-Vaughan, 2019]



Fairness: 
Cake-Cutting & 

Indivisible Goods

CSC2541 - Nisarg Shah - Guest Lecture 6



Cake-Cutting
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• A heterogeneous, divisible good
➢ Heterogeneous: different parts valued differently by 

different individuals

➢ Divisible: we can split it between individuals

• Represented as [0,1]

• How can we fairly divide the 
cake between 𝑛 agents?



Agent Valuations
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• Set of agents 𝑁 = {1,… , 𝑛}

• Agent 𝑖 has utility function 𝑢𝑖
➢ 𝑢𝑖(𝑋) = utility for getting 𝑋 ⊆ [0,1]

• Additive: For 𝑋 ∩ 𝑌 = ∅,
𝑢𝑖 𝑋 + 𝑢𝑖 𝑌 = 𝑢𝑖 𝑋 ∪ 𝑌

• Normalized: 𝑢𝑖 0,1 = 1

• Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑢𝑖 𝑌 = 𝜆𝑢𝑖(𝑋)

𝛼

𝜆𝛼

𝛼 β

β𝛼 + 𝛽



Fairness Goals
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• Allocation 𝐴 = (𝐴1, … , 𝐴𝑛) is a partition of the 
cake into 𝑛 disjoint bundles

• Proportionality (Prop):
∀𝑖 ∈ 𝑁: 𝑢𝑖 𝐴𝑖 ≥ ൗ1 𝑛

• Envy-Freeness (EF):

∀𝑖, 𝑗 ∈ 𝑁: 𝑢𝑖 𝐴𝑖 ≥ 𝑢𝑖(𝐴𝑗)

• Equitability (EQ):
∀𝑖, 𝑗 ∈ 𝑁: 𝑢𝑖 𝐴𝑖 = 𝑢𝑗(𝐴𝑗)



Fairness Goals
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• Prop: ∀𝑖 ∈ 𝑁: 𝑢𝑖 𝐴𝑖 ≥ Τ1 𝑛

• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑢𝑖 𝐴𝑖 ≥ 𝑢𝑖 𝐴𝑗

• Question: What is the relation between Prop & EF?

1. Prop ⇒ EF

2. EF ⇒ Prop

3. Equivalent

4. Incomparable



CUT-AND-CHOOSE
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• Algorithm for 𝑛 = 2 agents

• Agent 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉1 𝑋 = 𝑉1 𝑌 = Τ1 2

• Agent 2 chooses the piece she prefers.

• This is EF and therefore proportional.
➢ Why?



Query Model
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• To capture the complexity of computing various 
solution concepts, we need a model for accessing 
utilities

• Robertson-Webb model
➢ Eval𝑖(𝑥, 𝑦) returns 𝑢𝑖 𝑥, 𝑦

➢ Cut𝑖(𝑥, 𝛼) returns 𝑦 such that 𝑢𝑖 𝑥, 𝑦 = 𝛼

𝑥 𝑦

𝛼eval output

cut output



Complexity of Proportionality
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• Theorem [Even and Paz, 1984]
➢ There exists a protocol for computing a proportional 

allocation using 𝑂 𝑛 log 𝑛 queries in the Robertson-
Webb model.

➢ Uses a simple divide-and-conquer idea

• Theorem [Edmonds and Pruhs, 2006] 
➢ Any protocol computing a proportional allocation needs 
Ω(𝑛 log 𝑛) queries in the Robertson-Webb model.



Complexity of Envy-Freeness
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• [Brams and Taylor, 1995] 
➢ First unbounded EF protocol

• [Procaccia 2009] 
➢ Ω 𝑛2 lower bound for EF

• Major open question: bounded EF protocol?

• [Aziz and Mackenzie, 2016] 

➢ Breakthrough 𝑂(𝑛𝑛
𝑛𝑛

𝑛𝑛

) protocol! 

➢ Not a typo!



Complexity of Equitability
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• [Procaccia and Wang, 2017] 
➢ Any protocol for computing an equitable allocation 

requires an unbounded number of queries in the 
Robertson-Webb model.

➢ An 𝜖-equitable allocation can be computed in 
𝑂 Τ1 𝜖 ln Τ1 𝜖 queries

➢ A corresponding lower bound is Ω ln Τ1 𝜖 ln ln Τ1 𝜖



Other Desiderata
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• Pareto optimality (PO)
➢ Allocation 𝐴 is PO if ∄𝐵 s.t. 𝑢𝑖 𝐵𝑖 ≥ 𝑢𝑖 𝐴𝑖 for all 𝑖, and 

at least one inequality is strict.

➢ “There should be no unilaterally better allocation.”

• Strategyproofness (SP)
➢ If 𝐴 and 𝐴′ denote allocations obtained when agent 𝑖

reports 𝑢𝑖 and 𝑢𝑖
′ respectively, fixing the reports of the 

other agents, then 𝑢𝑖 𝐴𝑖 ≥ 𝑢𝑖 𝐴𝑖
′ .

➢ “Regardless of what the other agents do, there is no
incentive for agent 𝑖 to misreport.”



PO and SP
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• By themselves, PO and SP are easy to achieve

• Serial dictatorship
➢ Agent 1 takes any part of the cake she likes

➢ From what’s left, agent 2 takes any part that she likes

➢ …

• The goal is to achieve them along with fairness



PO + EF
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• Theorem [Weller ‘85]
➢ There always exists an allocation of the cake that is both 

envy-free and Pareto optimal.

➢ One method: maximize Nash welfare
argmax𝐴 Π𝑖 𝑢𝑖 𝐴𝑖

➢ Informal proof of EF on the board (if time permits)

➢ Named after John Nash.



Special Case
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• There are 𝑚 “divisible” goods
➢ E.g. a gold bar, a pile of money, …

➢ Agents only care about the fraction of each good they get

• Notation
➢ 𝑢𝑖,𝑔 = utility to agent 𝑖 for all of good 𝑔

➢ 𝑥𝑖,𝑔 = fraction of good 𝑔 given to agent 𝑖

➢ 𝑢𝑖 𝐴𝑖 = σ𝑔 𝑥𝑖,𝑔 ⋅ 𝑢𝑖,𝑔
➢ Feasibility: σ𝑖 𝑥𝑖,𝑔 = 1 for all 𝑔



Indivisible Goods
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• Indivisible goods?
➢ Allocation = partition of goods

➢ Splitting not allowed

• If randomized allocations are permitted…
➢ Any “divisible” allocation can be “implemented”

[Birkhoff-von-Neumann theorem]

• What if only deterministic allocations are allowed?



Indivisible Goods
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8 7 20 5

9 11 12 8

9 10 18 3

We assume additive values. So, e.g., 𝑉 , = 8 + 7 = 15

Given such a matrix of numbers, assign each good to a agent.



Indivisible Goods
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• Theorem [Caragiannis et al. 2016]
➢ For indivisible goods, maximizing Nash welfare over 

integral allocations returns an allocation that is envy-free 
up to one good (EF1) and Pareto optimal (PO).

• EF1:
➢ ∀𝑖, 𝑗, ∃𝑔 ∈ 𝐴𝑗 s.t. 𝑢𝑖 𝐴𝑖 ≥ 𝑢𝑖 𝐴𝑗 ∖ 𝑔

• EFX: 
➢ ∀𝑖, 𝑗, ∀𝑔 ∈ 𝐴𝑗 s.t. 𝑢𝑖 𝐴𝑖 ≥ 𝑢𝑖 𝐴𝑗 ∖ 𝑔

➢ Open question: Does an EFX allocation always exist?
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Enough about fair division!

How do I apply this 
to machine learning?



Envy-Freeness for Classification
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• Two key differences from resource allocation

• Q1: No resources being partitioned across people
➢ Often, a single classifier is implemented

➢ What does it mean for 𝑖 to not envy 𝑗?

• Q2: Is it reasonable to require that no individual 
envies any other individual?
➢ If not, what would be a good relaxation?



Envy-Freeness for Classification
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• Q1: No resources being partitioned across people
➢ Often, a single classifier is implemented

➢ What does it mean for 𝑖 to not envy 𝑗 in this case?

• Idea 1:
➢ Compare the classification outcomes

➢ Let 𝒴 be the set of classes, 𝒳 be the set of individuals 
represented by their feature vectors

➢ Classifier ℎ ∶ 𝑁 → 𝐶 is EF if ∀𝑖, 𝑗 ∈ 𝒳, 𝑢𝑖 ℎ 𝑖 ≥ 𝑢𝑖 ℎ 𝑗
o “I prefer my label to the label assigned to anyone else”

➢ [Balcan et al., 2019]



Envy-Freeness for Classification
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• Q1: No resources being partitioned across people
➢ Often, a single classifier is implemented

➢ What does it mean for 𝑖 to not envy 𝑗 in this case?

• Idea 2:
➢ Actually train two different classifiers ℎ1,ℎ2 for two 

different individuals/groups

➢ Define their utility for a classifier

➢ Ask that individual/group 𝑖 ∈ 1,2 prefer ℎ𝑖 to ℎ3−𝑖
➢ [Ustun et al., 2019]



Envy-Freeness for Classification

CSC2541 - Nisarg Shah - Guest Lecture 27

• Q2: Is it reasonable to require that no individual 
envies any other individual?
➢ If not, what would be a good relaxation?

• Idea 1:
➢ It may be reasonable if randomized (or soft) classification 

is allowed

➢ This still imposes many constraints

➢ How do we train for it? Does it generalize?

➢ [Balcan et al., 2019]



Envy-Freeness for Classification
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• Q2: Is it reasonable to require that no individual 
envies any other individual?
➢ If not, what would be a good relaxation?

• Idea 2:
➢ If deterministic classification is required, we can relax EF 

to require that no group, on average, envy another group

➢ [Hossain et al., manuscript]



Envy-Free Classification
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• 𝒳 = space of individuals
➢ Represented by feature vectors

• 𝒴 = space of possible labels
➢ Sometimes there’s a ground truth label ො𝑦 for each 

individual 𝑥, which can be treated as side information not 
available to the classifier but available during training

• Classifier ℎ ∶ 𝒳 → 𝒴 or ℎ ∶ 𝒳 → Δ 𝒴



Envy-Free Classification
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• Two conflicting objectives

• Loss
➢ 𝐿 𝑥, 𝑦 = loss when labeling individual 𝑥 by 𝑦

➢ For 𝑐 ∈ Δ 𝒴 , 𝐿 𝑥, 𝑐 = 𝔼𝑦∼𝑐 𝐿 𝑥, 𝑦

• Utilities
➢ 𝑢 𝑥, 𝑦 = utility of individual 𝑥 for receiving label 𝑦

➢ For 𝑐 ∈ Δ 𝒴 , 𝑢 𝑥, 𝑐 = 𝔼𝑦∼𝑐 𝑢 𝑥, 𝑦

➢ Assumed to be 𝐿-Lipschitz in 𝑥



Envy-Free Classification
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• Envy-freeness:

➢ Sample: ℎ ∶ 𝒳 → Δ 𝒴 is EF on a set 𝑆 ⊆ 𝒳 if:

𝑢 𝑥, ℎ 𝑥 ≥ 𝑢 𝑥, ℎ 𝑥′ , ∀𝑥, 𝑥′ ∈ 𝑆

➢ Distribution: ℎ is (𝛼, 𝛽)-EF w.r.t. a distribution 𝑃 on 𝒳 if:

Pr
𝑥,𝑥′∼𝑃

𝑢 𝑥, ℎ 𝑥 < 𝑢 𝑥, ℎ 𝑥′ − 𝛽 ≤ 𝛼

➢ Questions:
o Is it reasonable to require ℎ to be EF on training data?

o If it is, does it generalize to the underlying distribution?



Envy-Free Classification

CSC2541 - Nisarg Shah - Guest Lecture 32

• Deterministic classifiers
➢ Envy-freeness is very restrictive

➢ Let ℎ(𝑆) denote the set of all classes assigned to 
individuals in 𝑆

➢ Then, clearly, ℎ is EF on 𝑆 iff each individual 𝑥 ∈ 𝑆 is 
assigned her most preferred label in ℎ 𝑆

• Randomized classifiers
➢ Allow mixing a preferred label with a “low loss” label to 

achieve low empirical loss along with envy-freeness



Generalization
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• “ERM subject to EF”
➢ For arbitrary classifiers, we need an algorithm 𝐴 to extend 

the classifier to unseen data (e.g., by nearest neighbor)

• Theorem: 
➢ There exists 𝒳 and a distribution 𝑃 over 𝒳 s.t. for any 𝐴, 

w.p. 1 − exp −exp 𝑞 , the following happens:

➢ When training set 𝑆 of size exp(𝑞) is drawn from 𝑃 and 𝐴
is applied to derive a classifier, it violates (𝛼, 𝛽)-EF w.r.t. 𝑃
for 𝛼 < 1/25 and 𝛽 < 𝐿/8.



Generalization
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• Natarajan dimension
➢ Generalizes VC dimension to multi-class classification

➢ Low dimension: One-vs-all, multiclass SVM, tree-based 
classifiers, error-correcting code-based classifiers, …

• Theorem: 
➢ 𝒢 = family of classifiers with Natarajan dimension 𝑑

➢ℋ = mixtures of up to 𝑚 classifiers from 𝒢

➢ (𝛼, 𝛽)-EF on training set 𝑆 implies (𝛼 + 7𝛾, 𝛽 + 4𝛾)-EF 
on the underlying distribution 𝑃 w.p. 1 − 𝛿 when

𝑆 ≥ 𝑂
𝑑𝑚2

𝛾2
log

𝑑𝑚 𝒴

𝛾



Generalization
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• Key lemma (informal):

➢ If ℋ is a mixture of up to 𝑚 classifiers from a low 
dimension family 𝒢, then a “small finite” subset of 
classifiers “cover” all of ℋ

➢ Given any ℎ ∈ ℋ, we can find some classifier in the small 
subset that matches ℎ on almost all inputs 



Training for EF Classification
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• Training a mixture through “ERM subject to EF” is 
not a convex program

min
𝑔∈𝒢,𝜂∈Δ𝑚

෍

𝑖=1

𝑛

෍

𝑘=1

𝑚

𝜂𝑘𝐿 𝑥𝑖 , 𝑔𝑘 𝑥𝑖

𝑠. 𝑡.෍

𝑘=1

𝑚

𝜂𝑘𝑢 𝑥𝑖 , 𝑔𝑘 𝑥𝑖 ≥ ෍

𝑘=1

𝑚

𝜂𝑘𝑢 𝑥𝑖 , 𝑔𝑘 𝑥𝑗 , ∀ 𝑖, 𝑗 ∈ 𝑛 2

• They introduce an SVM-style convex relaxation
➢ Empirically results in low envy and low loss



Empirical Results
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Empirical Results
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Group EF & EQ
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• Groups of individuals 𝐺1, 𝐺2

• GroupEF:
➢ 𝔼𝑥1∼𝐺1,𝑥2∼𝐺2[𝑢 𝑥1, ℎ 𝑥2 − 𝑢(𝑥1, ℎ 𝑥1 )] ≤ 0

• GroupEQ:
➢ 𝔼𝑥1∼𝐺1 𝑢 𝑥1, ℎ 𝑥1 − 𝔼𝑥2∼2 𝑢 𝑥2, ℎ 𝑥2 ≤ 0

• For both definitions…
➢ Replace expectation with empirical average on finite 𝑆

➢ 𝜖-GroupEF / 𝜖-GroupEQ if the LHS is at most 𝜖



Group EF & EQ
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• Applicable in a non-ground truth setting
➢ E.g. targeted advertising context of Balcan et al. [2019]

➢ Groups typically defined using sensitive attributes

• Also applicable in a ground truth setting
➢ E.g. making loan/bail decisions

➢ Groups defined using a combination of sensitive 
attributes and ground truth

➢ E.g. 𝐺1 = {male applicants who can repay the loan},  
𝐺2 = {female applicants who can repay the loan}



Group EF & EQ
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• Ground truth setting
➢ Sensitive attribute 𝐴, ground truth ෠𝑌

• Generalizes demographic parity (DP)
➢ 𝐺1 = 𝐴 = 𝑎1 , 𝐺2 = 𝐴 = 𝑎2

• Generalizes equalized odds (EO)
➢ 𝐺1

1 = 𝐴 = 𝑎1 ∧ ෠𝑌 = 1 , 𝐺2
1 = 𝐴 = 𝑎2 ∧ ෠𝑌 = 1

➢ 𝐺1
2 = 𝐴 = 𝑎1 ∧ ෠𝑌 = 0 , 𝐺2

2 = 𝐴 = 𝑎2 ∧ ෠𝑌 = 0

• For group EF, also need to add reverse sets



Group EF & EQ
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• Ground truth setting
➢ Sensitive attribute 𝐴, ground truth ෠𝑌

• Generalizes demographic parity (DP) and equalized 
odds (EO)

➢ Allows extending these definitions to multi-class 
classification

➢ E.g. how should DP or EO be applied when there are 𝑘
different types of loans available and applicants have 
different preferences over these loans?



Problems with Group EF/EQ
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• Post-processing a given (unfair) classifier to achieve 
fairness by just “rebalancing” rates is not an option

• Theorem [Hossain et al., manuscript]
➢ The only way to post-process a classifier to get group EF

with respect to 𝐺1, 𝐺2 without accessing utilities is to 
return ℎ such that for each 𝑥 ∈ 𝐺1, Pr[ℎ 𝑥 = 𝑐] is the 
average of Pr ℎ 𝑥2 = 𝑐 over 𝑥 ∈ 𝐺2.

➢ The only way to post-process a classifier to get group EQ
with respect to 𝐺1, 𝐺2 without accessing utilities is to 
assign a uniformly random label to each individual.



Generalization of Group EF/EQ
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• Rademacher complexity approach

➢ 𝑅𝑎𝑑 𝐴 =
1

𝑚
𝔼 sup𝑎∈𝐴σ𝑖=1

𝑚 𝜎𝑖 𝑎𝑖

• Problems adapting to this framework

➢ Usually defined for functions that map to [0,1], not for 
multi-class classification

➢ Writing group envy or equitability violation on population 
involves a product of utility and group membership 
indicators



Generalization of Group EF/EQ
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• Theorem (informal) [Hossain et al., manuscript]
➢ℋ = family of classifiers 

➢ 𝑆 = training set such that ℛ ℋ ∘ 𝑆 ≤ 𝜖/8

➢ If 𝑆 ≥ 𝑂
1

𝜖2
ln

𝒢

𝛿
, then w.p. 1 − 𝛿, all constraints in 

𝒢 generalize up to 𝜖 additive error.
o 𝒢 = set of (𝐺1, 𝐺2) pairs 

• Theorem (informal)
➢ For linear one-vs-all classifiers in 𝑑 dimensions, 

𝑆 = 𝑂
𝑑3𝑚

𝜖2
ln

𝑑𝑚

𝜖
is enough.



Empirical Results
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Empirical Results
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Other Approaches
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• Decoupled Classifiers [Utsun et al., 2019]
➢ Train a pair of classifiers: ℎ1 for group 𝐺1 and ℎ2 for 𝐺2
➢ ℎ1, ℎ2 is envy-free if 

𝔼𝑥~𝐺1 𝑢 𝑥, ℎ1 𝑥 ≥ 𝔼𝑥~𝐺1 𝑢 𝑥, ℎ2 𝑥

and a similar inequality holds for group 𝐺2. 

➢ One problem: Even when preferences are identical…
o ℎ1 might assign bad labels to 𝐺1
o ℎ2 might assign great labels to 𝐺2, but when applied on 𝐺1, might 

apply even worse labels than ℎ1 by “detecting” certain features

o Intuitively unfair but satisfies the fairness guarantee



Other Approaches
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• Individual Fairness [Dwork et al., 2011]
➢ “Similar individuals should be treated similarly”

➢ Given a distance 𝑑, ℎ 𝑥 − ℎ 𝑦 ≤ 𝑑 𝑥, 𝑦 , ∀𝑥, 𝑦

• Preference-Informed Fairness [Kim et al., 2019]
➢ What if the individuals have heterogeneous preferences?

➢ 𝑦 is similar to 𝑥, but doesn’t like ℎ 𝑥

➢ ∀𝑥, 𝑦 ∃𝑐 𝑢 𝑦, ℎ 𝑦 ≥ 𝑢 𝑦, 𝑐 ∧ ℎ 𝑥 − 𝑐 ≤ 𝑑 𝑥, 𝑦
o “I could’ve given you 𝑐, which would have satisfied individual 

fairness. I’m only giving you something you like more.”



Other Approaches

CSC2541 - Nisarg Shah - Guest Lecture 50

• Preference-Informed Fairness [Kim et al., 2019]
➢ ∀𝑥, 𝑦 ∃𝑐 𝑢 𝑦, ℎ 𝑦 ≥ 𝑢 𝑦, 𝑐 ∧ ℎ 𝑥 − 𝑐 ≤ 𝑑 𝑥, 𝑦

➢ Almost a “justified envy-freeness” concept

➢ When 𝑢 is 𝐿-Lipschitz continuous, PIF implies

𝑢 𝑦, ℎ 𝑥 − 𝑢 𝑦, 𝑐 ≤ 𝐿 ⋅ 𝑑 𝑥, 𝑦

⇒ 𝑢 𝑦, ℎ 𝑦 ≥ 𝑢 𝑦, ℎ 𝑥 − 𝐿 ⋅ 𝑑 𝑥, 𝑦

➢ Every 𝑦 envies 𝑥 by at most 𝐿 ⋅ 𝑑 𝑥, 𝑦
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• Circumventing Harmful Fairness 
[Ben-Porat et al., 2019]

➢ ERM subject to EO:
o May harm the disadvantaged group in terms of welfare

➢ ERM subject to group EQ:
o Can never harm the disadvantaged group in terms of welfare

➢ Characterize ERM subject to Group EQ outcomes, and 
give algorithms to compute them quickly
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• Fairness in clustering
➢ 𝑛 data points, 𝑘 cluster centers

➢ Sometimes clustering is used for facility location, where 𝑘
facilities are located to serve 𝑛 data points

➢ Core
o A clustering 𝐶 is in the core if there exist no group 𝑆 of 𝑛/𝑘 data 

points and a possible cluster center 𝑦 such that 𝑑 𝑖, 𝑦 < 𝑑(𝑖, 𝐶)
for all 𝑖 ∈ 𝑆, where 𝑑 𝑖, 𝐶 = min𝑐∈𝐶 𝑑 𝑖, 𝑐

➢ There exist instances with no core clustering, but 1 + 2
approximation is possible [Munagala et al., 2019]
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• Incentives
➢ How does fairness play with incentives?

➢ Do fair algorithms provide greater incentives to 
individuals to lie about their sensitive attributes?

➢ Ongoing research…


