
CS 2401 - Introduction to Complexity Theory Lecture #9: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #9: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Atiyeh Ashari Ghomi

1 Review

In the last class, we gave lower bounds for AC0
d circuits computing PARITY. For n sufficiently

large, any family of {Cn} of depth d circuits of size ≤ 2n
O(1

d
)

has

|Pr[Cn(x) = PARITY(x)]− 1

2
| ≤ 2−Ω(n

1
d)

Which means any small circuit makes mistake on at least one bit. Now, we will see three
applications of the AC0

d parity lower bound.

2 Pseudorandom Generator

There are different versions of pseudorandom generator. Some of them can be computed with
polynomial time Turing machines. They take log n bits as a seed and produce y1, y2, . . . , ym for
approximation. With these m bits we can check:

x ∈ L⇒ Pr
y

[C(x) = 1] ≥ 3

4

x /∈ L⇒ Pr
y

[C(x) = 1] ≤ 1

4

Because the seed is of length log(n) and the generator runs in polynomial time, so we can check
the circuit for every seed in polynomial time and see if the number of times C returns 1 is more
than 3

4 , x ∈ L. But these generators require a strong unproven assumption that P is separated
from NP. In this class, we see a pseudorandom generator (proposed in [1]) with quasilinear running
time which avoids this problem.

Theorem 1 ∀d there is a family of functions, {gn : {0, 1}l → {0, 1}n} where l = O((log n)2d+6)
(seed and running time is npoly(logn) which is quasilinear), such that:

• {g(n)} is computed by log-space uniform circuits of polynomial size, depth d+ 4,

• ∀Cn of polynomial size, depth d, ∀ polynomial p(n):

| Pr
y∈{0,1}n

[Cn(y) = 1]− Pr
x∈{0,1}l

[Cn(gn(x)) = 1]| ≤ 1

p(n)

where y is chosen uniformly in {0, 1}n and x is chosen uniformly in {0, 1}l

1

CS 2401 - Introduction to Complexity Theory Lecture #9: Fall, 2015

Proof (sketch) To create this gn(x), we define a collection of sets {S1, . . . , Sn}. Each Si ⊆ [l]

• |Si| = (log n)d+3

• |Si ∩ Sj | ≤ log n, ∀i 6= j

We set gn(x) = parity(x|S1)parity(x|S2) . . . parity(x|Sn). Every Si gives one bit parity and gn(x) is
concatenation of these bits. We want these parity bits to be independent, so we don’t want these
subsets to have too much in common, but we need them to be large enough. Note that:

• The generator can be computed by polynomial size circuits of depth d+ 4 since it is just the
parity of sets of bits of cardinality (log n)d+3

• |Pry∈{0,1}n [Cn(y) = 1]−Prx∈{0,1}l [Cn(gn(x)) = 1]| ≤ 1
p(n) since otherwise, according to [2][3]

one of the bits of gn(x), let’s say i, can be predicted from previous ones. Using the circuit
that can predict i and the fact that |Si ∩ Sj | ≤ log n,∀i 6= j, we can build a circuit that
computes the parity(x|Si) with size and error contradictory to AC0

d lower bound.

3 Satisfiability Algorithms and #SAT Algorithms

Definition kCNF SAT: Given kCNF formula f = C1 ∧ . . . ∧ Cm, |Ci| ≤ k, is it satisfiable?

Definition #kCNF SAT: Given kCNF formula, output the number of satisfiability assignment?

One way of solving these problems is using brute force algorithm with runtime of 2npoly(m)
where k is constant so m is poly(n) because m is less than

∑k
i=1

(
2n
i

)
. We sill get (ZPP algo-

rithm with zero error) algorithm for both kCNF SAT and #kCNF SAT with expected runtime

2n(1− 1
k

)poly(m).
Let f be a boolean function, we build a decision tree for f by creating a binary tree with

internal nodes label with the variables of f . At each node by visiting the left child we assign zero
to the variable at this node, and by visiting the right child we assign one to this variable. An
example of SAT decision tree for formula f = (x1 ∨ x2)(x2 ∨ x3)(x1 ∨ x2 ∨ x3):

x2

x1

0 1

x3

0 1

0

0 1

1

0 1

Here after assigning zero to x2 and simplifying f we have, (x1)(x1 ∨ x3). By assigning zero to
x1, f returns zero, so we need to backtrack.

Lemma 2 Switching Lemma
Let f be a rCNF, let ρ be a random restriction: ρ : {x1, . . . , xn} → {0, 1, ∗}, ρ sets pn variables

∗’s
Prρ[canonical decision tree of (f �ρ) has depth ≥ s] ≤ (8pr)s

2

CS 2401 - Introduction to Complexity Theory Lecture #9: Fall, 2015

If we set p ∼ 1
16r , then (8pr)s = (1

2)s

ρ partitions, at random, the variables into two groups: |x| = n − pn variables, each one is
either 0 or 1, and |Y | = pn variables unset. We build a decision tree (of size 2n(1−p)) to set
variables in X, and for each setting we look in the restriction ρ. Then create canonical decision
tree (according to switching lemma these trees’ height would be small) and count the number of
satisfying settings. Counting the number of satisfying assignment is easy, at each branch that
is one, add 2 times the number of unset variables. When the algorithm running time is pro-
portional to the canonical decision tree, we can calculate the expected time. The expected time
is equal

∑
all settings of x×O(size of the decision tree restricted by lemma). We have random parti-

tioning and random setting so this expectation should be small according to the switching lemma.
The running time of this algorithm is 2n−pn×small tree size. This is the best algorithm for #SAT .

4 PAC learning algorithm for AC0
d circuits

One of the algorithmic uses of the switching lemma is learning depth of formulas using Fourier
Approximation. Switching lemma gives us a lower bound on depth d, unbounded fan-in formulas
and that’s what our algorithm is going to receive here, but instead of receiving the formula, it has
to learn what the formula is. In other words, the algorithm gets access to some device containing
the formula rather than the formula itself.

Definition PAC: Probably approximately correct (ε, δ), is a framework for mathematical analysis
of machine learning. It was proposed in 1984 by Leslie Valiant.[4]

In the training, the algorithm obtains (x1, f(x1)), . . . , (xT , f(xT)) where xi is uniformly random
generated inputs and we have the value of f at these inputs. After seeing a certain number of
random samples, we want to generate the hypothesis that might not look like f , but we want the
probability of success (hypothesis looking like f) to be high. In other words, The goal is that, with
high probability (the ”probably” part), the selected function will have low generalization error (the
”approximately correct” part). The learner must be able to learn the concept given any arbitrary
approximation ratio, probability of success, or distribution of the samples.

Definition Concept class
A concept class is a family of functions over instance space. Examples of concept classes are: DNF
formulas of size poly(n), AC0

d formulas of size poly(n) and p/poly of size poly(n).

Definition Learning algorithm
Learning algorithm A (with underlying probability distribution D on {o, 1}n, fn ∈ Cn) given
samples (x, fn(x)), x drawn randomly from D, A outputs ”hypothesis”, hn : {0, 1}n → {0, 1}. A is
(ε, δ) correct if: ∀fn ∈ Cn, ∀D with probability ≥ (1− δ),

ErrorD = Prx∈D[hn(x) 6= fn(x)] ≤ ε

Ideally, we would like a running time polynomial in 1
ε and the circuit complexity of f , but the

algorithm presented in this class is going to be quasi-polynomial in the parameters. The technique
used is based on the using Fourier representation of Boolean functions and giving an approximation
to the function in the Fourier basis.

3

CS 2401 - Introduction to Complexity Theory Lecture #9: Fall, 2015

Theorem 3 LMN
AC0

d is PAC learnable in quasilinear time in the uniform distribution.

Fourier representation has two ways of representing a function:
True 1 -1
False 0 1

Parity function =

{∑
xi in 0, 1 representation∏
xi in 1, -1 representation

The first one is an algebraic representation and the second one is geometric representation. The
second one is cleaner for parity function because it’s going to be useful when thinking about
functions as polynomials. Here, we switch between two representation. If we view functions as 2n

length vectors over {1,−1}n, we have:
F (x) =< 1 -1 . . . -1 >

F (0 . . . 0) F (0 . . . 1) . . . F (1 . . . 1)

We can think about it as embedded to a 2n-dimensional space. The size of vector is
√∑

x |F (x)| =
2

n
2 , so by multiplying by 1

2
n
2

, we make length equal to 1.

To see how two functions are similar we calculate their dot product.

< ~F , ~G >= ~F . ~G =
1

2
n
2

1

2
n
2

∑
x

F (x)G(x) =

{
1 if F (x) = G(x)

−1 if F (x) 6= G(x)

=
1

2n
[(number of x’s where F (x) = G(x))− (number of x’s where F (x) 6= G(x))]

= [Pr[F (x) = G(x)]− Pr[F (x) 6= G(x)]]

= 1− 2 Pr[F (x) 6= G(x)]

If they are very similar the dot product is close to 1 and if they are ati-correlated the dot
product is close to -1. If there is no correlation between them the dot product is zero. The last
one happens when Pr[F (x) 6= G(x)] = Pr[F (x) = G(x)] = 1

2
In linear algebra, we can look at points under different basis. We can pick any orthonormal

basis which is set of Boolean functions F1, F2, . . . , F2n with < Fi, Fj >= 0 where i 6= j, and do an
orthogonal transformation (this is like a rotation in space).

We define χS =
∏
i∈S xi which is parity function of input x restricted to subset S. These parity

functions are orthogonal because Pr[χS(x) = χT (x)] = Pr(χS4T (x)) = 1
2 . Orthogonality of parity

functions lets us use them for transformation. Therefore, any Boolean function f can be written
as:

∑
S⊆[n] f̂(S)χS where f̂(S) =< f, χS >= 1− 2 Pr[f(x) 6= χS(x)], so f̂(S) measures correlation

between f and parity of x restricted to S.

Corollary 4 of Hastad Switching Lemma

Theorem 5 LMN
∀f ∈ size s AC0

d,
∑
|S|>t f̂

2(S) ≤ ε for t = O(log s
ε)
d−1

4

CS 2401 - Introduction to Complexity Theory Lecture #9: Fall, 2015

AC0
d Learning algorithm:

1. Get estimate f̂(S) of f(S), ∀S ∈ ζ where ζ = {S ⊆ [n]||S| ≤ t}
2. If each estimate is within ε

|ζ| of correct value, then total error for all S ∈ ζ is |ζ|ε|ζ| = ε

3. Let h =
∑

S∈ζ f̂(S)χS output sign(h).
4. Total error (whp) is ≤ ε+ ε

References

[1] S. Nisan and A. Wigderson, Hardness vs randomness, J. Comput. System Sci. 49, 149-167
(1994).

[2] S. GOLDWASSER AND S. MICALI, Probabilistie encryption, J. Comput. System Sci. 28, No.
2 (1984).

[3] A. C. YAO, Theory and applications of trapdoor functions, in ”23rd FOCS, 1982,” pp. 80-91.

[4] L. Valiant. A theory of the learnable. Communications of the ACM, 27, 1984.

5

