
CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #8: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Noah Fleming

1 The Switching Lemma

The aim of this lecture is to show strong lower bounds against a AC0 circuits. In particular, we
are going to show that small AC0 circuits cannot compute the parity function. This will follow
by a depth reduction style argument, where we attempt to reduce the depth of the circuit level
by level, until only a single layer remains. The key to this argument is a prominent tool in circuit
complexity lower bounds known as the switching lemma, originally proven by Hastad [?]. The
switching lemma, allows one to ”switch” CNFs to DNFs and visa versa, by restricting the size of
their underlying decision trees. This is done by applying a restriction to the variables so that the
underlying decision tree of those CNFs or DNFs is not too deep.

Definition Let fn be a boolean function with variables X = {x1, . . . , xn}. A restriction ρ to the
variables of f is an assignment of values to the variables of fn, ρ : X → {0, 1, ∗}, where ∗ denotes
that the variable is left unassigned. We denote fn � ρ to be boolean function fn after ρ has been
applied.

We will let Rl denote the set of all restrictions leaving exactly l variables unassigned. That is,
ρ ∈ Rl assigns exactly l ∗’s. Since we are setting exactly n− l variables,

|Rl| =
(
n

l

)
2n−l.

We will aim to show that after the application of a restriction, with high probability, the depth
of the decision tree computing the restricted function is not too large.

Definition Let fn be a boolean function. A decision tree T for f is binary tree with internal nodes
labeled with the variables of f . A path from the root to a leaf corresponds to an assignment to
the variables labeled at the nodes along the path, where a variable is given an assignment of 0 if
the path proceeds to it’s left child, and 1 if it it visits the right child. Each leaf is labeled 0 or 1
corresponding to the evaluation of f under the truth assignment defined by the path from the root
to that leaf.

The depth of a decision tree is the length of the longest path from the root to a leaf.

We say that a decision tree T represents a boolean function f if for any x ∈ {0, 1}n, the leaf
node at the end of the path in T defined by x is labeled with the value f(x). In particular, we will
be interested in the canonical decision tree representations of CNFs and DNFs.

1

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

Definition The canonical decision tree T (f) for an r-DNF f = t1 ∨ t2 ∨ · · · ∨ tm is a decision tree
constructed as follows:

1. Let t1 be the first term in f and let v0 ∧ v1 ∧ · · · ∧ vk be an ordered list of variables appearing
in t1. Create a depth k decision tree, where each node at level i is labeled with vi.

2. Observe that each path from the root to a leaf l in the previous step defines an assignment
(restriction) to the variables in that term ρl to the variables of f . For each leaf l, if f � ρl = 1
or f � ρl = 0, label the leaf with that constant. Otherwise attach the canonical decision tree
for the restricted formula T (f � ρl) to that leaf.

The canonical decision tree for an r-CNF is constructed analogously.

For example, the canonical decision tree of the 2-DNF f = x1x̄2 ∨ x̄1x3 is:

There is a strong connection between the height of a decision tree for a formula and the size of
it’s corresponding DNF and CNF representations.

Proposition 1 If a decision tree T representing a boolean function f has height r, then f can be
written as both an r-CNF and an r-DNF.

Proof We construct an r-DNF from T as follows. For each leaf l in T labeled 1, let πl be the
conjunction of the variables along the path from the root to l for which the path proceeds to that
node’s right child, and the negation of the variables for which the path proceeds to that node’s left
child. The corresponding DNF for f is then

DNF (f) =
∨

l is labeled 1 in T

πl.

As T has height r, then each path can contain at most r variables; therefore DNF (f) is an r-DNF.
The construction of an r-CNF from T is similar.

The switching lemma gives an upper bound on the probability that, after the application of
a random restriction to a formula, the height of the canonical decision tree remains large. We
call restrictions where the restricted decision tree has too large depth ”bad” for that function.
Precisely, we say that a restriction ρ is bad for f if the canonical tree T (f �ρ) has height greater
than or equal to some constant s. This means that, for such a bad restriction ρ, f �ρ cannot be
converted into a s-DNF or s-CNF. Define the set of all bad restrictions for f ,

Badf (l, s) = {ρ ∈ Rln|T (f �ρ), has height ≥ s}.

2

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

Lemma 2 (Hstad’s Switching Lemma [1]) Let f be an r-DNF and s be a positive integer, then

Prρ∼Rl
n
(T (f � ρ) has height ≥ s) ≤ (8pr)s

where ρ ∼ Rln denotes ρ being chosen uniformly at random from Rln.

Proof We will begin by showing that to prove the lemma, it suffices to prove that

|Badf (l, s)| ≤ |Rl−sn |(2r)s.

Observe that the probability of choosing a bad restriction from the set of restrictions is

|Badf (l, s)|
|Rln|

≤ |R
l−s
n |(2r)s|
|Rln|

=

(
n
l−s
)
2n−l+s(

n
l

)
2n−l

(
2r
)s

=
n!(n− l)!l!(2r)s2s

(n− l + s)!(l − s)!n!
≤

(
l

n− l

)s(
4r
)s
.

Letting l = pn gives (
pn

n− pn

)s(
4r
)s

=

(
p

1− p

)s(
4r
)s
≤ (8pr)s

for p ≤ 2/3.
We now focus on proving that |Badf (l, s)| ≤ |Rln|(2r)s. The proof will be by a coding argument

by Razborov [7]. The idea is that to prove that some set is not very large, we create a one-to-one
mapping into another set which is already known to be small. To do this, we will create a function
which ”encodes” bad restrictions as elements of Rl−sn plus some extra information, and give a way
to recover these ”encoded” bad restrictions, proving that the map is indeed one-to-one.

Encoding

Fix some bad restriction ρ ∈ Badf (l, s) to f , and let t1, . . . , tk be the terms remaining in f �ρ; fix
an ordering on the variables in each of these terms. Because ρ is a bad restriction, the canonical
decision tree T (f �ρ) must have height at least s. Let π be the left most path in T (f �ρ) which has
height at least s. If necessary, truncate the path π so that it has length exactly s. We will think
of π as a restriction.

We will segment π into π1, . . . , πq sub-restrictions. We define πi to be the assignment to the
variables queried along path π for term ti, which were not queried for any of the previous terms
tj , j < i. That is, πi defines the assignments along the path π which have not yet been assigned in
π �ρπ1...πi−1 . For each πi, let σi be the unique restriction to the same variables considered in πi which
sets ti �ρπ1...πi−1σi to 1. The final assignment πq may not set all of the variables in its corresponding
term tq (because we truncated the height of the path to be exactly s). To accommodate this, let
σq be the restriction to the variables which restricts the same variables as πq and agrees with the
1 assignment to tq. Therefore, we have that π = π1π2 . . . πq.

We now describe the extra bits we will need in order to retrieve the encoded bad restrictions.
Let γ be this string of extra bits; we will construct γ as follows. For 1 ≤ i ≤ q, let ti be the term
in f �ρ from which we constructed πi and σi. For each variable in ti which πi sets, append to γ the
index of that variable and a bit representing whether πi set that variable to 0 or 1. This requires

3

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

at most |σi|(log s + 1) bits per restriction, and because π restricts at most r variables, the total
length of these extra bits is at most r(log s+ 1).

Therefore our encoding function will be

δ : ρ→ (ρσ1σ2 . . . σq, γ).

Figure 1: The canonical decision tree T (f �ρ) labeled with π1 . . . πq and σ1 . . . σq.

Decoding

Our goal is to show that the function δ which we have constructed is one-to-one. To do this,
it is enough to show that we can reconstruct any bad restriction ρ given it’s encoding δ(ρ) =
(ρσ1σ2 . . . σq, γ) and the original boolean function f . To retrieve ρ perform the following process:

1. Apply the restriction ρσ1σ2 . . . σq to f . We can recover the term associated with σ1 by noting
that it will be the first term of f �ρσ1σ2...σq which is not set to 0. This is we have assumed
that f �ρ is not the constant 1 function, and each of the σi set their corresponding terms to
1; this term will be t1.

2. Use the first |σ1| log(r + 1) bits in the auxiliary bits δ in order to recover the restrictions
σ1 and π1. We can determine which bits these are, by examining the variables appear t1.
We may then remove the restriction σ1 in f �ρσ1σ2...σq by using the information about which
variables were assigned by σ1 in order to un-set them.

3. Repeat steps 1 through 3 with f �ρσ1σ2...σq replaced with f �ρσ2σ3...σq , unless ρ has been fully
decoded.

This process will allow us to recover π1, . . . , πq, σ1, . . . , σq, and in particular the original restriction
ρ. Observe that the restrictions ρσ1 . . . σq belong to Rl−sn because they restrict exactly l − s
variables. Therefore the encoding function δ which we have constructed is one-to-one.

4

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

2 AC0 Circuit Lower Bounds

The switching lemma allows us to prove strong lower bounds on a class of circuits known as AC0

circuits.

Definition The complexity class AC0 is the class of all decision problems computable by families
of circuits with constant depth and unbounded fanin ∨ and ∧ gates, and ¬ gates occurring only at
the leaves.

Such constant depth unbounded fanin circuits are known as AC0 circuits. Taking any such constant
depth circuit and duplicating the nodes with fanout greater than 1, we can assume that each node
has fanout at most 1. Combining similar gates, and introducing dummy gates, we can assume that
each constant depth circuit has the following form.

Proposition 3 If C is a depth-d circuit of size M computing some function f , then C can be
converted to a depth-d circuit such that

• All of the negations occur at the inputs.

• Every gate has fanout 1 except for the input gates.

• The circuit is composed of alternating levels of unbounded-fanin AND and OR gates.

• The number of gates is at most (4M)2d.

Note that because AC0 circuits are of constant depth, applying proposition 3 incurs only a
polynomial blowup in the number of gates. The switching lemma allows us to simplify a circuit
by applying random restrictions to it, therefore in order to prove our desired AC0 lower bound, we
look for a function which is very robust, and therefore cannot be simplified in this way.

Definition The parity function Parityn takes as input n bits and computes their mod 2 sum

Parityn(x1, . . . , xn) = (x1 + · · ·+ xn) mod 2.

It is simple to see that the parity function cannot be computed without knowing the value of
all of its inputs. In particular, this implies the parity function requires a canonical decision tree of
depth n, as it must query the value of each of the inputs in order to compute Parityn.

By the switching lemma and proposition 1 we know that with high probability, under a random
restriction, any small-width DNF can be simplified into a low-height decision tree, which in turn
can be expressed as a small-width CNF, and visa versa. Therefore, the switching lemma allows us
with high probability to ”switch” a small-width DNF in to a small-width CNF. The key idea is to
swap adjacent CNFs and DNFs and then merge the resulting adjacent similar gates. We will use
this together with the robustness of the Parityn function in order to prove a contradiction.

Lemma 4 Let f be a boolean function computed by a depth d AC0 circuit with M gates. Let
ρ ∈ Rpn be a restriction with p = 1

16s , then

Pr[T (f �ρ) has height > s] ≤M2−s

5

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

Proof Let C be a depth d size M AC0 circuit computing the function f . By the proposition 3,
we can assume that the circuit is composed of alternating levels of ∨s and ∧s. Without loss of
generality, assume that the gates on the first level (next to the inputs) are ∨ gates; a symmetric
argument to the one we will give holds for the case when they are ∧ gates. We will think of each
of these ∨ gates as a 1-DNF; that is, we will introduce a ∧ gate in between the input variable and
the corresponding ∨ gate. This only increases the depth by 1, and is necessary to ensure that the
width of the DNFs to which we apply the switching lemma is bounded.

The goal is now to apply the switching lemma so that the probability of being unable to convert
to each 1-DNF to an s-CNF is bounded above by 2−s. To this end, we set the parameters of lemma
2 which we will be using for the remainder of this proof as follows; let

s = r = n1/d/16,

p =
l

n
=

1

16r
.

By the switching lemma with these parameters, the probability that each of the 1-DNFs on the
first level has a canonical decision tree of depth greater than s is at most 2−s. If m1 is the number
of gates on level 1, then the probability that all of the 1-DNFs on this level, after a random
restriction, have decision tree height greater than s is bounded above by m12

−s by the union
bound. In particular, by the probabilistic method, this implies that there is a restriction under
which all of the 1-DNFs on the first level have height at most s. Applying this restriction, we can
transform each of the 1-DNFs in to an s-CNF. After doing so, we merge the resulting adjacent
similar gates. An example of this can be seen in figure 2

(a) Before (b) After

Figure 2: The effect of an application of the switching lemma to a layer of DNFs. After application,
the top two laters can be compacted into a single layer.

We apply the same argument for the s-CNFs at level 2, ”switching” them with s-DNFs, and
again reducing the depth. If we repeat this process d− 1 times, this would result in a decision tree
of height at most s for f . If each level i contains at mi gates, then the probability that we are
unable to convert to such a depth s decision tree would be bounded above by

(m1 +m2 + · · ·+md−2)2
−s ≤M2−s.

Any restriction of parity is either parity or its negation. As we have noted above, any decision
tree requires the maximal number of queries to its variables in order to compute Parityn. In order
to obtain our lower bound, we will use this fact to show that if the size of our original circuit C
computing parity was small, then under the random restrictions of lemma 4 we can obtain a small

6

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

depth decision tree computing a restriction parity on less than the number of remaining variables.
As any restriction of Parityn is parity or its negation on fewer variables, then this would be a
contradiction, and the original circuit C could not have computed Parityn.

Theorem 5 Parityn cannot be computed by AC0 circuits of size less than 2
n1/d

16 .

Proof Suppose C is a size M depth d AC0 circuit computing Parityn. Moreover, assume C has
the form of proposition 3. By corollary 4, there exists a restriction ρ such that f � ρ has a decision
tree of height at most s with probability at least 1−M2−s. In order to obtain this result, we want
to set the parameters M and s = r so that the number of remaining variables is more than the
height s of the resulting decision tree after the restriction ρ.

In lemma 4, each random restriction leaves l = pn variables unset. As we are applying d − 1
restrictions, the number of remaining variables is pd−1n. In order to ensure that the number of
remaining variables is greater than the height of the resulting decision tree, we need to set s so
that

pd−1n > s.

In corollary 4, we set p = 1
16s . Substituting this in,

1

(16s)d−1
n > s,

n1/d

161−1/d
> s.

Therefore, we set s = r = n1/d

16 . In order to ensure that such a restriction exists. By corollary 4 we
require that

M2−s < 1,

M < 2
n1/d

16 .

If this holds, then there exists a restriction ρ to C, such that the resulting canonical decision tree has
height s < pd−1n. Therefore, as any restriction of Parityn is parity or its negation, by assumption
this restricted circuit would be computing parity on pd−1n input variables. But as the canonical
decision tree queries only at most s variables, less than the total number of the variables, this
must be a contradiction because the parity function depends on all of its variables. Therefore, the

original circuit cannot C cannot be computing Parityn, and so we require that M ≥ 2
n1/d

16 .

By a slight adjustment of the parameters, we can obtain an even stronger result. Namely that
no small AC0 circuit can correlate with Parityn with probability more than one half plus an inverse
exponential.

Theorem 6 Let C be a size M depth d AC0 circuit on n variables, M ≤ 2n
1/d/32. Then

Prx∼{0,1}n [Cn(x) = Parityn(x)] ≤ 1

2
+ 2−s/2,

7

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

Proof To begin, observe that any function f which can be computed by a decision tree of height
s < n has correlation

Prx∼{0,1}n [f(x) = Parityn(x)] =
1

2
.

This is because any path of the decision tree can query at most s < n variables. We know
that in order to correctly compute parity, we must query all n of the variables. To any path of the
decision tree, there are an equal number of extensions to that path which set the function to even
and odd.

Suppose that

Prx∼{0,1}n [Cn(x) = Parityn(x)] >
1

2
+ 2−s/2.

The idea of the proof will be to use the above fact, and to set our parameters in such a way that
when applying a restriction to C using lemma 4, a large fraction of the restrictions will result in a
height s < n decision tree. We will use this in order to upper bound the correlation of the circuit
C with parity function marginalized over a set of restrictions, and show that this contradicts our
initial assumption.

To this end, set M2−s ≤ 2−s/2, as we want a large fraction of restrictions to restrict the tree to
height < s. therefore, we require that M ≤ 2s/2 = 2n

1/d/32. We know that after an application of
any restriction ρ given by lemma 4 pd−1n variables will be left left unset. Marginalizing over the
restrictions which set k = 1− pd−1n variables,

Prx∼{0,1}n [Cn(x) = Parityn(x)] = E
ρ∈{0,1}k

[Pr[f �ρ (x) = Parity �ρ (x)]]

=
∑

ρ∈{0,1}k
Pr[f(x) = Parityn(x)|(xi1, . . . , xik) = ρ] Pr

ρ∈{0,1}k
[ρ]

=
∑

ρ∈{0,1}k
Pr[f �ρ (x) = Parityn �ρ (x)]

1

2k
. (1)

Where xi1, . . . , xik are the k variables set by the restriction ρ. Now because we set M2−s ≤ 2−s/2,
at least a 1− 2−s/2 fraction of the 2k restrictions will result in a decision tree of height at most s.
Using this fact, and upper bounding the remaining probabilities by 1, we can rewrite equation 1 as∑

ρ∈{0,1}k
Pr[f �ρ (x) = Parityn �ρ (x)]

1

2k
=
[
2k(1− 2−s/2)(1/2) + 2k(2−s/2)(1)

] 1

2k
,

=
1

2
+ 2−s/2−1.

This contradicts our original assumption, as

1

2
+ 2−s/2−1 <

1

2
+ 2−s/2.

8

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

3 Applications of the AC0 Parity Lower Bound

• Fourier Concentration The Fourier expansion of a boolean function is it’s representation
as a low-degree polynomial. Using Hastad’s switching lemma 2, Linial, Mansour, and Nisan
[4] prove that the Fourier expansion of any function in AC0, has all of it’s larger coefficients
concentrated on it’s low order Fourier coefficients; AC0 functions can be approximated by
low degree polynomials.

• Pseudo-Random Generators for AC0 Derandomization studies the possibility of re-
moving or reducing the amount of randomization used by randomized algorithms while still
maintaining their efficiency and correctness. Nisan and Wigderson [5] use the correlation
lower bound, theorem 6 above, to show that the randomized analogues of AC0, RAC0 and
BPAC0, can be de-randomized in poly-logarithmic space and quasi-polynomial time.

• AC0-Circuit SAT and #-SAT Algorithms In lecture 2 we studied the Circuit Satisfiabil-
ity problem. We can consider a restricted domain of this problem and define the AC0-Circuit
SAT problem; given an AC0 circuit, determine whether there exists an input x which evalu-
ates that circuit to 1. In [2] Impagliazzo, Matthew and Paturi show that Hastad’s switching
lemma 2 can be used in order to give a non trivial algorithm for AC0-Circuit SAT. Their
technique also implies an algorithm for the much harder problem #AC0-SAT of determining
the number of inputs x which satisfy a given AC0 circuit.

• Compression Algorithms for AC0 Given the truth table representation of a boolean
function f which can be computed by some unknown small circuit of a known circuit class,
the compression problem is to find, in time 2cn for c > 0, a circuit computing f of size less than
the trivial size 2n/n circuit. Using a modification of the switching lemma 2, Kabanets and
Kolokolova [3] are able to obtain such a compression algorithm for AC0 circuits. Moreover,
they show that their compression results can be extended to get non-trivial #SAT algorithms.
These #SAT algorithms agree with the AC0-#SAT algorithms [2] mentioned above.

• AC0-Frege Lower Bounds Proof Complexity studies the lengths of proofs of propositional
tautologies. Originally proposed as an approach to separating NP from coNP, proof com-
plexity formalizes the structure of these propositional proofs in terms of proof systems which
specifies the rules of inference that we allow in a proof. AC0-Frege is a proof system in which
we each line of the proof can be expressed as an AC0 circuit. Pitassi, Beame and Impagliazzo
[6] prove exponential lower bounds for AC0-Frege by proving an analogous switching lemma
in the space of bipartite matchings. Urquhart and Fu [8] give a simplified proof of this result.

References

[1] J. Hastad, Computational limitations for small depth circuits, PhD thesis, MIT, 1986.

[2] R. Impagliazzo, W. Matthews, and R. Paturi, A satisfiability algorithm for ac0, in Pro-
ceedings of the Twenty-third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’12, SIAM, 2012, pp. 961–972.

9

CS 2401 - Introduction to Complexity Theory Lecture #8: Fall, 2015

[3] V. Kabanets and A. Kolokolova, Compression of boolean functions, Electronic Colloquium
on Computational Complexity (ECCC), 20 (2013), p. 24.

[4] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, fourier transform, and
learnability, J. ACM, 40 (1993), pp. 607–620.

[5] N. Nisan and A. Wigderson, Hardness vs randomness, Journal of Computer and System
Sciences, 49 (1994), pp. 149 – 167.

[6] T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower bounds for the pigeonhole
principle, Computational Complexity, 3 (1993), pp. 97–140.

[7] A. A. Razborov, Bounded arithmetic and lower bounds in boolean complexity, in Feasible
Mathematics II, Birkhauser, 1993, pp. 344–386.

[8] A. Urquhart and X. Fu, Simplified lower bounds for propositional proofs, Tech. Rep. TR-
293-95, University of Toronto (CA), 1995.

10

