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1 Error amplification

1.1 Review of last class

Definition A language L € BPP if there exists a PTM M and a polynomial p such that M is

polytime in |z| and:

Ve e L PTT,\T|:p(|x\)<M(x7T> = 1)

v
Wl — Wl

Vz §7_f L Prr,\r|:p(|:p\)<M($ar) = 1)

IN

Definition A language L € RP if there exists a PTM M and a polynomial p such that M is

polytime in |z| and:

Ve € L Prr,\r|:p(|x\)(M(x7T) = 1)
Veg L Pryjp=p(a)(M(z,7) = 1)

[V
S Wl

1.2 Error amplification

Theorem 1 Let L be a language such that there is a PTM M such that:

Vx e L PTT’|T‘:p(|$|)(M(ZE, 1") = 1) >n"°
Vo & L PT’T’|T‘:p(|$|)(M($, r)=1)=0

Then for every d > 0 there is a polytime PTM M’ such that:

Vo € L PT’T7|T‘:p(|x|)(M,(:U,7‘) = 0)
(M (2,1) = 1)

IN

1
ond
0

Ve g L Pryjr=p(q|

Proof
The main idea is to construct a new PTM M'(x,r’), where |r/| =k - r.

We need to divide r into k equal size pieces: 71, ...,7,. Thenrun M for every r;: M(z,r1),..

We have two options:
e If any M(x,r;) outputs 1, then M’ outputs 1

e otherwise M’ outputs 0

. 7M(:I:ark)‘
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Therefore:
1
Ve e L PTT7|T|:p(‘x|)(M/({L‘, T’/) = 0) < 27
Vo ¢ L PTT7|T|:p(‘x|)(M/({L‘, T’/) = 1) =0

Finally, we just need to pick & = n? and we are done.
O

Theorem 2 Let L be a language and suppose that there exists a poly-time PTM M such that:

1 —c
Ve e L PT‘T7|T‘:p(|z|)(M(aZ,’F) = L(.T)) > 5 + ‘$|

Then for every d > 0 there is a polytime PTM M’ such that:

Vi € L Prypiep(epy (M (2,7) = L(z)) > 1+ 27"
Proof
Main idea: create a PTM M’ by running M k times. We accept if the majority of the outputs
are 1, otherwise we reject. First, we divide r into k equal size pieces: r1,...,7r. Then run M for
every r; and name the outputs y1, ..., yx.

Lets define the random variable X; as:

10 o.w

Note that X1,..., X} are independent boolean random variables and that:

B(X) = P(Xi =1) 2 = + la|

[\)

To continue with our proof we are going to used the Chernoff Bound:
Let X1,...,X, be independent and identically distributed random variables with expected value

p. Then:
Pr (

k
> Xi - pk
=1

_52
> 0pk | < e a Pk

In our problem we have that p = § + [z — |7, We can use § = |z[7¢/2 and k = 8|z[***
Therefore, the probability we output the wrong answer is:

l8|x‘23+d

k
1 1 1
Pr(l P Xi>2+|x—|_c> < T <o
X
i=1
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2 BPP and P\poly

Definition A language L is in P\poly if it can be computed by a family of circuits C' =
{C1,Cy, ...}, where |C;] is polynomial in i. C; accepts exactly the string in L of length i.

Theorem 3 L € BPP = L € P\poly

Proof Let L € BPP.
By error amplification, IM'(z,r), V|z| = n and |r| = m (m > n) such that:

Ve, |z =n Pr(M'(z,r) # L(z)) < 9—(n+1)

We will say that r is bad for x if M (z,r) # L(x).

For every z, the number of bad strings r is less or equal to:

om
2n+1

So there is at most k r that are bad for some z, where:

2m 2m
n
k_2'2n+1_2

In other words, at least 2™ — % choices of r are good for every x. So lets pick a r that is good
for every z of length n, r*. We can use r* to create a circuit C' for L on inputs of length n that
outputs M (x,r*). Therefore, our circuit C' will satisfy C(z) = L(z) for every z € {0,1}".

O
Note: We can’t have L € P because we need a different r* for each = of length n. In other
words, we can’t find in polytime an r* that is good for all x.

Theorem 4 L € BPP = L € ¥}

Proof Following the previews proof:

Vee L = Pr(M'(z,r)=1)>1-2""
Veg¢ L = Pr(M(z,r)=1)<27"

Lets fix z. Then M is defining a set S, where S, is a set of r such that M accepts (z,r). We
have two options:

e |Sy| > (1—27")-2™ (Huge set)
o |Sy| < 2™ (very small)

We want to distinguish between this two possibilities. To do that we are going to define a shift:
let S C{0,1}™ and u C {0,1}™, then S + u represent the shift of S by u.
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Example
1011 0101
1000 0110
S = 0110 u = [1110] S+u= 1000
1101 0011

We are going to use two claims to prove the theorem.

Claim 5 VS C {0, 1} |S| < 2™ and every k vectors uq,...,ux (k=m/(n+1)):

k
(S +w) # {0, 13™
=1
Proof
F m
U +uw)| <k-2m = (—+12""
=1

Claim 6 VS C {0,1}™ |S| > (1 —27™)2™ Juy,...,ur (k=m/(n+ 1)) such that:
k
U +u) = {0,137
i=1
Proof For 7 € {0,1}" let B, be the event that r ¢ (JF_, (S + u;). We will show that:
Vr Pr(B,) <2™™

Therefore, there exists a vector uq,...,u; that is good for all r. Lets write B, as:

where B! is the event that r ¢ S + w;, which is equivalent to r +u; ¢ S.

For each r we are going to count the total number of uy, ..., u; that are bad for r.For a random

u;, v = u; is uniform in {0,1}"™. So:
Pr(r=u;€8)>1-2" because |S| = (1 —27")2™
So Pr(B,) < (20 —n))*. Summing over all 7:
number of bad vectors = 27"*2™ = g=(m/n+1)gm _ ogn

Finally, Juy, ..., u; good for all r.
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Now, with claim 5 and 6 we have that:

k
rx €L < Juy,...,uVre{0,1}™ (\/M(m,r—i—ui))
i=1

Summary:
LCNLCPCRPCBPPCYLCPHCEXP



