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1 Error amplification

1.1 Review of last class

Definition A language L ∈ BPP if there exists a PTM M and a polynomial p such that M is
polytime in |x| and:

∀x ∈ L Prr,|r|=p(|x|)(M(x, r) = 1) ≥ 2
3

∀x /∈ L Prr,|r|=p(|x|)(M(x, r) = 1) ≤ 1
3

Definition A language L ∈ RP if there exists a PTM M and a polynomial p such that M is
polytime in |x| and:

∀x ∈ L Prr,|r|=p(|x|)(M(x, r) = 1) ≥ 2
3

∀x /∈ L Prr,|r|=p(|x|)(M(x, r) = 1) = 0

1.2 Error amplification

Theorem 1 Let L be a language such that there is a PTM M such that:

∀x ∈ L Prr,|r|=p(|x|)(M(x, r) = 1) ≥ n−c

∀x /∈ L Prr,|r|=p(|x|)(M(x, r) = 1) = 0

Then for every d > 0 there is a polytime PTM M ′ such that:

∀x ∈ L Prr,|r|=p(|x|)(M
′(x, r) = 0) ≤ 1

2nd

∀x /∈ L Prr,|r|=p(|x|)(M
′(x, r) = 1) = 0

Proof
The main idea is to construct a new PTM M ′(x, r′), where |r′| = k · r.

We need to divide r into k equal size pieces: r1, . . . , rk. Then runM for every ri: M(x, r1), . . . ,M(x, rk).
We have two options:

• If any M(x, ri) outputs 1, then M ′ outputs 1

• otherwise M ′ outputs 0
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Therefore:

∀x ∈ L Prr,|r|=p(|x|)(M
′(x, r′) = 0) ≤ 1

2k

∀x /∈ L Prr,|r|=p(|x|)(M
′(x, r′) = 1) = 0

Finally, we just need to pick k = nd and we are done.
�

Theorem 2 Let L be a language and suppose that there exists a poly-time PTM M such that:

∀x ∈ L Prr,|r|=p(|x|)(M(x, r) = L(x)) ≥ 1
2

+ |x|−c

Then for every d > 0 there is a polytime PTM M ′ such that:

∀x ∈ L Prr,|r|=p(|x|)(M
′(x, r) = L(x)) ≥ 1 + 2−nd

Proof
Main idea: create a PTM M ′ by running M k times. We accept if the majority of the outputs

are 1, otherwise we reject. First, we divide r into k equal size pieces: r1, . . . , rk. Then run M for
every ri and name the outputs y1, . . . , yk.

Lets define the random variable Xi as:

Xi =
{

1 if yi = L(x)
0 o.w

Note that X1, . . . , Xk are independent boolean random variables and that:

E(Xi) = P (Xi = 1) ≥ 1
2

+ |x|−c

To continue with our proof we are going to used the Chernoff Bound:
Let X1, . . . , Xn be independent and identically distributed random variables with expected value

p. Then:

Pr

(∣∣∣∣∣
k∑

i=1

Xi − pk

∣∣∣∣∣ > δpk

)
< e−

−δ2
4

pk

In our problem we have that p = 1
2 + |x − |−c. We can use δ = |x|−c/2 and k = 8|x|2d+c.

Therefore, the probability we output the wrong answer is:

Pr

(
1
|x|

k∑
i=1

Xi >
1
2

+ |x− |−c

)
< e
− 1

4|x|−2c
1
2
8|x|2c+d ≤ 2−nd

�
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2 BPP and P\poly

Definition A language L is in P\poly if it can be computed by a family of circuits C =
{C1, C2, . . . }, where |Ci| is polynomial in i. Ci accepts exactly the string in L of length i.

Theorem 3 L ∈ BPP ⇒ L ∈ P\poly

Proof Let L ∈ BPP.
By error amplification, ∃M ′(x, r), ∀|x| = n and |r| = m (m > n) such that:

∀x, |x| = n Pr(M ′(x, r) 6= L(x)) ≤ 2−(n+1)

We will say that r is bad for x if M(x, r) 6= L(x).

For every x, the number of bad strings r is less or equal to:

2m

2n+1

So there is at most k r that are bad for some x, where:

k = 2n · 2m

2n+1
=

2m

2

In other words, at least 2m− 2m

2 choices of r are good for every x. So lets pick a r that is good
for every x of length n, r∗. We can use r∗ to create a circuit C for L on inputs of length n that
outputs M(x, r∗). Therefore, our circuit C will satisfy C(x) = L(x) for every x ∈ {0, 1}n.

�
Note: We can’t have L ∈ P because we need a different r∗ for each x of length n. In other

words, we can’t find in polytime an r∗ that is good for all x.

Theorem 4 L ∈ BPP ⇒ L ∈ Σp
2

Proof Following the previews proof:

∀x ∈ L ⇒ Pr(M ′(x, r) = 1) ≥ 1− 2−n

∀x /∈ L ⇒ Pr(M ′(x, r) = 1) ≤ 2−n

Lets fix x. Then M is defining a set Sx where Sx is a set of r such that M accepts (x, r). We
have two options:

• |Sx| ≥ (1− 2−n) · 2m (Huge set)

• |Sx| ≤ 2m−n (very small)

We want to distinguish between this two possibilities. To do that we are going to define a shift :
let S ⊆ {0, 1}m and u ⊆ {0, 1}m, then S + u represent the shift of S by u.
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Example

S =


1011
1000
0110
1101

 u = [1110] S + u =


0101
0110
1000
0011


We are going to use two claims to prove the theorem.

Claim 5 ∀S ⊆ {0, 1}m |S| ≤ 2m−n and every k vectors u1, . . . , uk (k = m/(n+ 1)):

k⋃
i=1

(S + ui) 6= {0, 1}m

Proof ∣∣∣∣∣
k⋃

i=1

(S + ui)

∣∣∣∣∣ ≤ k · 2m−n = (
m

n
+ 1)2m−n

�

Claim 6 ∀S ⊆ {0, 1}m |S| ≥ (1− 2−n)2m ∃u1, . . . , uk (k = m/(n+ 1)) such that:

k⋃
i=1

(S + ui) = {0, 1}m

Proof For r ∈ {0, 1}m let Br be the event that r /∈
⋃k

i=1(S + ui). We will show that:

∀r Pr(Br) < 2−m

Therefore, there exists a vector u1, . . . , uk that is good for all r. Lets write Br as:

Br =
k⋂

i=1

Bi
r

where Bi
r is the event that r /∈ S + ui, which is equivalent to r + ui /∈ S.

For each r we are going to count the total number of u1, . . . , uk that are bad for r.For a random
ui, r = ui is uniform in {0, 1}m. So:

Pr(r = ui ∈ S) ≥ 1− 2n because |S| = (1− 2−n)2m

So Pr(Br) ≤ (2( − n))k. Summing over all r:

number of bad vectors = 2−nk2m = 2−n(m/n+1)2m = 2n

Finally, ∃u1, . . . , uk good for all r. �
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Now, with claim 5 and 6 we have that:

x ∈ L⇔ ∃u1, . . . , uk ∀r ∈ {0, 1}m
(

k∨
i=1

M(x, r + ui)

)

�

Summary:
L ⊆ NL ⊆ P ⊆ RP ⊆ BPP ⊆ Σp

2 ⊆ PH ⊆ EXP

5


