
CS 2401 - Introduction to Complexity Theory Lecture #5: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #5: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Ken Hoover

1 Review - Space Bounded Languages

• Previously covered L, NL, PSPACE, NPSPACE

– A language L is in SPACE(s(n)), where s : N → N, iff there is a deterministic TM M
deciding L such that, on any input of length n, M ’s tape head visits at most c · s(n)
cells over all non-input tapes, where c is a constant

– Similarly, L ∈ NSPACE(s(n)) iff there is a non-deterministic TM M deciding L such
that, on any input of length n and for any possible sequence of configurations, M ’s tape
head visits at most c · s(n) cells over all non-input tapes

– Saw that L ⊆ NL ⊆ P ⊆ PSPACE ⊆ NPSPACE

• Introduced TQBF, the problem of determining the truth of quantified boolean formulas, i.e.
boolean formulas of the form

Q1x1Q2x2 . . . Qnxnφ(x1, x2, . . . , xn),

where Qi ∈ {∀, ∃}

– Showed that TQBF is complete for PH, the polynomial time hierarchy, and that for any
level of the hierarchy, a version of TQBF where the number of quantifiers is restricted
is complete

– Showed that TQBF ∈ PSPACE

2 TQBF is PSPACE-complete

We aready showed that TQBF ∈ PSPACE last class, by observing that we can express the validity
of a TQBF using a recursive algorithm, where the maximum depth of the recursion is n, the number
of variables quantified over, and the space used at each level is O(m), where m is the size of the
formula.

Continuing from this, we show that we can create a QBF from a TM M deciding a language
L in space s(n) and an input x, using a polynomial amount of space, which is true iff the accept
configuration of M is reachable from the initial configuration of M on x.

Theorem 1 TQBF is PSPACE-hard.

1

CS 2401 - Introduction to Complexity Theory Lecture #5: Fall, 2015

Proof Suppose L ∈ PSPACE. We shall prove that there is a QBF φL such that x ∈ L ⇔
〈φL(x) is true〉. Suppose M is an s(n)-space TM that decides L, where s(n) is a polynomial. We
can define the configuration graph GM,n of M on inputs of length n; this graph has size 2c·s(n), as
shown last class. We next define φM,n(y,y′), which is true iff y and y′ encode configurations of M
and running M for a single step from configuration y can yield configuraton y′. Note that φM,n is
poly-sized in n, due to locality of computation.

To determine whether or not we can reach an accept configuration from the initial configu-
ration on GM,n, we use the path-splitting algorithm for STCON. We first try to inductive define

φM,n
i (y,y′), which we want to be true iff there is a path of length at most 2i from configuration y

to configuration y′, as follows:

φM,n
0 (y,y′) =

(
(y = y′) ∨ φM,n(y,y′)

)
(1)

φM,n
i (y,y′) = ∃y′′

(
φM,n
i−1 (y,y′′) ∧ φM,n

i−1 (y′′,y′)
)
. (2)

The intuition behind this definition is, if there is a path of length at most 2i from s to t in a graph,
then there must be a vertex v on the path (possibly one of the end-points) such that there is a
path from s to v and a path from v to t, where each of those paths has length at most 2i−1.

However, this definition has a problem. Namely, each level of the induction doubles the size
of the formula. So, in particular, if there are s(n) levels, then after unwinding the induction,
the formula will have length O(2O(s(n))). The problem here is, we aren’t fully using the power of
quantification. If instead of encoding φM,n

i−1 twice, we instead used quantification to reuse a single

encoding, then the final formula would have length polynomial in n. Namely, if we define φM,n
i

instead as

φM,n
i (y,y′) = ∃y′′∀z1∀z2

(((
z1 = y ∧ z2 = y′′

)
∨
(
z1 = y′′ ∧ z2 = y′

))
⇒ φM,n

i−1 (z1, z2)
)
, (3)

then since each configuration can be written as a binary vector using O(s(n)) bits, we have∣∣∣φM,n
i

∣∣∣ = O(s(n)) +
∣∣∣φM,n

i−1

∣∣∣ . (4)

And since
∣∣∣φM,n

0

∣∣∣ is poly-sized in n, say O(f(n)), we have that
∣∣∣φM,n

i

∣∣∣ is in O(f(n) + i ·s(n)), which

remains polynomial in n so long as i is bounded above by a polynomial. In particular,
∣∣∣φM,n

s(n)

∣∣∣ is

poly-sized in n. Also note that, since the configuration graph has at most 2s(n) vertices, any path
connecting two vertices, without loops, must have length at most 2s(n). So, if the new definition is
correct, then since M only accepts an input x iff there is a path from the initial configuration of
M on x to an accepting configuration, we’ll have that M accepts x iff φM,n

s(n) is true on the initial
configuration and some accepting configuration.

As for why this new definition remains correct, suppose it is true on inputs y and y′. Then, in
particular, there is some configuration y′′ such that φM,n

i−1 (y,y′′) and φM,n
i−1 (y′′,y′) are true, following

from the cases of z1 = y ∧ z2 = y′′ and z1 = y′′ ∧ z2 = y′. But then the old definition is true as
well. Similarly, suppose the old definition is true on y and y′. Then we know there is some y′′ such
that φM,n

i−1 (y,y′′) and φM,n
i−1 (y′′,y′) are true, and so in the second definition, when z1 = y∧ z2 = y′′

or z1 = y′′ ∧ z2 = y′, we have that φM,n
i−1 (z1, z2) is true. Thus the new definition is also true.

2

CS 2401 - Introduction to Complexity Theory Lecture #5: Fall, 2015

If we let ϕ(y) be a boolean formula which is true iff configuration y is an accepting configuration
– which exists and is poly-sized in |y| – and if we let c0(x) be the initial configuration of M on
input x, computable in polyspace, then we finally have that

x ∈ L ⇔ ∃y
(
ϕ(y) ∧ φM,n

s(n)(c0(x),y)
)
, (5)

where the right hand side is a TQBF constructible in space and of size polynomial in n. Thus any
language in PSPACE is reducible to an instance of TQBF.

Something to note about this proof; nowhere did we actually need the assumption that M was
deterministic, i.e. that each vertex in the graph had out-degree 1. Thus, the proof also works to
show that TQBF is NPSPACE-hard, and thus that PSPACE = NPSPACE.

3 Results in Space Complexity

As it turns out, the STCON problem comes up very often in the analysis of space complexity. This
makes sense; any language can be reduced to an STCON problem on the configuration graph of some
TM deciding it. Savich’s Theorem, relating non-deterministic space complexity to deterministic
space complexity, is an example of using this fact.

Theorem 2 (Savich′s Theorem)

NSPACE(s(n)) ⊆ SPACE(s(n)2)

Proof Sketch The rough idea is to show that STCON on an N node graph is solvable using
c · log2N space, in a deterministic way. Thus, since the configuration graph of any TM M using
c · s(n) space has 2c·s(n) vertices, showing STCON on that graph is computable in log2(2c·s(n)) =
c2 · s(n)2 space puts the language in SPACE(s(n)2).

Alternatively, this can be stated as the problem of finding the (s, t) entry of (A + I)N , the
adjacency matrix of the configuration graph plus the identity matrix, using deterministic log2N
space; A + I itself is the adjacency matrix of the configuration graph with an added self-edge for
every vertex. Note that any entry (k, j) in (A + I)N is non-zero iff there is a path from k to j in
the graph of length at most N ; this follows from (A+ I)N = AN +AN−1 + . . .+A+ 1, where for
each entry (x, y) in each Ai, Ai

x,y is non-negative, and zero iff there is no path of length exactly i
from x to y.

Another result, this one rather surprising, is that NL = coNL. This is due indepenedently to
Immerman and Szelepcsényi, and generalises to NSPACE(s(n)) = coNSPACE(s(n)) for s(n) ≥ log n
via padding.

Theorem 3 (Immerman− Szelepcsényi Theorem)

NL = coNL

Proof Sketch Very briefly, one can prove this theorem by first showing that STCON is NL-
complete, and then proving that coSTCON, the problem of deciding if s and t are not connected,

3

CS 2401 - Introduction to Complexity Theory Lecture #5: Fall, 2015

on the configuration graphs of languages in NL is computable in NL as well. This gives coNL ⊆ NL.
For equality, we note that if L ∈ NL, then L ∈ NL as well. So there is some logspace NTM M
which accepts input x iff x 6∈ L. But then solving coSTCON on the configuration graph of M gives
a coNL algorithm for deciding L, and so NL ⊆ coNL.

The next result, this one due to Reingold, shows that STCON in undirected graphs, or USTCON,
is in L. This is a very non-trivial result, combining techniques from graph theory and computational
complexity.

Theorem 4
USTCON ∈ L

4 Randomized Complexity

We next study the use of randomness in computation. Two reasons motivate this: first, we do
not know how to efficiently derandomize algorithms, in general. Second, it is very hard to actually
generate random bits; current methods involve taking a small number of high-entropy bits, and
using them to deterministicly generate a sequence of bits “sufficiently” indistinguishable from a
truly random sequence. So algorithms which require less randomness are, in some sense, more
efficient than those which require more.

The definition of a probabilistic language is similar to the certificate definition of a nondeter-
ministic language.

Definition A probabilistic Turing Machine (PTM) is a deterministic Turing Machine M with two
inputs, x and r. M is a polytime PTM if it runs in time polynomial in |x|.

We can define three different probabilistic polytime classes, corresponding to the two-sided,
one-sided, and zero-sided error of a PTM M deciding a language L.

Definition A language L is in BPTIME, also called BPP, if there is a polytime PTM M such that

∀x ∈ L
[
Prr,|r|∈p(|x|)[M(x, r) = 1] ≥ 2

3

]
,

where Prr,|r|∈p(x)[M(x, r) = 1] is the probability over the uniform distribution of strings r of length
polynomial in |x| that M accepts (x, r), and

∀x 6∈ L
[
Prr,|r|∈p(|x|)[M(x, r) = 1] ≤ 1

3

]
.

The particular values 2
3 and 1

3 are actually arbitrary; they can be as close to a half as 1
2 ±

1
m ,

where m ∈ p(|x|), just so long as the probability of M accepting when x is in L and the probability
of it rejecting when x is not in L are both greater than a half.

Definition A language L is in RPTIME, also called RP, if there is a polytime PTM M such that

∀x ∈ L
[
Prr,|r|∈p(|x|)[M(x, r) = 1] ≥ 2

3

]
,

and
∀x 6∈ L

[
Prr,|r|∈p(|x|)[M(x, r) = 1] = 0

]
.

4

CS 2401 - Introduction to Complexity Theory Lecture #5: Fall, 2015

Note that RP ⊆ BPP.

Definition A language L is in ZPTIME, also called ZPP, if there is a PTM M such that M accepts
(x, r) iff x ∈ L, and for every x runs in expected polytime, with the expectation being over the
uniform distribution of strings r with length polynomial in |x|.

It is widely conjectured that BPP = P.

4.1 Two Famous Problems in BPP

Two interesting problems in computer science happen to lie in BPP, with one of the two having
been proved to lie in P. They are

• the PRIMES problem: this was recently shown to be a deterministic polytime problem, but
the randomized algorithm still runs much faster (and is simpler). It essentially guesses at
factors of the candidate, and outputs whether or not none of the guesses actually factored
the candidate. We do not know how to derandomise this simple algorithm.

• the polynomial identity testing (PIT) problem: this problem asks, given either an algebraic
formula, or an algebraic circuit, with coefficients drawn from either Z or some finite field, test
if the forumla is identically 1 over Z or the field. A similar algorithm to the PRIMES algorithm
is used. Namely, evaluate the formula/circuit at random points, and output whether or not
it was 1 at all sampled points.

5 Next class

• Where do randomized classes fit in, with respect to time and space bounded classes

• Why we can shrink the error thresholds for BPP and RP

5

