
CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #4: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Shuvomoy Das Gupta

1 Review

Recall the definitions of the classes NP, and coNP.

Definition. (The class NP) A language L ⊆ {0, 1}∗ is in NP, if there exists a polynomial p : N → N

and a polynomial-time TM M such that for any x ∈ {0, 1}∗,

x ∈ L⇔ ∃y ∈ {0, 1}p(|x|)
(

M(x, y) = 1
)

.

For example, SAT is in NP.

Defintion. (The class coNP) A language L ⊆ {0, 1}∗ is in coNP, if there exists a polynomial
p : N → N, and a polynomial-time TM M such that for any x ∈ {0, 1}∗,

x ∈ L⇔ ∀y ∈ {0, 1}p(|x|)
(

M(x, y) = 1
)

.

For example, TAUTOLOGY is in coNP. Note that in the definition of the class coNP, we have ∀ as
the quantifier rather than ∃ as in NP.

2 Polynomial hierarchy

Today we are going to talk about polynomial hierarchy. At first we define two new complexity
classes: the class ΣP

2 , and the class ΠP
2 .

Definition. (The class ΣP
2) The class ΣP

2 is the set of all languages L for which theres exists a
polynomial-time TM M , and a polynomial q such that for any x ∈ {0, 1}∗,

x ∈ L ⇔ ∃y1 ∈ {0, 1}q(|x|) ∀y2 ∈ {0, 1}q(|x|) (M(x, y1, y2) = 1) .

Definition. (The class ΠP
2) The class ΣP

2 is the set of all languages L for which theres exists a
polynomial-time TM M , and a polynomial q such that for any x ∈ {0, 1}∗,

x ∈ L ⇔ ∀y1 ∈ {0, 1}q(|x|) ∃y2 ∈ {0, 1}q(|x|) (M(x, y1, y2) = 1) .

Note that the difference in the definitions above is the order of the quantifiers; in the class ΣP
2

we have the quantifiers appearing in the order ∃,∀, whereas in the class ΠP
2 the order is ∀,∃.

The definition of the polynomial hierarchy generalizes the definitions of NP, coNP,ΣP
2 and ΠP

2 .
It consists of every language that can be defined by a combination of a polynomial-time computable

1

CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

predicate and a fixed number of quantifiers.

Definition. (The class ΣP
i) For i ≥ 1, a language L is in ΣP

i if there exists a polynomial-time TM
M and a polynomial q such that

x ∈ L ⇔ ∃y1 ∈ {0, 1}q(|x|) ∀y2 ∈ {0, 1}q(|x|) . . . Qiyi ∈ {0, 1}q(|x|) (M(x, y1, . . . , yi) = 1) ,

where Qi is either ∀ (if i is even) or ∃ (if i is odd).

Definition. (The class ΠP
i) For i ≥ 1, a language L is in ΠP

i if there exists a polynomial-time TM
M and a polynomial q such that

x ∈ L ⇔ ∀y1 ∈ {0, 1}q(|x|) ∃y2 ∈ {0, 1}q(|x|) . . . Qiyi ∈ {0, 1}q(|x|) (M(x, y1, . . . , yi) = 1) ,

where Qi is either ∀ (if i is odd) or ∃ (if i is even).

In the class ΣP
i we have the quantifiers appearing in the order ∃,∀,∃,∀, . . ., whereas in the class

ΠP
i the order is ∀,∃,∀,∃, . . .; so the difference is in the order of the quantifiers.

Definition. (The polynomial hierarchy) The polynomial hierarchy is the set PH =
⋃

iΣ
P
i .

Note that ΣP
1 = NP, and ΠP

i = coNP. Also, for every i, we have ΣP
i ⊆ ΠP

i+1 ⊆ ΣP
i+2 ⊆ · · · .

Hence, PH =
⋃

i Π
P
i . So we have, PH =

⋃

i Σ
P
i =

⋃

iΠ
P
i , NP ⊆ PH and P ⊆ PH.

Complete problems for PH. A quantified Boolean formula (QBF) is a formula of the form

Q1x1 Q2x2 . . . Qnxn φ(x1, x2, . . . , xn),

where, each Qi is one of the two quantifiers ∀ or ∃, xi ∈ {0, 1} for any i ∈ {1, . . . , n} and φ is an
unquantified Boolean formula. We define the language TQBF to be the set of all QBFs which are
evaluated true.

For any i ≥ 1, the class ΣP
i has the following complete problem, which is special case of TQBF,

with a fixed number of alternations:

ΣiSAT = ∃x1∀x2∃ . . . Qixi φ(x1, x2, . . . , xn) = 1,

where Qi is ∀ if i is even and ∃ else.
Similarly, for any i ≥ 1, the class ΠP

i has the following complete problem with a fixed number
of alternations:

ΠiSAT = ∀x1∃x2∀ . . . Qixi φ(x1, x2, . . . , xn) = 1,

where Qi is ∃ if i is even and ∀ else.

3 Space-bounded computation

Consider a Turing machine with the following configuration:
• Tapes:

2

CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

−Input tape (read only)
−Work tape (read/ write)

• Finite set Q of possible states containing:
−qstart : This is the special starting state of a Turing machine, which we describe as follows.

The input tape of a Turing machine initially contains the start symbol ⊲, a finite nonblank symbol
x, and the blank symbol ❆b for the rest of its cells. All heads start at the left ends of the input
tape and work tape. The machine is in the special starting state, which we denote by qstart. The
configuration of the Turing machine associated with this state is called the start configuration on
input x.

−qhalt : This is a special halting state of a Turing machine, which has the property that once
the machine is in qhalt, the transition function does not allow the machine to further modify the
contents of the tape or change the states. So the Turing machine halts once it enters qhalt.

−qaccept: This state exists only for a nondeterministic Turing machine. Recall that the only
difference between a deterministic and nondeterministic Turing machine is that the latter has two
transition functions, denoted by δ0 and δ1, and the special state qaccept. At each step of computation
performed, a nondeterministic Turing machine makes an arbitrary choice as to which one of δ0 and
δ1 to apply. If there exists some sequence of nondeterministic choices for any input x that would
cause the machine to reach the state qaccept, then the machine outputs 1 for that input. On the
other hand, if every sequence of nondeterministic choices causes the machine to reach qhalt before
reaching qaccept for any input, then the machine outputs 0 for that input. In this regard, both
qaccept and qhalt can be considered as halting states for a nondeterministic Turing machine.

Now we define space-bounded computation for a TM, which we apply only to the work tape. As
a result we restrict the definition of space-bounded computation to languages (decision problems
with answers confined in yes or no) only, and exclude function problems. Recall that, function
problems require an answer more elaborate than that of decision problems, so for them we have to
add a third tape to the TM for writing the output.

Definition. (Space-bounded computation) Let S : N → N and L ∈ {0, 1}∗. We have L ∈
SPACE(S(n)) if there exists a constant c and a TM M deciding L such that at most c · S(n)
locations of M ’s work tapes (excluding the input tape) are visited by M ’s head during its computa-
tion on every input of length n. Similarly, we have L ∈ NSPACE(S(n)), if there exists an NDTM
M deciding L such that, regardless of its nondeterministic choices, it never uses more than c · S(n)
nonblank tape locations on inputs of length n.

Some space complexity classes.

• L = SPACE(log n)
• NL = NSPACE(log n)
• PSPACE =

⋃

c>0 SPACE(nc)
• NPSPACE =

⋃

c>0NSPACE(nc)
Later we will show that PSPACE = NPSPACE. First we show that PSPACE ⊆ EXP.

PSPACE ⊆ EXP. We can bound the time complexity of a TM in terms of its space complexity.
Suppose a language L ∈ PSPACE, then there exists a polynomial S, and a deterministic TM such
that M decides L and halts after using at most p(n) tape squares, where x is the input of length

3

CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

n. The configuration of M consists of its state, position of the head and the contents of the tape.
As M halts, it can never enter the same configuration twice, as otherwise it would enter an infinite
loop and would never halt. The number of symbols for the tape alphabet is |Γ|, and number of
states is |Q|. The position of the read-write head can be in one of S(n) positions. Each cell of the
tape contains one symbol from the alphabet, and the contents of such a cell cannot be modified if
it is not visited by the read-write head. So there are |Γ|S(n) possibilities for the content of the tape.
Hence, in total there are |Q|S(n)|Γ|S(n) possible configurations for M during its computation on
input x. Let us consider a polynomial V such that V (n) ≥ log |Q| + logS(n) + S(n) log |Γ|, then
clearly L can be decided by M in time 2V (n). We can also represent V (n) = c · S(n), where c is

a constant depending on |Γ|, |Q| and number of tapes. Recall that EXP =
⋃

k DTIME(2n
k

). So,
L ∈ EXP. Thus PSPACE ⊆ EXP.

Space bounded configuration and s − t connectivity problem. There is a strong link be-
tween space bounded configuration and directed graph s − t connectivity problem. The s − t
connectivity problem is described as follows. Consider a graph G = (V,E), where V is the set of
vertices and E is the set of edges. Consider two vertices of the graph, denoted by s (source) and t
(sink). We want to determine if there is a directed path from sto t.

Now we describe the notion of a configuration graph for a TM. Consider a TM denoted by M .
A configuration of a TM M contains the contents of all nonblank entries of M ’s tapes, along with
its state and the position of the head. For every space S(n) TM M and input x ∈ {0, 1}∗, the
configuration graph of M on input x is denoted by GM,x, which is a directed graph. The nodes of
GM,x are associated with all possible configurations of M . The input of M contains the value of x,
and the work tapes can have at most S(|x|) nonblank cells. The edges of GM,x are constructed as
follows. Consider two nodes of GM,x associated with the configuration C and C ′ of M . There exists
an edge from C to C ′, if C ′ can be reached from C in one step according to M ’s transition function.
If M is deterministic, then the out-degree of the graph is one; if M is nondeterministic, then the
out-degree is at most two, as an NDTM has two transition functions. The start configuration of
M is unique and depends on the input x. The node of GM,x associated with this unique start
configuration of M is denoted by start-config(x). We modify M to erase the contents of its work
tapes before it halts. So, we can assume that there is a unique single configuration, denoted by
Caccept, such that M halts and outputs 1 at it. The input x is accepted by M if and only if there
exists a directed path from start-config(x) to Caccept in GM,x.

First, note that every vertex in GM,x can be described using cS(n) bits, where c is a positive
constant, and GM,x has at most 2cS(n) nodes. We can justify the claim by following the same line
of logic presented in the justification of PSPACE ⊆ EXP. Now deciding if two nodes of M are
neighbors can expressed as conjunction of many checks. Each check depends on a constant number
of bits. Recall that for every Boolean function f : {0, 1}l → {0, 1}, there exists an l-variable CNF
formula φ of size l2l such that φ(u) = f(u) for every u ∈ {0, 1}l, where the the size of a CNF formula
is defined to be the number of ∧/∨ symbols it contains. and can be expressed by constant sized
CNF formulas. So, each check can be expressed by constant-sized CNF formulas, with the number
of variables being proportional to the size fo the workspace of M . So, there exists an O(S(n))-size
CNF formula φM,x such that for every two nodes C,C ′ of GM,x, we have φM,x(C,C

′) = 1 if and
only if C and C ′ encode two neighboring configuration in GM,x.

Recall that, A language L is in DTIME(S(n)) ⇔There is a TM that runs in time cS(n) : c > 0
and decides L. So DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)). Now we show that,

4

CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

NSPACE(S(n)) ⊆ DTIME(2O(S(n))). We can enumerate over all possible configurations and
construct the graph GM,x in time 2O(S(n)), and thus check if start-config(x) is connected to
Caccept in GM,x. We can do the checking by using breadth-first search algorithm to solve s − t
connectivity, which is linear in the size of the graph. Thus we have arrived at the following:

For every space constructible S : N → N,DTIME(S(n)) ⊆ SPACE(S(n)) ⊆ NSPACE(S(n)) ⊆
DTIME(2O(S(n))).

So we have: L ⊆ NL ⊆ P ⊆ NP ⊆ PH ⊆ PSPACE ⊆ EXP, as shown in Figure 1.

P

coNPNP

PH

PSPACE

EXP

Figure 1: Different complexity classes

4 Complete problems for space classes

We define PSPACE-hard and PSPACE-complete languages first.

Definition. (PSPACE-hard) A language L′ is PSPACE-hard if for every L ∈ PSPACE,
L ≤p L

′.

Definition. (PSPACE-complete) A language L′ is PSPACE-complete if L′ is PSPACE-hard
and L′ ∈ PSPACE.

Now we show that TQBF is PSPACE-space complete. To that goal, we first show that TQBF ∈
PSPACE.

5

CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

Theorem 1. TQBF is in PSPACE.

Proof. (Arora, pages 84-85) Consider the QBF ψ with n variables

ψ = Q1x1 Q2x2 . . . Qnxn φ(x1, x2, . . . , xn),

where each Qi is one of the two quantifiers ∀ or ∃, xi ∈ {0, 1} for any i ∈ {1, . . . , n} and φ is an
unquantified Boolean formula. The size of φ is m. All possible truth assignments of the variables
can be arranged as the leaves of a full binary tree of depth n. Here, the left subtree of the root
contains all the truth assignments with x1 = 0. The right subtree of the root contain all the
assignments of x1 = 1. Then we branch on x2, x3, and so on (see Figure 2).

x1

∀x2 ∀x2

∃x3

∀x4

∃x3

0

0

0

0

1

0 1
1

0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

1

0 1

1

∃

∃x3 ∃x3

∀x4 ∀x4 ∀x4 ∀x4 ∀x4 ∀x4 ∀x4

1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0

Figure 2: A binary tree for a TQBF with 4 variables

Now we construct a simple recursive algorithm A. Let sn,m be the space used by A. For
convenience we assume that the unquantified Boolean formula φ contains the variables (of the form
xi), their negation (of the form ¬xi) and constants 0 corresponding to false, and 1 corresponding to
true. If there are no variables (n = 0), then the formula contains only the constants. In that case,
the formula can be evaluate in O(m) time and space. So, we assume there is at least one variable
(n > 0). Define

ψ|x1=b = Q2x2 . . . Qnxn φ(b, x2, . . . , xn),

where b ∈ {0, 1}. So in ψ|x1=b, we have modified ψ, where the first quantifier Q1 is dropped and all
the occurrences of x1 in φ has been replaced by b. Algorithm A will work as follows.

If (Q1 = ∃)
then (output 1⇔A(ψ|x1=0) = 1 ∨A(ψ|x1=1))

Else

(output 1 ⇔ A(ψ|x1=0) = 1 ∧A(ψ|x1=1))

6

CS 2401 - Introduction to Complexity Theory Lecture #4: Fall, 2015

So, A returns the correct answer on any QBF ψ. Note that, space can be reused. After A(ψ|x1=0)
is computed, A retains only the single bit of output from the computation, and reuses the space
left for the computation of A(ψ|x1=1). So both A(ψ|x1=0) and A(ψ|x1=1) can be run in the same
space. If we assume that A uses O(m) space to write ψ|x1=b, then sn,m = sn−1,m + O(m). Now
we can apply the same line of logic to x2, x3, and so on. Thus, sn,m = O(n ·m). So, TQBF is in
PSPACE.

7

