
CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #2: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Shuvomoy Das Gupta

1 Alternative definition of NP

Definition (Nondeterministic Turing Machine (NDTM))
An NDTM is similar to a TM, but can have any number of transition functions, e.g., two as follows:

δ0 : Q× Γk → Q× Γk−1 × {L,S,R}k,

δ1 : Q× Γk → Q× Γk−1 × {L,S,R}k,

and a special state qaccept ∈ Q.

When an NDTM M computes a function, at each step it makes a random choice of the transition
function to be applied. A sequence of such random choices are called nondeterministic choices of
M . For any input x,

M(x) =

{

1, if there exists a sequence of nondeterministic choices such that M reaches the state qaccept

0, if for every sequence of nondeterministic choices M halts before reaching the state qaccept.

The NDTM M runs in T (n) time if for any input x ∈ {0, 1}∗ and for any sequence of nonde-
terministic choices, M reaches either qhalt or qaccept within T (|x|) steps.

Definition (NTIME)
For any function T : N → N and language L ⊆ {0, 1}∗, L ∈ NTIME(T (n)), if there exist a positive
constant c and a c ·T (n) time NDTM M such that for any x ∈ {0, 1}∗ we have x ∈ L ⇔ M(x) = 1.

Theorem 1 NP = ∪c∈NNTIME(nc).

Proof
(Proof of ∪c∈NNTIME(nc) ⊆ NP)

Consider any language L ∈ ∪c∈NNTIME(nc), which is equivalent to saying that there exists
a polynomial p : N → N such that L is determined by a NDTM N which runs in time p(n). So by
definition of NDTM, for any x ∈ L, we can find a sequence of nondeterministic choices that will
cause N to reach qaccept in time p(n). Now the key idea is using such a sequence as a witness for
x. The witness has length p(|x|) and it can be verified in polynomial time by a deterministic TM.
This TM simulates the action of N using the witness and verifies that the TM reaches qaccept. So
by using the definition of class NP, we have L ∈ NP .
(Proof of NP ⊆ ∪c∈NNTIME(nc))

1

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

Consider any language L ∈ NP. Then by definition of NP, there is polynomial time TM M

such that ∀x ∈ L there exists u ∈ {0, 1}p(|x|) such that M(x, u) = 1, where p is a polynomial.
We have to show that, there exists a positive constant c and c · T (n) time NDTM N such that
N(x) = 1, i.e., we have to find a sequence of nondeterministic choices u such that N reaches
the state qaccept. At first using the nondeterministic choice making capability of N , we construct
a string ū with length p(|x|). We input ū as the witness in M(x, ·) and check if M(x, ū) = 1,
and if that happens, then it enters qaccept. The NDTM N enters qaccept if and only if ū is a
valid witness. As there must exist a number c > 1, such that p(n) = O(nc), we have L and
L ∈ NTIME(nc) ⊂ ∪c∈NNTIME(nc).

[QED]

2 NP-completeness

Definition (Reduction)
A language L ⊆ {0, 1}∗ is polynomial-time Karp reducible to a language L′ ⊆ {0, 1}∗, denoted by
L ≤p L

′, if there exists a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗, such that for
every x ∈ {0, 1}∗, x ∈ L if and only if f(x) ∈ L′. Figure 1 shows a Karp reduction from L to L′,
which is a polynomial function f which maps strings in L to strings in L′.

L L′

f(x)

f(·)

Figure 1: Karp reduction f from L to L′.

Definition (NP-hard)
A language L′ is NP-hard if for every L ∈ NP we have L ≤p L

′.

Definition (NP-complete)
A language L′ is NP-complete if L′ is NP-hard and L′ ∈ NP .

Cook Reduction. This is a more general polynomial time reduction, that allows you to use an
oracle for L′ to solve L in polynomial time.

2

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

Famous NP languages.

• The clique problem: Accept 〈G, k〉 if and only if G contains a clique of size k

• 3-SAT

• SAT

3 The Satisfiability Problem (SAT)

Boolean formula. A Boolean formula over the variables x1, . . . , xn consists of the variables and
logical conjunction (∧), disjunction (∨) and negation (¬). If A and B are Boolean formulas, then
so are A ∧ B and A ∨B. A Boolean formula φ is satisfiable if ∃z ∈ {0, 1}n such that φ(z) = 1. A
Boolean formula over variables x1, . . . , xn is in Conjunctive Normal Form (in short, CNF), if it is
AND of OR’s of variables or their negations. For example,(x1∨ x̄2∨x3)∧(x2∨ x̄3)∧(x̄1∨x3∨x4) is
a CNF formula. Figure 2 shows a CNF formula (x1∨ x̄2∨ x̄3)∧ (x̄1∨ x̄4)∧ (x1∨x2∨x3∨x4), which
is satisfied by x1 = 1, x2 = 1, x3 = 1, x4 = 0, but is not satisfied by x1 = 1, x2 = 1, x3 = 1, x4 = 1.

∧

∨ ∨ ∨

x1 x̄2 x̄3 x̄1 x̄4 x1 x2 x3 x4

Figure 2: A CNF formula (x1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄4) ∧ (x1 ∨ x2 ∨ x3 ∨ x4)

Boolean circuits. For any natural number n, an n input, single output Boolean circuit is a
directed acyclic graph, which has

• n Boolean inputs (also called sources) denoted by x1, . . . , xn,

• one output (also called sink) which denoted by C(x), where x = (x1, . . . , xn) ∈ {0, 1}n.

All the nonsource vertices are called gates. These gates compute the Boolean functions AND, OR
and NOT, denoted by ∧,∨ and ¬ respectively. The gates ∧ and ∨ has fanin 2, and the ¬ gate has
fanin 1. Wires of the circuits connect the gates and inputs by carrying the Boolean value 0 or 1.
The size of a circuit C, denoted by |C|, is the number of gates in it. A Boolean circuit C over
x1, . . . , xn accepts α ∈ {0, 1}n if and only if C(α) = 1. For example, the Boolean circuit in Figure
3 accepts x1 = 0, x2 = 1, x3 = 1.

Circuit-SAT. The Circuit-SAT problem is posed as follows. Given a circuit C, does there exist
an input α ∈ {0, 1}n such that C(α) = 1?

3

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

¬

x2

0 1 1

1 11

1 1

1

x1 x3

∧

∧

∧

∨ ∨

Figure 3: Boolean circuit C which accepts x1 = 0, x2 = 1, x3 = 1.

SAT. This is a special case of circuit SAT, where the circuit represents a CNF formula, which
has:

• an unbounded fanin ∧ at top

• followed by unbounded fanin ∨

• followed by literals.

3-SAT. This is a special case of SAT where all clauses have size ≤ 3.

Theorem 2 Circuit-SAT is NP-hard.

Proof Sketch.

1. Let L be an arbitrary language. If L is accepted by a polynomial time TM M , then there
exists a family of circuits {Cn | n = 0, 1, . . .} such that for any n and any x such that |x| = n,
we have Cn(x) = M(x) and size of Cn = polynomial in n (e.g. nc where c is a nonnegative
integer).

2. Let L ∈ NP. Then there exist a c and a polynomial-time TM M(x, y), such that x ∈ L if
and only if there exists a y such that |y| = |x|c and M(x, y) accepts L. Now convert M(x, y)
into family of circuits Cn(x, y) where |x| = n, |y| ≤ c|x|k = cnk.

3. Reduction: Given α such that |α| = n we want to find out if α ∈ L. Create circuit Cn(α, y)
such that α ∈ L if and only if there exists β such that |β| ≤ nc and Cn(α, β) = 1. So,
f(α) → 〈Cn(x, y)〉.

4

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

Encoding Symbol / State

00 0
01 1
10 ⊲

11 ❆b

000 Designates that head is not here
001 q1
...

...
101 q5

Table 1: Representation of the configuration

More on NP-completeness of Circuit-SAT.

Tableau of M . We consider the following example. Suppose the symbols of M are 0, 1, ❆b,⊲, and
it has 5 states denoted by q1, q2, q3, q4, q5. We define a tableau for M to be a t(n)× t(n) table. The
rows of this tables are configurations of M, with the top row representing the start configuration.
The ith row represents the configuration at the ith step of the computation. In the tableau, both
the state and symbol under the tape head are represented by a single composite character. For
example if M is in state q3, and the tape contains the symbol 1, then the composite character q31
represents both the state q3 and 1, the symbol under the head (Figure 5). The entry at the ith row
and jth column of the tableau is denoted by index (i, j) We represent the configuration as follows.
A cell becomes a square of 5 bits, where the first 3 are used to represent the states and the last 2
are used to represent the symbols. The encoding is shown in Table 3, and one example is shown
in Figure 5.

⊲

⊲

0
0

1
1 0

0
q40

1
1

❆b
❆b

nc = t(n)

❆b

❆b
❆b

❆b
❆b

❆b
❆b

❆b
❆b

❆b
❆b

❆b
❆b

❆b

t(n)
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

q31

Figure 4: Representation of Circuit-SAT

Computation is local. Note that, cell (i, j) depends only on cell (i−, j−1), (i−1, j), (i−1, j+1)
plus its own cell. Each cell has 5 bits,and for each bit has one gate is associated with it. So we
can compute any bit of cell (i, j) as a function of 15 pair bits, i.e., OR of ANDs of 15 pair bits.
Suppose at cell (i, j) we want to compute bit at position k ∈ {1, . . . , 5}, which depends on bits
l,m, n, p ∈ {1, . . . , 5} of cells (i, j), (i − 1, j − 1), (i − 1, j) and (i − 1, j + 1) respectively. Clearly,
different settings of the bits of these cells will result in cell (i, j) containing a particular bit at kth
position. For each of these settings we can construct the circuit so that for each of them the output

5

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

⊲ 0 1 q31 0 1 ❆b

00001 01101 00000 00001 0001100010 00000

Figure 5: One example of the configuration

is connected to an AND gate, and all such AND gates are connected with an OR gate. Applying
this scheme to the cells of the tableau, we can construct all the gates of the circuit. The final
output gate of the circuit is one of these gates, associated with the accept state on a cell of the
tableau. Note that the circuit is layered. For example the ith layer has 5 · t(n) outputs descending
the ith configuration of M on x.

Theorem 3 3-SAT is NP-hard.

Proof sketch. We want to prove that 3-SAT is NP-hard, i.e., for any L ∈ NP we have L ≤p

3-SAT. We reduce Circuit-SAT to 3-SAT in polynomial time, which converts a circuit C into a
CNF formula φ such that all clauses in the formula have size less than or equal to 3. The circuit
C is satisfiable if and only if the formula φ is satisfiable.

Proof

Configuration of a Boolean circuit. Consider any Boolean circuit C over x1, . . . , xn and
m gates . The Boolean output values carried by the wires at the gate outputs are denoted by
g1, . . . , gm. Our goal is to construct a CNF formula φ from the configuration of C. The variables
of the formula are denoted by z1 = x1, z2 = x2, . . . , zn = xn, zn+1 = g1, . . . , zn+m = gm.

Constructing the formula φ. Recall that P ⇒ Q is equivalent to ¬P ∨ Q. Now we describe
how to construct the clauses of φ.

• Every NOT gate with input zi and output zj can be written as

zj ⇔ ¬zi,

which is equivalent to (¬zi ⇒ zj) ∧ (zi ⇒ ¬zj),

which is equivalent to (zi ∨ zj) ∧ (¬zi ∨ ¬zj).

Note that the clauses on the final line will be be satisfied if and only if an assignment is made
to the variables zi and zj associated with the proper functioning of the NOT gate.

• Every AND gate with input zi, zj and output zk can be written as

zk ⇔ (zi ∧ zj),

which is equivalent to (zk ⇒ (zi ∧ zj)) ∧ ((zi ∧ zj) ⇒ zk),

which is equivalent to (¬zk ∨ (zi ∧ zj)) ∧ (¬(zi ∧ zj) ∨ zk),

which is equivalent to (¬zk ∨ zi) ∧ (¬zk ∨ zj) ∧ (¬zi ∨ ¬zj ∨ zk).

6

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

The clauses on the final line will be be satisfied if and only if an assignment is made to the
variables zi, zj and zk associated with the proper functioning of the AND gate.

• Every OR gate with input zi, zj and output zk can be written as

zk ⇔ (zi ∨ zj),

which is equivalent to ¬zk ⇔ (¬zi ∧ ¬zj),

which is equivalent to (¬zk ⇒ (¬zi ∧ ¬zj)) ∧ ((¬zi ∧ ¬zj) ⇒ ¬zk),

which is equivalent to (zk ∨ (¬zi ∧ ¬zj)) ∧ (¬(¬zi ∧ ¬zj) ∨ ¬zk),

which is equivalent to (zk ∨ ¬zi) ∧ (zk ∨ ¬zj) ∧ (zi ∨ zj ∨ zk).

The clauses on the final line will be be satisfied if and only if an assignment is made to the
variables zi, zj and zk associated with the proper functioning of the OR gate.

• We add the clause zm = gm, where gm correspond to the output gate of C.

So, φ will be the conjunction of all the clauses constructed above, all of which have size less than
or equal to 3. So the resultant reduction is that of a 3-SAT. Note that the number variables in the
3-SAT is equal to n+m. So the reduction is polynomial in the size of the input.

Justification that the construction works. At first, we show that if we have an assignment x
which is accepted by the circuit C, then we can construct an satisfying assignment for the formula
φ. We take (z1, . . . , zn) := (x1, . . . , xn), and calculate the gate output g1, . . . , gm of C associated
with the assignment x, and set (zn+1, . . . , zn+m) := (g1, . . . , gm). By construction, φ(z) = 1. On
the other hand, if a satisfying assignment z = (x, g) for φ exists, then x will be accepted by C,
because it describes the entire computation of C when the output is one by construction.

[QED]

To explain the proof, we consider an example. Consider the Boolean circuit in Figure 6. To
convert it into an 3-SAT problem, we proceed as follows.

• We introduce one new variable per gate

• Clauses that say intermediate variable take on current value and that final output is true.

Thus we have,

• x1 ∧ x̄2 ⇔ z1 is equivalent to (x̄1 ∨ x2 ∨ z1) ∧ (z̄1 ∨ x1) ∧ (z̄1 ∨ x̄2)

• x̄2 ∧ x3 ⇔ z2 is equivalent to (x2 ∨ x̄3 ∨ z2) ∧ (z̄2 ∨ x3) ∧ (z̄2 ∨ x̄2)

• x2 ∨ x̄1 ⇔ z3 is equivalent to (x̄2 ∨ z3) ∧ (x1 ∨ z3) ∧ (z̄3 ∨ x2 ∨ x̄1)

• z1 ∨ z2 ⇔ z4 is equivalent to (z̄1 ∨ z4) ∧ (z̄2 ∨ z4) ∧ (z̄4 ∨ z1 ∨ z3)

• z2 ∨ z3 ⇔ z5 is equivalent to (z̄2 ∨ z5) ∧ (z̄3 ∨ z5) ∧ (z̄5 ∨ z2 ∨ z3)

• z4 ∧ z5 ⇔ z6 is equivalent to (z̄4 ∨ z̄5 ∨ z6) ∧ (z̄6 ∨ z4) ∧ (z̄6 ∨ z5)

7

CS 2401 - Introduction to Complexity Theory Lecture #2: Fall, 2015

∨

∧

∨

∧ ∧ ∨

x1
x̄2 x3 x2 x̄1

z1 z2 z3

z4
z5

z6

Figure 6: Boolean circuit associated with the Circuit-SAT problem. We want to reduce it to a
3-SAT problem.

• z6

Note that we have used the fact that P ⇒ Q is equivalent to ¬P ∨Q.
The size of the circuit is equal to the number of new variables, and number of 3-clauses is equal

to 3× size of circuit +1, so f(x,z) SAT if and only if C(x) is a SAT.

8

