
CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #11: Dec 8th, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Xu Zhao

1 Communication Complexity Applications

Communication Complexity (CC) has many applications in computer science. Specifically, CC
lower bounds for Set Disjoint problem is useful to prove many results in a large variety of contexts.

• Set disjoint problem

• Streaming problem

• Monotone formula and circuit complexity

• Proof complexity

2 Set Disjoint Problem

Definition The set disjoint problem is defined as follows. Suppose Alice has a number x ∈ {0, 1}n
and Bob has a number y ∈ {0, 1}n. We denote the disjoint function DISJ(x, y) = 1 if and only if
there exists an integer i, such that xi = yi = 1.

Theorem 1 DISJ function requires Ω(n) bits communication for deterministic protocols.

Proof Consider all (x, y) pairs that x ⊕ y = 1. Each pair of (x, y) is in its own rectangle in
the communication matrix and there are 2n such pairs. For any (x, y) that x ⊕ y = 1, we have
DISJ(x, y) = 0. Given arbitrary two such pairs, (x, y) and (x′, y′), we have either DISJ(x′, y) =
1 or DISJ(x, y′) = 1. So DISJ function has a fooling set of size 2n, thus its deterministic
communication complexity is Ω(n).

Note that the DISJ function has a O(1) non-deterministic communication protocol. This is
because each of Alice and Bob can guess the value of i then send each other’s bit xi and yi, then
compare them and output the result.

Meanwhile, we claim that DISJ function requires Ω(n) bits communication for all randomized
protocols. The proof of this claim requires knowledge on Information Theory and is not covered in
this lecture.

1

CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015

3 Streaming Problem Complexity

Suppose the input is a stream of data, the streaming complexity of a problem is how much space
it would need to store in the worst case processing the stream. We use the following frequency
moment problem as an example to show how to use communication complexity to prove streaming
problem complexity lower bounds.

Definition Suppose S ∈ [n]m is a length-m stream and Sj is the j-th element in S. Let Mi =
|{
∑
j ∈ [m]|Sj = i}|, so Mi equals to number of times that i appear in the stream. We further

define Fk =
∑n

i=1M
k
i . Hence F0 is the number of distinct elements in the stream, F1 is the length

of the stream, and F∞ is the number of occurrences of the most frequent item in S.

Theorem 2 If we have a small space algorithm for F∞, we can solve DISJ with small communi-
cation complexity.

Proof Suppose Alice has a number x ∈ {0, 1}n, Bob has a number y ∈ {0, 1}n. For Alice, she can
generate a stream of numbers ax = {i|xi = 1}, then run algorithm F∞ on ax. This computation
will only take a small space based on our assumption. Suppose it takes s bits of space. Then
Alice can send these s bit space after the compuation of F∞(ax) to Bob. Bob will continue to use
these s bit space to simulate the computation on by, where by = {i|yi = 1}. The output will be the
number of occurrences of the most frequent item in ax∪by. If the output number is larger than one,
we know there is some number appear more than once in ax ∪ by, which means DISJ(x, y) = 0.
Otherwise DISJ(x, y) = 1.

4 Circuit Complexity

In this section we will discuss the relation between circuit depth lower bound and communication
complexity.

Definition Clique problem. For k = n/10, given an n-node undirected graph G = (V,E), does
it contain a clique of size k? (A k-sized clique means there is a subset S ⊆ V , |S| = k, such that
∀i, j ∈ S,< i, j >∈ E.)

The clique problem is a problem having the monotone property. It takes a n2-sized vector as
input (could be adjacent matrix or adjacent list representation of this graph). If the answer of
the clique problem on this input graph is true, then it means adding new edge into this graph,
the graph will keep the property that contain a k-clique. In other words, changing any 0 to 1 in
the input will only make the output larger, which means larger input is more likely to have larger
output.

Theorem 3 Any monotone circuit for the clique problem requires depth Ω(
√
n). This implies any

monotone formula for clique requires size 2Ω
√
n.

Monotone circuits means circuits with AND and OR gates but without negation. This is
because changing any input bit from 0 to 1 will make the output more likely to output 1. For any

2

CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015

circuit that requires depth Ω(
√
n), we claim that it requires formula size 2Ω

√
n. This is because

any formula with size S can be balanced to depth log(S).
So we will show how to reduce the depth of circuit solving a function f to a communication

complexity solving a Karchmer-Wigderson game R(f).

Definition Suppose we have a boolean function solving a search problem: f : {0, 1}n → {0, 1}
where the output indicates if the search result is true for false. For example, for the searching
clique problem the input of f could be a graph and f returns whether this graph has a clique of
size k = n/10.

We define R(f) as the following problem: at the beginning, Alice gets x ∈ f−1(1) and Bob gets
y ∈ f−1(0). For the clique problem example, Alice gets a graph that contains a clique of k vertices.
Meanwhile, Bob gets a maxterm k − 1 non-clique graph, which means adding even one edge will
make the graph contain a clique of size k. Output of R(f) will be the first i such that xi 6= yi. If
f is monotone, then R(f) is to output the first i such that xi = 1 and yi = 0.

Theorem 4 Let f by any function {0, 1}n → {0, 1}. CC(Rf) equals to the minimal depth of the
circuit that solves f . If f is monotone, then CC(Rf) equals to the minimal depth of monotone
circuit solving f .

Proof We show that CC(Rf) ≤ depth(f) by reducing a circuit that computes f to a protocol
that solves Rf . The circuit can be shown as a tree of gates. We can assume that the top of the
circuit is an OR gate and next level is a AND gate, and so on. Suppose Alice has x ∈ f−1(1) and
Bob has y ∈ f−1(0). Because f(y) = 0, for f(y) there must be a gate on the next level of circuit
whose output is different with f(x). So Alice and Bob will communicate, telling each other which
gate their output start to diverse. Then they recurse to a lower level in the circuit. At this time
we meet the same problem as before, but on a smaller subcircuit. We recurse until we meet to
the leaves of the circuit, where the input is simply one of bits on x and y, where we can identify
the index of difference between x and y. We send one message for every level of circuit that we
traverse down, so the total communication complexity of Rf ≤ depth(f). Here we give an example
of how we build the protocol.

Example

OR

AND

OR

x1 !x2

AND

x1 x3

OR

AND

x3 x5

AND

!x4 OR

x2 x3

Figure 1: Convert a circuit into a communication protocol.

3

CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015

Suppose Alice has input 01101 and Bob has input 01010. Then on the circuit above the sequence
of bits sent would be as follows.

1. Alice: 0 (go right)

2. Bob: 1 (go left)

3. Alice: 0 (go left)

4. Both Alice and Bob reach x3 bit on which they differ.

Now we will show depth(f) ≤ CC(Rf). Given a protocol for Rf , we can also construct a circuit
computing f with depth CC(Rf). Suppose Rf takes x for Alice and y for Bob, it outputs z as the
result. Consider a protocol tree T for Rf and we can convert T into a circuit as follows:

1. For each node where the message is sent by Alice, replace the node with an OR gate.

2. For each node where the message is sent by Bob, replace the node with an AND gate.

3. At each leaf of the protocol tree, with associated monochromatic rectangle AxB and input
bit i, one of the following holds:

(a) ∀α ∈ A,αi = 1 and ∀β ∈ B, βi = 0

(b) ∀α ∈ A,αi = 0 and ∀β ∈ B, βi = 1

If (a) holds, we assign the leaf node to zi, otherwise we assign it to z̄i.

5 Proof Complexity

In this section we will show the relation between communication complexity and proof complexity.
Proof complexity is about the length of proof that is needed for proving a theorem. For example,
an open problem in proof complexity field is about how to prove or disprove there exists a family
of 3DNF tautologies {fn|n sufficient large} where each fn is a 3DNF tautology and n variables,
such that any fn requires Frege proof of size superpolynomial in n.

2

x̄3

(x2 ∨ x̄3)

(x2 ∨ x̄3 ∨ x4)

(x1 ∨ x2 ∨ x̄3) (x̄1 ∨ x̄3 ∨ x4)

(x̄4

(x̄3 ∨ x̄4) x3

x̄2

x3

Figure 2: Resolution refutation proof tree of an unsatisfiable formula.

4

CS 2401 - Introduction to Complexity Theory Lecture #11: Dec 8th, 2015

Definition Resolution proofs. Resolution refutation can show a CNF formula is unsatisfiable.
Resolution rule is the only inference rule in this system. It produces a new clause implied by two
clauses containing complementary elements. Two elements are complementary if one is the negation
of the other. For example ¬c is complement to c. The resulting clause contains all the elements that
do not have the complements. If the proof finishes with an empty clause, then the original formula is
unsatisfiable. Resolution rule is known to be both sound and complete. Figure 1 shows a resolution
proof tree of an unsatisfiable CNF formula (x1 ∨x2 ∨ x̄3)∧ (x̄1 ∨ x̄3 ∨x4)∧ x̄2 ∧x3 ∧ (x̄3 ∨ x̄4). Size
of a resolution refutation proof is the total number of clauses in the proof.

Lemma 5 If f has a resolution refutation proof of depth d, then searchf has a communication
protocol of cost O(d).

Proof We can reduce depth of a resolution proof tree to communication complexity of a search
problem. Let f be an unsatisfiable CNF formula. We define the problem searchf where the
variables in f are partitioned into two groups: x and y. Alice gets assignment α to x variables
and Bob gets assignment β to y variables. The taget is to find out a clause Ci in f , such that
Ci(α, β) = 0. We can do it starting from the root of the proof tree towards leaves of the tree. For
each child clause of root, Alice will evaluate all literals for the clauses using α and send the result
to Bob and Bob will do the same thing. If either Alice or Bob get result 1 it means this clause is
true under (α, β), otherwise the clause is false. Because the resolution rule is sound, the assignment
(α, β) is guaranteed to falsify at least one branch clause, where Alice and Bob will start to go one
step down until they reach the leaf node. In the end they will find a clause of f is falsified. It takes
at most d steps so CC(searchf) = O(d).

Note that this proof can be generalized to any sound proof system that can be represented by
a 2-player communication protocol.

Theorem 6 Any resolution proof of fn requires a resolution tree of depth Ω(n) and tree size 2Ω(n).

5

