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1 Deterministic Communication Complexity

1.1 Motivation and Definitions

The notion of communication complexity can be understood in the context of two parties, hereby
referred to as Alice and Bob, who are attempting to compute a function f : X × Y → Z, for
X,Y, Z given finite sets. In doing so, the two players only have access to partial inputs x ∈ X and
y ∈ Y respectively and are computing f(x, y) according to a fixed protocol P , given beforehand.
The aim of the protocol is to allow the two parties to arrive at the same final answer for f(x, y),
while communicating the smallest amount of bits about their inputs to each other.

This notion is fundamentally information theoretic in its construction. That is, we are only
interested in the amount of communication between Alice and Bob, ignoring the computational
requirements that each might face in constructing the messages they send to each other. Thus, we
assume that both players have unlimited computational power but only a limited understanding
of the other’s input. This leads us to define the cost of a protocol P as the worst case cost of P
over all inputs (x, y) ∈ X × Y , where cost is defined as the total number of bits that need to be
sent by Alice and Bob while executing P . We define the complexity of f as the minimum cost of
a protocol computing f for all (x, y):

Definition For a function f : X × Y → Z, the (deterministic) communication complexity of f ,
denoted by c(f), is the minimum cost of P , over all protocols P that compute f . c(f) is a function
of n, the length of x and y.

More specifically, we can formally define a protocol based on who sends the next bit, and what
its value - and thus size - is going to be. Without loss of generality, we can assume that the players
always alternate, and that the last bit sent is the value P (x, y) outputted by the protocol. This
can be assumed since it only increases the length of the protocol by a constant factor, thus not
impacting its complexity. It is generally customary to set X = Y = {0, 1}n, and Z = {0, 1}. In
this case, the cost of a protocol P , CP (n), is the worst case cost of P over all inputs of length n,
and the communication complexity of f is the minimum cost CP (n) over all P computing f . An
equivalent definition of this notion is also given below:

Definition A protocol P over X × Y with range Z is a binary tree where each internal node v
is labelled either by a function av : X → {0, 1} or by a function bv : Y → {0, 1}1, and each leaf is
labelled with an element of Z. The value of the protocol P on input (x, y) is the label of the leaf

1If a node is labelled by av intuitively means that Alice is sending a bit at this point, similarly for bv and Bob.

1



CS 2401 - Introduction to Complexity Theory Lecture #10: Fall, 2015

reached by starting from the root, and traversing the tree. The cost of the protocol P on input
(x, y) is the length of the path on input (x, y). The cost of the protocol P is the height of the tree.

1.2 Examples

Example [Parity] The parity function of (x, y) has value 1 if x, y have the same parity. A simple
protocol is the following: Alice sends the parity of x (1 if the number of 1’s in x is odd, and 0
otherwise). Then Bob replies 1 if and only if the parity of y is equal to the parity of x.

Example [Set disjointness] DISJ(x, y) = 1 iff there exists i such that xi = yi = 1.

Example [Equality] Equality function: EQ(x, y) = 1 iff x = y.

Example [Inner product] The inner product function is defined as IP (x, y) =
∑n

i=1 xiyi (mod 2).

A trivial upper bound on the communication complexity of any boolean function can be constructed
by sending all input bits to the other party:

Proposition 1 For any boolean function f : {0, 1}n × {0, 1}n → {0, 1}, there exists a protocol P
solving it with at most n+ 1 bits of communication.

Proof Alice sends x. Bob sends f(x, y). The total communication is n+ 1 bits.

Therefore, the (deterministic) communication complexity of any boolean function is at most n+ 1.
However, for many functions, we can develop much more efficient protocols, i.e., protocols with
poly-logarithmic communication bits for specific functions.

1.3 Rectangles

In proving lower bounds on the communication complexity of different functions, it is convenient
to construct a combinatorial view of protocols. Indeed, we can view protocols as a way to partition
the space of all possible input pairs, X × Y , into special sets called combinatorial rectangles. Let
P be a protocol and v be a node of the protocol tree. We denote by Rv the set of inputs (x, y) that
reach node v. Let L be the set of leaves of the protocol P . It is easy to see that the set {Rl}l∈L is
a partition of X × Y . This motivates the following definition:

Definition [Rectangle] A rectangle in X × Y is a subset R ⊆ X × Y such that R = A × B for
some A ⊆ X and B ⊆ Y .

The connection between rectangles and protocols is implicit in the following proposition.

Proposition 2 For all l ∈ L, the set Rl is a rectangle.

Proof By induction on the depth of the protocol tree.

Moreover, by the definition of the protocol in the above rectangles the function f has a fixed
value, which we designate as monochromatic by the following definition:
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Definition [f -monochromatic] A subset R ⊆ X × Y is f -monochromatic if ∃z ∈ {0, 1} such that
for all (x, y) ∈ R, f(x, y) = z on R.

The following two statements are immediate from the above definitions:

Fact Any protocol P for f induces a partition of X × Y into f -monochromatic rectangles. The
number of such rectangles equals the number of leaves of P .

Fact If any partition of X × Y into f -monochromatic rectangles requires at least t rectangles,
then c(f) ≥ log2 t.

2 Deterministic Lower Bounds

We can use the intuition provided by the combinatorial approach to communication complexity in
order to achieve deterministic lower bounds. Indeed, the key insight here is that, if there exists a
protocol P with complexity c(f) for a function f : X × Y → {0, 1}, then it induces a partition of
Rf = X×Y into at most 2c(f) monochromatic rectangles, which is the maximum number of leaves
in the corresponding tree. Rf can be thought of as illustrating all possible inputs to f from both
X and Y . This motivates the approach below.

2.1 The Fooling Set Argument

Using the above insight, we can construct a method for proving deterministic CC lower bounds.
We preface this with an example. Consider the following 2n × 2n matrix REQ associated with the
equality function EQ(x, y), where x, y ∈ {0, 1}n.

REQ :=


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


Each “1” has to be in its own 1-monochromatic rectangle. Thus the number of monochromatic
rectangles is greater than 2n. This observation motivates the following definition of a “fooling set”.

Definition Let f : X × Y → {0, 1}. A subset S ⊆ X × Y is a fooling set for f if there exists
z ∈ {0, 1} such that

1. ∀ (x, y) ∈ S, f(x, y) = z;

2. for any two distinct (x1, y1), (x2, y2) ∈ S, either f(x1, y2) 6= z or f(x2, y1) 6= z.

Lemma 3 If f has a fooling set S, then c(f) ≥ log2 |S|.

Proof We know that Rf has at most 2c(f) monochromatic rectangles. However, by the definition
of the fooling set we need a distinct f -monochromatic rectangle for each element in S, meaning
2c ≥ |S|. This implies the above result.
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This method can be used to show that the equality function actually takes the maximal number
of bits to compute.

Example [Hardness of equality] For EQ : {0, 1}n × {0, 1}n → {0, 1}, c(EQ) ≥ n

Proof Define S = {(x, x) : x ∈ {0, 1}n}. It can be easily verified that this is a fooling set for EQ.
Since |S| = 2n, this suffices for the proof.

2.2 The Rank Lower Bound Method

Given any boolean function f : {0, 1}n × {0, 1}n → {0, 1} we can associate a 2n × 2n matrix
Mf , where Mf (x, y) = f(x, y). In words, Mf specifies the values of the function f on any input
(x, y) ∈ X × Y . The rank lower bound method is an algebraic method to give lower bounds on
c(f) by computing the rank of Mf .

Definition For any function f , rank(f) is the linear rank of Mf over R.

The following lemma gives a lower bound on the deterministic communication complexity of f
through the rank of Mf :

Lemma 4 For any function f , c(f) ≥ log2 rank(f).

Proof Let L1 be the set of leaves of any protocol tree that gives output 1. For each l ∈ L1, let
Ml be a 2n × 2n matrix which is 1 on all (x, y) ∈ Rl and 0 otherwise. It is clear that

Mf =
∑
l∈L1

Ml.

We know that the rank function is sub-additive, meaning that rank(A+B) ≤ rank(A) + rank(B)
for any matrices A,B. Therefore:

rank(Mf ) ≤
∑
l∈L1

rank(Ml).

Notice that rank(Ml) = 1 for any l ∈ L1 since Ml can be expressed as an outer-product of two
vectors2. Therefore rank(Mf ) ≤ |L1| ≤ |L| ≤ 2c(f), which implies that:

c(f) ≥ log2 rank(f).

2.2.1 The Log-Rank Conjecture

The above fact shows that communication complexity lower bounds can be proven from rank lower
bounds. It is a longstanding open question whether or not there is a converse relationship. The best
known upper bound is c(f) ≤ rank(f) + 1, and thus the gap between these bounds is enormous.
To this end, the log rank conjecture states that the deterministic communication complexity of any
two party function f is equal to the log of the rank of Mf , up to polynomial factors. (An early
paper by Lovasz and Saks [3] is attributed to the conjecture.)

2These vectors are the characteristic vectors for the rectangle that reaches l.
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Claim 5 (Log-Rank Conjecture) For any function f , c(f) = (log (rank(f)))O(1)

Despite much research, very little is known about this conjecture. Until recently the best upper
bound known [2] was:

c(f) ≤ log2(4/3) · rank(f)

.
A recent paper [1] established a connection between the log-rank conjecture and a number

theoretic conjecture known as the Freiman-Ruzsa conjecture:

Theorem 6 Assuming the Freiman-Ruzsa conjecture over Fn2 , for any boolean f

c(f) ≤ O(rank(f)/ log (rank(f))).

Very recently, Lovett [4] proved the following unconditional result, based on the discrepancy of
low rank matrices.:

Theorem 7
c(f) ≤ O(

√
rank(f) log (rank(f))).

3 Randomized Communication Complexity

In the probabilistic case, players are permitted to toss random bits, represented by a random bit
string r. There are two models depending on whether the coin tosses are public or private. In the
public random string model the players share a common random string, while in the private model
each player does not have access to the other’s string. This yields the following definitions:

Definition Let P be a randomized protocol.

Zero-sided error: P computes a function f with zero-sided error if for every (x, y),

Pr[P (x, y) = f(x, y)] = 1.

Notice that in this case, the number of bits communicated is a random variable.

One-sided error: P computes a function f (with one sided error ε) if for every (x, y) such that
f(x, y) = 0,

Pr[P (x, y) = 0] = 1,

and for every (x, y) such that f(x, y) = 1,

Pr[P (x, y) = 1] ≥ 1− ε,

Two-sided error: P computes a function f (with error ε) if

∀ x ∈ X, y ∈ Y, Pr [P (x, y) = f(x, y)] ≥ 1− ε,

Using the above, we are now in a position to define the complexity of a randomized protocol.
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Definition Let f : X ×Y → {0, 1} be a function. We consider the following complexity measures
for f :

• R0(f) is the minimum average case cost of a randomized protocol that computes f with zero
error.

• For 0 < ε < 1/2, Rε(f) is the minimum worst case cost of a randomized protocol that
computes f with error ε.

• For 0 < ε < 1/2, R1
ε(f) is the minimum worst case cost of a randomized protocol that

computes f with one-sided error ε. We define R1(f) = R1
1/2(f).

Below, we look at a randomized protocol for the equality function. This will be useful in illustrating
the additional power that randomization yields, as the equality function was previously shown to
be deterministically hard.

Example [Equality Revisited] Recall that EQ(x, y) = 1 iff x = y. Here we analyse the randomized
communication complexity in the public coin protocol for the function EQ:

Let x ∈ X, y ∈ Y , X = Y = {0, 1}n be the input strings, and let r ∈ {0, 1}n be the public
coin tosses. The protocol is the following: Alice computes the bit a = (

∑n
i=1 xiri) (mod 2)

and sends it to Bob. Then Bob computes b = (
∑n

i=1 yiri) (mod 2). The value of the protocol
is

P (x, y, r) = 1 iff
n∑
i=1

xiri =
n∑
i=1

yiri (mod 2).

This requires communication of only two bits. If x = y, then for all r, the protocol is
correct, i.e., P (x, y, r) = 1. If x 6= y, then with probability 1/2 (over the public coin tosses)
P (x, y, r) = 1, i.e., our protocol is wrong. If we repeat the above random experiment c times
independently, then the probability that our protocol is wrong on all of the executions is
1/2c. This protocol has O(1) probabilistic communication complexity when the error ε is a
constant.

3.1 Newman’s Theorem

The above example gives a brief illustration of the power that randomization provides. However,
what kind of difference can we expect between the public and private coin protocols? To this
end, the following theorem due to Newman provides a link between the two, since any public coin
protocol can be transformed into a private coin protocol with a small penality in the error and a
small additive penalty in the communication complexity. Before we show this, a relevant result
from probability is given below:

Fact [Chernoff Bound] For a given random variable X, we can show that ∀t > 0:

Pr(X ≥ a) ≤ E[etX ]

et·a
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Theorem 8 Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. For every δ > 0 and every ε > 0,

Rprivε+δ (f) ≤ Rpubε (f) +O(log n+ log δ−1)

Proof We will prove that any public coin protocol P with error ε can be transformed into another
public coin protocol, P ′ such that:

i The communication complexity of P ′ is the same as that of P .

ii P ′ uses only O(log n+ log δ−1) random bits.

iii The error of P ′ is at most ε+ δ.

The theorem follows since P ′ can be easily converted to a private coin protocol with the desired
parameters: first Alice will privately flip that many random coins, then send them to Bob, and
then they proceed to follow the protocol P ′.

Let Z(x, y, r) be a random variable that is equal to 1 if P (x, y, r) outputs an incorrect answer,
and 0 otherwise. Since P has error ε, Er[Z(x, y, r)] ≤ ε for every x, y. Let r1, . . . , rt be random
strings, where we will soon set t = O(n/δ2), and define Pr1,...,rt(x, y) as follows: Alice and Bob
choose i ≤ t at random, and then run P (x, y, ri). We will prove that there exist strings r1, . . . , rt
such that Ei[Z(x, y, ri)] ≤ ε + δ for all (x, y). For this choice of strings, the protocol Pr1,...,rt will
be our desired protocol, P ′.

We use the probabilistic method to show the existence of r1, . . . , rt. Choose r1, . . . , rt at random,
and consider a particular input pair (x, y). The probability that Ei[Z(x, y, ri)] > ε+δ is exactly the
probability that 1/t

∑t
i=1 Z(x, y, ri) > ε+δ. Applying the Chernoff bound, since Er[Z(x, y, r)] ≤ ε,

Prr1,...,rt

[(
1/t

t∑
i=1

Z(x, y, ri)− ε

)
> δ

]
≤ 2e−2δ

2t.

By choosing t = O(n/δ2), this is smaller than 2−2n. Thus for a random choice of r1, . . . , rt, the
probabilty that there exists a bad (x, y) such that Ei[Z(x, y, ri)] > ε+δ is smaller than 22n2−2n = 1
(by the union bound). Thus there exists r1, . . . , rt such that for every (x, y) the error of Pr1,...,rt
on (x, y) is at most ε+ δ. It is easy to check that the number of random bits used by the protocol
Pr1,...,rt is log t = O(log n+log δ−1), and that the communication complexity of Pr1,...,rt is the same
as that of P .
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