
CS 2401 - Introduction to Complexity Theory Lecture #1: Fall, 2015

CS 2401 - Introduction to Complexity Theory

Lecture #1: Fall, 2015

Lecturer: Toniann Pitassi

Scribe Notes by: Alex Edmonds

1 Course Topics

• Turing machines

• Main complexity classes:

– Time: P, NP, EXP, E, PH, NP-complete

– Space: L, NL, PSPACE

– Randomized complexity classes: RP, BPP

• Concrete computational models and lower bounds

2 Turing Machines

Definition A Turing machine M is described by a tuple (Γ, Q, δ) consisting of:

• Γ, called the alphabet of M , is a set of symbols which includes 0, 1, Ab, . where Ab and . stand
for “blank” and “start” resp.

• Q, a set containing the possible states of M , which includes qstart and qhalt

• δ : Q× Γk → Q× Γk−1 × {L,R, S}k called the transition function, where L, R and S stand
for “left”, “right” and “stay” resp.

The Turing machine (TM) is represented by k tapes. Each tape is a sequence of cells, infinite in
one direction, where each cell contains a symbol from Γ. The first tape is designated the input
tape. Initially, all tapes contain . in the first cell and all tapes except the input tape contain Ab
everywhere else. The input tape begins with a finite sequence of non-blank symbols followed by

Ab everywhere else. Each tape always has one of its cells marked by a head. Initially, these heads
mark the first cells of each tape.

On each step, the machine is in some state q ∈ Q and the machine reads each cell marked by
a head to obtain (σ1, σ2, . . . σk). Let

(q′, (σ′2, . . . , σ
′
k), (z1, . . . , zk)) = δ(q, (σ1, . . . , σk)) (1)

Then, the following occurs:

1. On the ith tape, in the cell marked by the head, σi is replaced with σ′i.

1

CS 2401 - Introduction to Complexity Theory Lecture #1: Fall, 2015

2. On the ith tape, the head moves to the left, right or stays in place according to zi ∈ {L,R, S}.

3. The state of the machine is updated to q′. If q′ = qhalt, the machine stops and ceases to
update the tapes.

Definition Let f : {0, 1}∗ → {0, 1}∗. We say that the TM M computes f if, for x ∈ {0, 1}∗, when
M is run on x, it halts with f(x) on its output tape (tape k). We say M computes f in time T (n)
if, for all n, for all x where |x| = n, the number of steps M takes on input x is at most T (n).

3 Church-Turing Thesis

The Church-Turing thesis claims that f : {0, 1}∗ → {0, 1}∗ can be realized in some computational
model or device iff f can be computed by some TM. It is noted that it is impossible to discuss
the formal validity of such a statement since there does not exist a general characterization of
computational models.

4 On Restrictions of Turing Machines

4.1 Restriction of alphabet Γ

Fact (Claim 1.5) If f : {0, 1}∗ → {0, 1}∗ is computed by M = (Q,Γ, δ) then f can also be
computed by M ′ = (Q′,Γ′, δ′) where Γ′ = {., 0, 1, Ab}. If M runs in time T (n), then M ′ runs in
time T ′(n) = 4T (n) log |Γ|.

Proof (sketch) Every tape of M is encoded by a tape of M ′. Because any member of Γ may be
encoded in log |Γ| bits, every cell in a tape of M may be represented by log |Γ| cells in the tape of
M ′. To simulate a step of M , M ′ does the follwing for each tape in parallel:

1. reads the log |Γ| sequence of cells corresponding to the one read by M ;

2. uses its state register to store the symbol read;

3. uses the transition function of M to compute the symbols M writes, etc.;

4. stores this information in its state register;

5. uses log |Γ| steps to write the encodings of these symbols on its tapes.

To allow for such a procedure, the state register Q′ of M ′ is extended so that it may represent
k symbols in Γ and a counter from 1 to log |Γ|. Hence, |Q′| ≤ O(|Q||Γ|k+1). Corresponding to a
single step in M , 4 log |Γ| steps may be required in M ′, whereby we obtain T ′(n) = 4T (n) log |Γ|.

4.2 Restriction to single tape

Fact (Claim 1.6) If f is computable by a k-tape TM M = (Q,Γ, δ) in time T (n), then f is
computable by a 2-tape (or 1-tape read/write) TM M ′ = (Q′,Γ′, δ′) in time T ′(n) = 5T (n)2.

2

CS 2401 - Introduction to Complexity Theory Lecture #1: Fall, 2015

Proof (sketch) Extend Γ = {z1, z2, . . . , zn} to Γ′ = {z1, z2, . . . , zn, ẑ1, ẑ2, . . . , ẑn}. The ith tape of
M is inscribed in the cells i, i + k, i + 2k, . . . of M ′. Where a cell in a tape of M is marked by a
head and contains zj , the corresponding cell in M ′ is inscribed with ẑj instead. Corresponding to
a single step in M , M ′ sweeps its entire tape to register those symbols marked by “ˆ” and, after
registering the results of M ’s transition function, sweeps the entire tape once again to update the
encoding accordingly. Since M never reaches further than location T (n) on its tapes, M ′ never
reaches further than 2n + kT (n) ≤ (k + 2)T (n). Thus, for a single step of M , the corresponding
sequence of steps in M ′, described above, may be as long as 5kT (n), which accounts for some extra
steps needed for updating head movement and book keeping. This gives T ′(n) = 5kT (n)2.

5 Universal Turing Machines

Fact Every TM may be represented by binary strings such that each string α ∈ {0, 1}∗ represents
a TM denoted Mα (if some string is not a legal representation, map it to a trivial TM) and every
TM is represented by infinitely many strings.

Theorem 1 There is a TM U such that, for x, α ∈ {0, 1}∗, U(x, α) = Mα(x). Moreover, if the
running time of Mα is T (n), then, for |x| ≤ n, U(x, α) takes at most C · T (n) log T (n) steps where
C depends only on the alphabet size and number of tapes of Mα

Proof (sketch) U consists of an input tape and three work tapes. The first work tape is a
simulation of the work tape of Mα. Here, we invoke Claim 1.5 and Claim 1.6 so that we may assume
Mα consists of single work tape and uses the same alphabet as U , although these transformations
introduce quadratic slowdown so that Mα runs in time C ·T (n)2. Another work tapes of U is used
to store the values of the transition function of Mα. The last work tape is used to keep record of
the current state of Mα. Other techniques are required to obtain the tighter bounds of the theorem
as stated above (see section 1.7 of Arora & Borak).

6 Undecidable Functions

Some functions, indeed most, are not computable. For instance,

UC(α) =

{
0 if Mα(α) outputs 1

1 otherwise

is not computable. To see this, take any TM M and its encoding α so that M = Mα. By definition,
Mα(α) and UC(α) do not agree.

The most famous undecidable function is the halting function:

HALT (x, α) =

{
1 if Mα halts on input x

0 otherwise

We prove that it is undecidable by showing that its computability would imply the computability
of UC, thereby deriving a contradiction. Indeed, suppose there exists TM MHALT which computes
HALT . Then we can compute UC with MUC defined as follows: first run MHALT (α, α); if the
result is 0, meaning Mα(α) does not halt, return 1; otherwise, run U(α, α) and return its negation.

3

CS 2401 - Introduction to Complexity Theory Lecture #1: Fall, 2015

7 Time Complexity Classes

Definition A language L is a subset of {0, 1}∗. This may be equivalently represented by a boolean
function f : {0, 1}∗ → {0, 1}.

Definition A language L is in DTIME(T (n)) iff ∃ TM M , ∃c > 0 so that M runs in time cṪ (n)
and decides L, i.e. [x ∈ L⇒M(x) outputs 1] and [x /∈ L⇒M(x) outputs 0].

Definition P , which stands for polynomial time, is defined by P =
⋃∞
k=1DTIME(nk).

Some important languages in P include:

• graph connectivity

• linear programming

• primality testing

• greatest common denominator

• circuit evaluation

Definition L ∈ NP if there exists a polynomial p(n) = nc and a polytime TM M such that, for
all x,

x ∈ L⇔ ∃u {|u| ≤ |x|c & M(x, u) = 1} (2)

Here, u is referred to as the witness.

Important languages in NP include:

• P ⊆ NP

• independent set problem (IS)

• integer linear programming

• SAT, circuit-SAT, 3SAT

4

