CSC2401 Assignment 1 Solutions

November 7, 2015

These solutions are for your help in studying — they have not been proofread
carefully, and may contain errors!

Conventions. For z € {0,1}* and 1 < i < k, we denote by z[i] the i*" bit
of x, with the convention that indeces begin at 1. We may refer to « € {0, 1}k
as a bit string, bit vector, or simply string, with the different names intended
to convey a particular usage. Such an x may be transparently used to refer to
a subset of a finite set of cardinality k, or a k-bit binary representation of a
natural number with the interpretation being inferred by context.

1

Let £ be an NP-complete unary language. Then there exists a polynomial p(n)
and poly-time reduction f such that for all x € {0,1}", 2 € SAT < f(x) € L
and f(z) < p(Jz|). It suffices to describe a poly-time algorithm for SAT. We
may assume without loss of generality that range(f) C {1}* U {0}, since any
y € range(f) \ {1} may be mapped to 0 while preserving f being a reduction.

Fix a reasonable encoding method of CNF forumulas over {0,1}" and
define |¢| to be the length of the encoding of CNF ¢. We may also implictly
refer to the encoding of ¢ as ¢ alone when inferred by context.

Let ¢(Z) be a CNF formula over variables £ = x1,...x,. For a partial
assignment u to @, let ¢ |, be the CNF obtained by deleting all clauses contain-
ing a literal p assigns to 1 and deleting each literal that p assigns to 0; if the
resulting CNF would contain an empty clause, then ¢ | u =L, and if the result-
ing CNF is empty, then ¢ |, = T. Observe that |¢ |,| < [¢|. Suppose a partial
assignment p gives truth values to x1,...x; for 0 < j < k; define the extensions
Lo, p1 as the partial assignments assigning 0 (resp. 1) to z;11 and assigning all
other variables according to . Let € be the empty partial assignment, assigning
truth values to no variables.

We define the complete binary self-reduction tree Ty as follows:
e The root is labeled with e.

e If an interior node is labeled with p, where p assigns truth values to
Z1,...25, 0 < j < k, then the left and right children are labeled with g
and p; respectively.

Paths and nodes in Ty are in one-to-one correspondence with partial assign-
ments to &, with leaf nodes corresponding to total assignments. We identify
nodes unambiguously using their labelling assignments. For any node u, ¢,
is unsatisfiable iff ¢ |, is unsatisfiable for all descendants 7w of u. Thus ¢ is
satisfiable iff there exists a leaf u such that ¢ |, = 1. We say that a node u is
unsatisfiable if p cannot be extended to a satisfying assignment for ¢.

We now give a poly-time algorithm M for SAT. Fix an input CNF ¢
over k variables. M operates by performing a depth-first search of Ty, using the
reduction f to prune the search by identifying unsatisfiable nodes. M maintains
a set U of strings; initially, U = 0. M evaluates df s(e) on T}, defined recursively
at node u as follows:

e Compute ¢ |, and f(¢1,).
e If¢|,=T,return 1.
o If f(¢pl,)eUorel,=1,set U=UU{f(¢],)} and return 0.

e Otherwise, compute a = df s(ug) V df s(u1). If a = 1, return 1; otherwise
set U=UU{¢|,} and return 0.

M accepts iff dfs(e) = 1. Clearly if dfs(u) = 1 then ¢|, has a satisfying
assignment. Conversely, observe that only no-instances of £ are added to U;
thus if dfs(u) = 0 then ¢ |, is unsatisfiable. We now show that dfs(e) can be
computed in polynomial time.

To show that each non-recursive step in df s(u) runs in polynomial time, it
suffices to show that inclusion in U can be determined in polynomial time. We
first observe the invariant that U C range(f), so |y| < p(|¢|) for all y € U and
|U| < p(|¢]) + 1 (accounting for the lone non-unary string 0 € range(f)). Thus
for any p, testing f(¢|,) =y € U can be done in polynomial time by scanning
y for each element of U. Thus it suffices to show that the number of nodes on
which df s is computed is at most polynomial in |¢]|.

Say that M wisits a node if M computes df s(uo) and df s(u1). Let T}, be
the tree obtained by pruning all subtrees not visited by M. Let N be the number
of distinct paths in 7j,. We claim that N < p(|¢[). Suppose for contradiction
that N > p(|¢[). Then we may choose two distinct leaves m and p of T such
that f(¢ ;) = f(#1,) (if no such m, p exist the claim is trivial). We may

assume without loss of generality that ¢ precedes p in depth-first order and
that both ¢ |, and ¢ |, are unsatisfiable. But then f(¢ |,) € U after M visits
7, contradicting p being in T(;IS' Since the depth of Ty is at most k, M visits at
most k- N nodes, and hence df s is computed on at most 2- k- N < 2-k-p(|¢|)
nodes, completing the proof. g

2

2.1

Let A denote the empty clause, and for a CNF ¢ with variable x, let ¢ |, _,
denote ¢ under the partial assignment setting x = a and not assigning any other
variables.

Let ¢ be a 2CNF formula over variables {z1,z2...2,}. Define Ly as the
set of literals appearing in ¢, and define the implication graph G4 as the directed
graph over 2n vertices V(Gy) = Ly and edges E(G,) containing (a,b) for all
{@,b} € ¢, (@,a) for all {a} € ¢, and no other edges. We write a~-4b if there is
a directed path from a to b in G4. We may omit mention of ¢ when a particular
formula is clear from context. We note the following straightforward properties

of G¢:

e (*) Any edge (a,b) € E(G) corresponds to a clause {a,b} = a — b in the
underlying formula, so by transitivity if a~>4b then ¢ implies a — b.

e (**) By the symmetry of clauses, if a~4b then b~ sa.

The following claim relates the satifiablity of ¢ to certain cycles in its
implication graph.

Claim 1 For any 2CNF ¢ such that A & ¢, ¢ is unsatisfiable iff a~ya~-qa for
some a € V(Gy).

Proof. The reverse direction follows immediately by observing that if a ~
a ~ a, then by (*) and (**), any satisfying assignment to ¢ also satisfies a = a,
contradiction.

For the forward direction, fix 2CNF ¢ not containing A. We show the
contrapositive by strong induction on the number of variables in ¢. For the
base case, ¢ is the empty conjunction and is trivially satisfiable.

For the inductive step, assume ¢ is over variables 1, x5 ... 2,41 and that
for all literals a, there is no path a ~» @ ~» a. Then there exists a literal such
that there is no path a ~» a. Define partial assignment p such that u(b) =1
if a ~» b and p(b) = 0 if b ~» a with all other variables unassigned. pu is well
defined, since if @ ~ b and @ ~» b then a ~ b ~ a@ by (**); Then p satisfies
every clause of ¢ containing a literal reachable from a. Furthermore, p cannot
falsify ¢ - if a singleton clause {b} were falsified, then b ~~ b and so b and b are
both reachable from a contradicting our previous assertion.

Thus ¢ |, contains at least one fewer variable, does not contain A, and
the implication graph G| is a subgraph of G4 and hence does not contain a
path ¢ ~ & ~» ¢ for any literal ¢ € L(Gy L“). Thus by the inductive hypothesis,
¢ 1, has a satisfying assignment o which combined with u yields a satisfying
assignment for ¢. This completes the proof of Claim 1.

Claim 2 2SAT < NL.

Proof. We show that 28ATC € NL by giving a non-determininstic log-space
algorithm M for deciding 2SATC. As indicated by Claim 1, we essentially use
the NL-algorithm for PATH, implicitly using ¢ as the representation of G.
The full algorithm is as follows:

Let ¢ be the input. Scan the input tape and accept outright if ¢ does
not encode a 2CNF formula or contains A, and reject if ¢ contains no clauses.
Guess a literal = and carry out the PATH algorithm for endpoints (literals)
(z,), rejecting if no path is found in 2n steps. Repeat with (Z,), accepting if
the algorithm succeeds within 2n steps.

Clearly the space requirements are no greater than PATH. If ¢ is satis-
fiable then by Claim 1 there is no literal where z ~» Z ~» z. Then no choice
of x in the algorithm can pass both invocations of the PATH algorithm. The
converse follows similarly from Claim 1.

Since NL = CoNL it immediately follows that 2SAT € NL. u

2.2

We show that the NL-hard problem PATHC is log-space reducible to 25AT by
exhibiting a log-space algorithm M computing a reduction f. Let (G,s,t) be
an input to PATH with G = (V, E) and s,t € V (define f(z) as some standard
tautology for any malformed input z). M forms the 2CNF ¢ consisting of
clauses {a, b} for each (a,b) € E, and clauses {s}, {t}. Clearly ¢ is computable
in logarithmic space. Observe that if (a,b) € E then any satisfying assignment
to ¢ satisfies a — b. We claim that ¢ is unreachable from s iff ¢ has a satisfying
assignment.

For the backward direction, assume that there exists a path s ~» t. Then
¢ has a clause {a, b} for each edge on the path, so any satisfying assignment to
¢ must satisfy s — t by transitivity. But any such assignment must also satisfy
clauses {s} and {t}, a contradiction.

For the forward direction, suppose t is not reachable from s. Then there
exists a partition S, T of V with s € S and t € T and no edge from S to T.
Let p assign all w € S to 1, and all v € T to 0. We claim that u satisfies ¢.
By definition of ¢ we may write ¢ = ¢g A ¢ where ¢g contains {s} and {a,b}
for all a € S, and ¢ contains all other clauses. Then pu satisfies {s} and all
{a,b} € ¢g since b ¢ T by definition of S,T. Conversely, u satisfies {t} and any
{@,b} € ¢r since a ¢ S by definition of ¢7. m

3

We follow the hint given in the handout, beginning with the following lemma
giving an upper bound on the VC-dimension of a collection.

Lemma 3 Fiz finite U and m and let S = {S;}m where S; € U for all 0 < i <
m. Then VC(S) < |logm].

Proof. Fix m and S = {S;}.,, and suppose to the contrary that VC(S) = ¢ >
|logm]. Then there exists X C U of size ¢ which is shattered by S. There
are 2° subsets of X but the set {S; N X}, has at most m distinct elements,
contradiction.

We give an alternate definition of V C under the bit-string representation
of sets. Fix finite U with cardinality n, For n-bit strings S and X, define S[X
(read as S restricted to X) as the subsequence of S selected according to the
ones of X. For a collection S = {S;},, define S[X = {S;[X},. Observe
then that X is shattered by collection S iff S[X = {0,1}" , where k is the
cardinality of X (note that we transparently use the bit-string representation
of S as needed).

3.1
Claim 4 VCdim is in NP.

Proof. Fix finite U of size n and input (S = {S;}m, k) of length O(nm).
Consider an advice string (X, I) where X is an n-bit string and I a sequence of
at most k' = [logm | binary integers in [m]; clearly the length of such a string is
polynomial in nm. Suppose I =1i; ...1x, and interpret X as a subset of U. Let
R be the predicate Vj < k-5;, [X = j—1, where S;, [X is intepreted as a k'-bit
binary integer. It is clear by definition of R that (S, k) has a witness iff (S, k) in
VCdim; namely, a set X of size > k shattered by S, and an appropriate choice
of S; for each subset of X. That R runs in time polynomial in mn follows from
Lemma 3, which gives a O(mn) upper bound on the number of S;’s to check .
]

3.2
Claim 5 There is a TM deciding VCdim in time nC(ogm)

Proof. The following algorithm satisfies the claim: fix input (S, k) where S =
{Si}tm, |Si] = n and k < n. Compute k' = |logm]. If & > k', reject. The
algorithm will maintain an array A of k bits, initially all 0. For each j € [],
perform the following steps: For each index ¢ < n, scan over bit position ¢ in
each element of S and count the number of 1’s. If some i has m/27 1’s, set
Alj] = 1. Accept if \/}_; A[j] =1.

It is easy to see that \/;?:1 A[j] = 1iff STX = {0,1}" for some X (namely,
X ={j1,J2-..jrx} where for each i = 1...k, A[i] was set at iteration j;). The
time bound follows from Lemma 3, which gives us a O(lognm) bound on the
number of iterations. g

We now address the conjecture that VCdim is not NP complete. Were this
the case, by Claim 5 we would have that NP is contained in DTIME[n©(cg»)].
While not refuting the P # NP conjecture in and of itself, it is widely held
that there are hard problems in NP that do not admit 'near’-polynomial time
algorithms.

4

4.1

Given the definitions of VC-dimension and Y%, it will suffice to show that there
is a poly-time predicate R({C,k), X, X’ i) computing (informally) Vz € X -
C(z,i) =1 < z € X', where X’ C X C U, |X|=k, i <m and C a circuit
as given in the problem.

In order to properly specify R, the representations of its inputs must be
carefully specified to be polynomial in |[C| € O(log®mn). Fix k' = [logm].
Recall from Lemma 3 that &’ is an upper bound on VC(S) for a collection of
size m.

We represent X as a sequence x1, x5 . .. T of binary numbers representing
elements of U (padding with 0’s up to length O(k’'logn)). We represent X’ C X
as a k/-bit vector where X'(j) <= x; € X'. Clearly then R is computable
in time polynomial in N, by checking for each bit j (0 < j < k') of X’ that
C(z;,7) = X'(j). An initial step rejects if k£ > k' or X has cardinality < k.

It follows from the definition of R and the lengths bounds given for its
inputs that, for any instance (C, k),

(C, k) € VCdimSuccinct < 3IXVX'Fi- R((C,k), X, X', i)

hence VCdimSuccint € ¥%. u

4.2
We show that ¥3SAT <, VCdimSuccinct.

We define a reduction f from X3SAT to VCdimSuccinct as follows. Say
the formula is JaVy3Izé(z,y, 2), and assume without loss of generality that the
Yy is only quantified over strings y of positive Hamming weight (a simple trick
achieves this). Assume z,y, z all have length n.

The circuit will encode a matrix or table, where the rows correspond to the
universe clements, and the i*"* column is the indicator for the " set. There
are n2" rows, with 2" groups corresponding to all ’s, and each group having
n rows corresponding to the coordinates of y. There is a column for each triple
(z,y,2).

The matrix is block diagonal: it is 0 except when the row group label z
matches the x from the column triple. Within the block corresponding to a
particular z, you have length-n columns corresponding to each possible (y, z).
If the formula accepts (x,y, z) (that is, ¢(x,y, z) is true), then write y in that
column, otherwise write the all-0 string of length n. It is straightforward to

check that there is a small circuit C(a,b) that outputs the (a,b) entry of the
matrix.

We want to show that the set system defined by C' has VC dimension n if
and only if the formula is a yes-instance. For the easy direction, assume that
the formula is a yes-instance, and suppose that w is the value of x such that
Yydzé(w,y, z) is true. Look at the block corresponding to the value of z = w.
Since this is a yes-instance, for every value of y there is at least one z-value such
that ¢(w,y, z) is true, and thus by the definition of the matrix, there will exist
2™ columns within this block that contain all possible values of y. Thus there
is a shattered set of size n.

For the hard direction, suppose that there is a shattered set of size n. We
want to show that the formula is a yes-instance. To see this, we show first that
the shattered set must be exactly the full group corresponding to some z. Then
you need the assumption that we’re only quantifying over nonzero y’s, because
the y = 0™ pattern will show up even when the formula doesn’t evaluate to true.

10

5

This problem is to prove that SPACE(n) # NP.

We will prove that there is a language in N P that is not in SPACE(n) since
NP is closed under polynomial time reductions and SPACE(n) is not. Let L
be any language over {0,1}. We define a new language Pad(L, f(n)) as follows:

Pad(L, f(n)) = {x#1/=D=1=1 | 2 e L}

We first claim that if Pad(L, f(n)) is in NP, then L € NP for all f(n) €
O(p(n)) where p is some polynomial.

To prove this, suppose that Pad(L, f(n)) € NP. Then we can decide
Pad(L, f(n)) in nondeterministic polynomial time. We can then decide L in
nondeterministic polynoimal time as follows. On input x, append #1/(zD=lzl
to 2 and decide whether 2#17(21=1zl ¢ Pad(L, f(n)). If so, accept z. If not, re-
ject x. Since f(n) € O(p(n)) for some polynomial p, Pad(L, f(n)) is computable
in nondeterministic polynomial time and thus L € NP.

We will now use this claim to show that NP and SPACE(n) are different.
Assume for contradiction that NP = SPACE(n). Let L be a language in
SPACE(n?) but not in SPACE(n). We know that such a language exists by
the space hierarchy theorem. By our assumption, L is not in NP, and therefore
by our lemma above, Pad(L,n?) is not in NP as well. Let My, be a TM which
decides L using O(n?) space and consider the following TM, M’. M’ on input
x proceeds as follows. If z # y#l'yP_M7 then reject. Otherwise run My on y;
accept if and only if M}, accepts.

Clearly M’ decides Pad(L,n?) in linear space since M, requires at most
O(|y|?) space and |z| € O(|y|?). Therefore, Pad(L,n?) € SPACE(n). There-
fore, Pad(L,n?) € NP, and we have reached a contradiction.

11

