$\mathbf{CS} \ \mathbf{2401}$

Complexity Theory ASSIGNMENT # 1 DUE DATE: October 27, 2015

- (1.) A language L is unary if the underlying alphabet is $\{1\}$. (That is, every string in L is of the form 1^i for some $i \ge 0$.) Prove that if every unary NP language is in P, then EXP=NEXP.
- (2.) (a) Show that 2SAT is in NL.
 - (b) Prove that 2SAT is NL-hard with respect to logspace reductions.
- (3.) Let $S = \{S_1, S_2, \ldots, S_m\}$ be a collection of subsets of a finite set U. Let |U| = n. Then each S_i will be represented by a bit string of length n = |U|, where the j^{th} position will indicate whether or not the j^{th} element of U is in S_i . The VC-dimension of S, denoted by VC(S), is the size of the largest set $X \subset U$ such that for every $X' \subseteq X$, there is an i such that $S_i \cap X = X'$. (That is, X is *shattered* by S.) Let VCdim be the set of pairs (S, k) such that the VC-dimension of S is at least k.
 - (a) Prove that VCdim is in NP.
 - (b) Explain why it is unlikely that *VCdim* is NP-complete.

HINT: There is an algorithm for VCdim that runs in quasi-polynomial time. That is, time $n^{O(\log n)}$, where n is the total input size. The algorithm is based on a simple lemma which upper bounds the maximal size of the VC dimension of a set S, as a function of the size of S. State and prove this lemma, and show how it implies both an NP-algorithm, as well as a quasi-polynomial time algorithm for VCdim. Then explain why the existence of such an algorithm makes it unlikely that VCdim is NP-complete.

- (4.) This problem also concerns the VC-dimension of a set S, only now the set S will be represented more succinctly. A boolean circuit C succinctly represents collection S if S_i consists of exactly those elements $x \in U$ for which C(i, x) = 1. Let |U| = n. Then C will have $\log m + \log n$ inputs, where the first $\log m$ inputs will be i in binary notation, and the last $\log n$ inputs will be x in binary notation. C itself will be encoded by some string of length polynomial in the size of C. Define VCdimSuccinct to be the set of all strings < C, k > such that C represents a collection S such that the VC-dimension of S is at least k.
 - (a) Show that VCdimSuccinct is in Σ_3^p .
 - (b) Prove that VCdimSuccinct is Σ_3^p complete. (Hint: Reduce from Σ_3 -3SAT.)
- (5.) Show that $SPACE(n) \neq NP$.