
A Switching Lemma Primer

�

Paul Beame

University of Toronto

y

10 King's College Road

Toronto, Ontario

Canada M5S 1A4

beame@cs.washington.edu

April 94

Abstract

We present simpli�ed proofs for a variety of switching lemmas. Our arguments ex-

tend recent switching lemma improvements to show, using simple counting techniques,

that under restriction, DNF (resp. CNF) formulas can be represented by small height

decision trees. We also show how the lemmas are applied in di�erent contexts. In ad-

dition to reproving existing results, we also present a proof of a new switching lemma

for restrictions that are partial q-matchings.

1 Introduction

Arguments using restrictions { partial assignments to input variables { to simplify un-

bounded fan-in Boolean circuits have been quite successful for obtaining lower bounds on

circuit size and depth ([FSS81, Ajt83, Sip83, Yao85, H�as87, Ajt89, Lyn86, Bea90]), ora-

cles to separate complexity classes ([Yao85, H�as87, Cai86, Ko91], see also [FSS81, Sip83]),

lower bounds on time, processors, and memory of PRAMs ([BH89, Bea90]), as well as on

the complexity of proofs in bounded-depth proof systems ([Ajt88, Ajt90, BPU91, BIK

+

92,

KPW91, PBI93, BP93].) The combinatorial essence of these arguments is what is known

as a switching lemma which is used to show that an AND of small OR's can be written

(possibly approximately) as an OR of small AND's (or vice versa) if an appropriate restric-

tion is applied. These switching lemmas allow one to reduce the depth of the formulas

by 1 at the expense of reducing the number of variables. The key to their application

�

Research supported by NSF grant CCR-8858799.

y

On leave from the University of Washington.

1

is that they simplify the formulas without simplifying the function being computed too

much. To this end, one chooses a family of restrictions that is tailored to the function

being computed and argues that some member of the family has the desired properties.

Although switching lemmas were found originally by Furst, Saxe, and Sipser [FSS81]

(and independently in a di�erent guise by Ajtai [Ajt83],) the model for the most powerful

of these switching lemmas is that of H�astad [H�as87]. The argument uses the probabilistic

method { one argues that the probability that a restriction from the family fails to have

the desired properties is strictly less than 1. In the argument one considers, for example,

an OR of small AND's (DNF formula with short terms) and considers each term in turn.

The basic idea is that a term that is falsi�ed by a restriction does not contribute any

variables to the AND of small OR's and for each term that is not falsi�ed it is more likely

that the term is satis�ed (and thus the whole formula is �xed to a constant) than that

any variable is contributed in the AND of small OR's.

One complication in H�astad's argument is that one must deal with the bias induced on

the probability space by the observations of terms that are falsi�ed by the restriction. To

handle this in as simple a manner as possible, H�astad in fact proves the switching lemma

conditioned on the event that some arbitrary function's value is �xed to 0. He then argues

that such conditioning can only bias the outcome in his favour. For the fully independent

restrictions that he �rst considers this is argument is fairly easy. However, with increased

complexity of the families of restrictions, such arguments become increasingly non-trivial.

Furthermore, because the argument is recursive in nature, in some cases there are other

conditionings that complicate things further.

Recently there has been a simpli�cation of the H�astad technique that is based on a

similar intuition but avoids this kind of conditioning. Woods (private communication)

observed that by considering the unwinding of the recursive argument (which he viewed

as a game between two players, one choosing the long term and the other choosing the

restriction) and observing only part of what happens in the recursive argument one could

obtain the probability bounds without explicitly handling the bias induced by an arbitrary

function's value being �xed to 0.

Then, Razborov [Raz93] described a variation on the H�astad technique that allows one

to obtain similar bounds to the conditional probability argument using only a counting

argument. Again the critical feature of this variation is that one never explicitly considers

the bias caused by the fact that certain terms are falsi�ed by the restriction but now

it also avoids the game-theoretic structure of Woods' argument. The formal argument

is that a bad restriction { one under which the input DNF formula is not su�ciently

simpli�ed { can be mapped to an element of a small set in such a way that knowledge of

the formula permits one to reconstruct the original bad restriction from the image of this

map and thus the number of such bad restrictions is small. The actual calculations in the

argument are quite similar to those of the conditional probability argument if one were

to assume that the conditioning did not cause di�culty. One other interesting di�erence

2

is that, whereas in the conditional probability argument the conditioning on the value of

an arbitrary function being forced to 0 forces one to allow the number of unset variables

to vary, in the counting argument it is actually advantageous to �x the number of unset

variables.

In the following, we present the arguments for several switching lemmas for varied

probability distributions, some of which require new variations on the structure of the

counting argument. Razborov followed H�astad's original proof by showing that with high

probability a DNF formula with short terms has only short maxterms after restriction.

In fact, H�astad's argument, as is the case with many of the switching lemma arguments

mentioned above, more naturally proves a statement of the form that with high probability

a DNF formula with short terms has a small height decision tree after restriction. This is

a slightly stronger statement than the standard switching lemma phrasing since a small

height decision tree allows one to obtain a short DNF formula for the negation of the

formula which is essentially what is desired. This formulation of a switching lemma was

�rst used by Cai [Cai86]. Several authors have subsequently noted that H�astad's argument

also works in this fashion.

We modify Razborov's argument to prove results about decision trees, in part because

it produces a more natural argument but also because in the case of the q-matching

restrictions described in section 5 it is not clear how one could adapt Razborov's argument

to the analogue of maxterms.

2 Decision tree version of the H�astad switching lemma

A restriction on a set of Boolean variables fx

i

j i 2 Ig is a map � : I ! f0; 1; �g. The

result of its action on a Boolean function f is a Boolean function f�

�

which is the result of

substituting �(i) for x

i

for all places where �(i) 6= �. We say that all variables x

i

such that

�(i) = � are unset and the resulting function becomes a function of the unset variables in

the obvious way.

De�ne R

`

n

to be the set of all restrictions � on a domain of n variables that have

exactly ` unset variables. H�astad's switching lemma states that for any function f that

is representable in disjunctive normal form (DNF) with short terms, then for almost all

restrictions � 2 R

`

n

, f�

�

has a small height decision tree.

Fix some function f representable as a DNF formula F and assume that there is a

total order on the terms of F as well as on the indices of the variables. A restriction �

is applied to F in order, so that F �

�

is the DNF formula whose terms consist of those

terms of F that are not falsi�ed by �, each shortened by removing any variables that are

satis�ed by �, and taken in the order of occurrence of the original terms on which they

are based.

The canonical decision tree for F , T (F) is de�ned inductively as follows:

3

1. If F is the constant function 0 or 1 (contains no terms or has an empty �rst term,

respectively) then T (F) consists of a single leaf node labelled by the appropriate

constant value.

2. If the �rst term C

1

of F is not empty then let F

0

be the remainder of F so that

F = C

1

_ F

0

. Let K be the set of variables appearing in C

1

. The tree T (F) starts

with a complete binary tree for K, which queries the variables in K in the order

induced by the order on the indices. Each leaf v

�

in the tree is associated with a

restriction � which sets the variables of K according to the path from the root to

v

�

. For each � we replace the leaf node, v

�

, by the subtree T (F�

�

). (Note that for

the unique � which satis�es C

1

the leaf v

�

will remain a leaf and be labelled 1. For

all other choices of �, the tree that replaces v

�

is T (F�

�

) = T (F

0

�

�

).)

We'll show that for any DNF formula F , for an appropriately chosen restriction �, the

height of T (F �

�

), jT (F �

�

)j, is small with high probability. This lemma is a switching

lemma in the spirit of [H�as87] because it will allow us to obtain a DNF formula with

short terms for :F�

�

by taking the terms corresponding to the paths in T (F�

�

) that have

leaf labels 0. (We do not optimize the constants here. For improved constants see the

discussion at the end of this section.)

Lemma 1: (H�astad Switching Lemma) Let F be a DNF formula in n variables with

terms of length at most r. For s � 0, ` = pn, and p � 1=7,

jf� 2 R

`

n

: jT (F�

�

)j � sgj

jR

`

n

j

< (7pr)

s

:

The proof of this switching lemma is a small modi�cation of Razborov's simpli�ed

proof of H�astad's switching lemma and uses a counting argument rather than complicated

reasoning involving conditional probability. The property of the restriction family that is

critical to the argument was clearly necessary in H�astad's argument but is implicit here:

For any assignment of values to a set of variables and any s, it is exponentially more likely

in s that a randomly chosen restriction agrees with the assignment than that it leaves s

variables unset.

Before giving the proof of the switching lemma we give the following de�nition. Let

stars(r; s) to be the set of all sequences � = (�

1

; : : : ; �

k

) such that for each j, �

j

2

f�;�g

r

n f�g

r

and such that the total number of *'s in all the �

j

is s. There is an easy

bound of jstars(r; s)j � 2

s�1

r

s

but we can also prove:

Lemma 2: jstars(r; s)j< (r= ln 2)

s

.

Proof: For convenience in the proof we shall include the empty string in stars(r; 0)

which would otherwise be empty. We shall show by induction on s that jstars(r; s)j �

s

for (1 + 1=)

r

= 2; the statement of the lemma follows by using 1 + x < e

x

for x 6= 0.

4

The base case s = 0 follows trivially. Now suppose that s > 0. It is easy to see from

the de�nition that for any � 2 stars(r; s), if �

1

has i � s *'s then � = (�

1

; �

0

) where

�

0

2 stars(r; s� i). (For i = s we have used our augmentation of stars(r; 0).) There are

�

r

i

�

choices of �

1

so

jstars(r; s)j =

min(r;s)

X

i=1

r

i

!

jstars(r; s� i)j

�

r

X

i=1

r

i

!

s�i

=

s

r

X

i=1

r

i

!

(1=)

i

=

s

[(1 + 1=)

r

� 1]

=

s

by the inductive hypothesis and the de�nition of . 2

Proof: (H�astad Switching Lemma) We only need to consider s > 0. Let S 2 R

`

n

be

the set of restrictions � such that jT (F�

�

)j � s. As in Razborov's argument we obtain a

bound on jSj=jR

`

n

j by de�ning a 1-1 map from S to a small set. The proof is somewhat

di�erent because we are interested in the height of decision trees for F�

�

rather than the

length of maxterms of F�

�

.

We will de�ne a 1-1 map

S ! R

`�s

n

� stars(r; s)� 2

s

:

Let F = C

1

_C

2

_ : : :. Suppose that � 2 S and let � be the restriction associated with

the lexicographically �rst path in T (F �

�

) that has length � s (any way of canonically

associated such a long path will do.) Trim the last few variables set in � along the path

from the root so that j�j = s. We use the formula F and � to determine the image of �.

The image of � is de�ned by following the path � in the canonical decision tree for F �

�

and using the structure of that tree (see Figure 1.)

Let C

�

1

be the �rst term of F that is not set to 0 by �. Then C

�

1

�

�

will be the �rst

term in F�

�

. Since j�j > 0, such a term must exist and will not be the empty term. Let

K be the set of variables in C

�

1

�

�

and let �

1

be the unique restriction of the variables in

K that satis�es C

�

1

�

�

. Let �

1

be the portion of � that sets the variables in K. We have

two cases based on whether or not �

1

= �.

1: If �

1

6= � then by the construction of �, �

1

sets all the variables in K. Note also

that C

�

1

�

��

1

= 1 but since �

1

6= �, �

1

6= �

1

, and thus C

�

1

�

��

1

= 0.

5

σ

σ

σ

1

π

π

π

π

1

1

2

2

3

σ
3

k

k

s

1

1

1

Figure 1: Canonical decision tree T (F�

�

)

6

2: If �

1

= � then it is possible that � does not set all of the variables in K. In this

case we shorten �

1

to the variables in K that appear in �

1

. Now all we know is that

C

�

1

�

��

1

6= 0.

De�ne �

1

2 f�;�g

k

based on the �xed ordering of the variables in term C

�

1

by letting

the j-th component of �

1

be � if and only if the j-th variable in C

�

1

is set by �

1

. Note

that since C

�

1

�

�

is not the empty term there is at least one � in �

1

. From C

�

1

and �

1

we

can reconstruct �

1

.

Now, by the de�nition of T (F�

�

), � n �

1

labels a path in the canonical tree T (F�

��

1

).

If �

1

6= �, we repeat the above argument, with � n �

1

in place of �, ��

1

in place of � and

�nd a term C

�

2

which is the �rst term of F not set to 0 by ��

1

. Based on this we generate

�

2

, �

2

, and �

2

as before. We repeat this process until the round k in which �

1

�

2

:::�

k

= �.

Let � = �

1

�

2

:::�

k

. We �nally de�ne � 2 f0; 1g

s

to be a vector that indicates for each

variable set by � (which are the same as those set by �) whether it is set to the same value

as � sets it.

The image of � under the 1-1 map we de�ne is a triple, h��

1

:::�

k

; (�

1

; :::; �

k

); �i. Clearly

�� = ��

1

:::�

k

2 R

`�s

n

and (�

1

; :::; �

k

) 2 stars(r; s) so the map is as required.

It remains to show that the map we have just de�ned is indeed 1-1. To do this,

as in Razborov's argument, we show how to recover � from its image. The recon-

struction is iterative. In the general stage of the reconstruction we will have recovered

�

1

; :::; �

i�1

, �

1

; :::; �

i�1

, and will have constructed ��

1

:::�

i�1

�

i

:::�

k

. Recall that for i < k,

C

�

i

�

��

1

:::�

i�1

�

i

= 1 and C

j

�

��

1

:::�

i�1

�

i

= 0 for all j < �

i

. This clearly also holds when we

append �

i+1

:::�

k

to the restriction. When i = k, something similar occurs except the only

guarantee is that C

�

i

�

��

1

:::�

k�1

�

k

6= 0. Thus we can recover �

i

as the index of the �rst term

of F that is not set to 0 by ��

1

:::�

i�1

�

i

:::�

k

.

Now, based on C

�

i

and �

i

we can determine �

i

. Since we know �

1

; :::; �

i

, using the

vector � we can determine �

i

. We can now change ��

1

:::�

i�1

�

i

:::�

k

to ��

1

:::�

i�1

�

i

�

i+1

:::�

k

using the knowledge of �

i

and �

i

. Finally, given all the values of the �

i

we can reconstruct

�.

Now we compute the value jSj=jR

`

n

j:

jR

`

n

j =

�

n

`

�

2

n�`

so

jR

`�s

n

j

jR

`

n

j

=

`

(s)

(n� `+ s)

(s)

� 2

s

�

(2`)

s

(n � `)

s

:

Applying the bounds we obtain

jSj

jR

`

n

j

�

jR

`�s

n

j

jR

`

n

j

� jstars(r; s)j � 2

s

7

�

�

4`r

(n� `) ln 2

�

s

= (

4pr

(1� p) ln 2

)

s

for ` = pn. For p < 1=7 this is at most (7pr)

s

. 2

It is worth noting that in avoiding conditional probability we do not obtain bounds

that are quite as strong as those obtained by H�astad. It is possible to obtain somewhat

better bounds than described above by combining the information in stars(r; s) and �

since, except for i = k, �

i

6= �

i

and thus � must contain at least one 1 in the seqment

associated with each �

i

. In fact, by choosing without loss of generality a long branch �

that does not have a leaf labelled 1, this is true even in the case that i = k. In that

case we can replace Lemma 2 by a similar argument that produces a bound of �

s

on

the number of di�erent encodings of both stars(r; s) and � where � is the solution of

(1 + 2=�)

r

� (1 + 1=�)

r

= 1. This produces a �nal result very close to H�astad's bounds

but it has a 1�p in the denominator as opposed to a 1+p. The gap here seems to depend

on the fact that we have �xed the number of stars as opposed to allowing it to vary. We

chose to separate stars(r; s) from � in our argument above since stars(r; s) is useful in the

other switching lemma proofs.

3 The Clique Switching Lemma

The restrictions in R

`

n

set the values of the variables independently of each other. They

were appropriate for proving lower bounds on the parity function. In this section we

consider restrictions that are tailored for proving lower bounds on the clique function for

small values of the clique size. The switching lemma for these restrictions that we re-derive

was originally proved by Beame [Bea90]. The technique here is more general than that

of the previous section and was suggested to us by Johan H�astad although the general

outline is the same. This switching lemma was originally proven when 0's and 1's are not

equally likely but we �rst derive it for that case which is the appropriate value for the

clique problem for O(logn) size cliques.

The variables for the restrictions are the graph edge variables fx

e

j e 2 [n]

2

g. Let C

`

n

be the set of all restrictions � chosen with the following property: There is a set V � [n]

of size ` such that every e 2 V

2

, �(e) = � is unset and for every e 2 [n]

2

� [V]

2

, �(e) 6= �.

For these restrictions instead of simply the length of terms or the height of decision

trees we consider the maximum number of di�erent endpoints that appear in a term or

along any path. We call this the vertex length of a term and denote the vertex height of

a decision tree T by jT j

v

.

8

Lemma 3: Let F be a DNF formula in the graph edge variables with terms with

vertex length at most r. For s � 0, ` = pn, and p � 1=(r2

r+s

),

jf� 2 C

`

n

: jT (F�

�

)j

v

� sgj

jC

`

n

j

<

8

3

(2

r+s�1

pr)

s

:

Proof: Let S 2 C

`

n

be the set of restrictions � such that jT (F �

�

)j

v

� s. Let

F = C

1

_ C

2

_ : : :. Suppose that � 2 S and let � be the restriction associated with the

lexicographically �rst path in T (F �

�

) that has vertex length � s. Note that for each

path in a canonical decision tree for a DNF formula there is a natural partition of the

path into blocks which correspond to the variables contributed by a single term of the

formula. Thus � is naturally split into blocks. For this switching lemma we trim � in a

di�erent way from Lemma 1 partly because we cannot necessarily �nd a pre�x of � that

has vertex length exactly s and because of other considerations that will become clearer

later. Instead we trim � at the �rst block boundary such that the pre�x of � at that block

boundary has vertex length at least s. Let the vertex length of the trimmed � be s

0

and

note that s � s

0

� s + r � 1.

As before we use the formula F and � to determine the image of �. However, rather

than a 1-1 map we map each element of S to a set of elements of the range so that the

image sets are disjoint.

Let e be the number of variables in �. Note that s

0

=2 � e �

�

s

0

2

�

. We will let S

e;s

0
be

the set of � 2 S whose associated � has e variables and vertex length s

0

and count each set

S

e;s

0
separately. The map we de�ne will be from S

e;s

0
to subsets of C

`�s

0

n

�stars(r; s

0

)�2

e

:

The basic procedure for de�ning �

i

and �

i

is exactly the same as in the proof of

Lemma 1. Note that �

1

; :::; �

k

are in fact the blocks of �. One di�erence is that because

we trimmed � at a block boundary, even �

k

is such that C

�

k

�

��

1

�

2

:::�

k�1

�

k

= 1. Another

is that, instead of the vector � coding which variables are starred by � in each relevant

term, we code which vertices in these terms are in the set V of vertices unset by �. Since

each original term has vertex length at most r and � has a total of s

0

vertices this may

also be coded by a string � in stars(r; s

0

).

� and � are restrictions on the same set of e variables and as in Lemma 1 the di�erences

between � and � are encoded by a bit string � of length e.

To continue the analogy with Lemma 1 we would like to map � to �� as in the argument

above. However, unlike the situation there, �� is not a member of C

`�s

0

n

. Since � touches

exactly s

0

vertices unset by �, so does � and thus there is still a clique of variables of size

` � s

0

that is unset by ��. The idea that works is to extend �� to be a member of C

`�s

0

n

by setting extra variables. However, instead of doing a single extension we extend �� to

the set of all possible extensions in C

`�s

0

n

. More precisely, we map

� 2 S

e;s

0
! fh���; �; �i j ��� 2 C

`�s

0

n

g:

9

In order to do the accounting we need distinct � to have disjoint image sets. We

accomplish this by showing that we can decode any of the triples h���; �; �i to obtain �.

The basic structure of this argument is essentially the same as in the switching lemma

above, except that we must also be able to remove the extension � . It is important to note

that for each i, because C

�

i

�

��

1

:::�

i�1

�

i

= 1, it also the case that C

�

i

will be the �rst term

such that C

�

i

�

��

1

:::�

i�1

�

i

:::�

k

�

= 1. This guarantees that knowing �

1

; :::; �

i�1

; �

1

; :::; �

i�1

we

can determine C

�

i

and, using �, we can then determine �

i

.

Once all of � has been determined, we can immediately recover � since every variable

set by � either has both endpoints touching the vertices touched by � or has one end-

point touching � and the other touching the set of unset vertices. Finally, since we have

determined � and � , we can recover � from ��� . Thus the image sets are disjoint.

It remains to determine the sizes of the relevant sets involved in the maps.

Easy calculation gives jC

`

n

j =

�

n

`

�

2

(

n

2

)

�

(

`

2

)

. Thus

jC

`�s

0

n

j

jC

`

n

j

� jstars(r; s

0

)j � 2

e

�

�

n

`�s

0

�

�

n

`

�

2

(

`

2

)

�

(

`�s

0

2

)

� (r= ln2)

s

0

� 2

e

� (`=(n� `))

s

0

2

(

`

2

)

�

(

`�s

0

2

)

� (r= ln2)

s

0

� 2

e

= 2

(

`

2

)

�

(

`�s

0

2

)

�

�

r`

(n� `) ln 2

�

s

0

� 2

e

If � 2 S

e;s

0
, then there

�

`

2

�

�

�

`�s

0

2

�

� e variables that must be set by � . Since there are

two values for each variable there are d

e;s

0
= 2

(

`

2

)

�

(

`�s

0

2

)

�e

choices of � . Thus

jS

e;s

0
j

jC

`

n

j

�

jC

`�s

0

n

j

d

e

jC

`

n

j

� jstars(r; s

0

)j � 2

e

=

�

r`

(n� `) ln2

�

s

0

� 2

2e

It is clear that for each s

0

, the bounds for the terms jS

e;s

0
j=jC

`

n

j form a geometric sequence

with ratio 4 and largest term corresponding to e =

�

s

0

2

�

= s

0

(s

0

� 1)=2. Thus

X

e

jS

e;s

0
j

jC

`

n

j

�

4

3

�

r`

(n� `) ln 2

�

s

0

� 2

s

0

(s

0

�1)

=

4

3

2

s

0

�1

r`

(n� `) ln2r

!

s

0

:

Now if we set ` = pn this becomes

4

3

[2

s

0

�1

pr=((1 � p) ln2)]

s

0

�

4

3

(2

s

0

pr)

s

0

. Note that

s

0

� r + s � 1 so this is at most

4

3

(2

s+r�1

pr)

s

0

. Thus when we sum this over all choices

10

s

0

we obtain another geometric sequence with ratio 2

s+r�1

pr and given p � 1=(r2

s+r

) the

ratio is 1=2 and the largest term has s

0

= s. Thus

jSj

jC

`

n

j

=

X

e;s

0

jS

e;s

0
j

jC

`

n

j

�

8

3

(2

s+r�1

pr)

s

:

2

4 Imbalanced 1's and 0's

In the arguments of the two previous sections, when variables were set by the restriction

they were equally likely to be set to 0 or 1. In this section we consider how they might be

set with imbalanced probability. This is necessary to get bounds for the clique problem.

However, the basic idea is simpler in the case of fully independent restrictions so we show

how it would go in that case.

The essential idea here is to give weights to the restrictions which reect the probability

of the restriction being chosen as a random member of the set. Suppose that in the

context of H�astad's switching lemma we wanted to argue that there is a restriction which

is strongly biased towards setting bits to 1 and keeps the decision tree height small. The

basic switching Lemma does not give us this information because as n gets large it is much

more unlikely to get a restriction with even a constant factor bias than the probability of

failure.

Thus consider the distribution where we choose a random member of R

`

n

so that the

probability of a restriction � is proportional to q

a

(1� q)

b

where a is the number of values

� sets to 1 and b is the number of values that � sets to 0. Clearly, the original uniform

choice of � corresponds to q = 1=2.

The map corresponding to Lemma 1 is exactly the same as before. The only di�erence

is that we associate a weight with each restriction �. If � assigns a 1's and b 0's then

let the weight of � be q

a

(1 � q)

b

. Thus the total weight of R

`

n

is

�

n

`

�

. Instead of simply

counting the set S, we count the total weight of the members of S as a proportion of the

total weight of R

`

n

.

To do this we compute the total weight of the image set R

`�s

n

� stars(r; s)� 2

s

where

the weight of a triple is the weight of the restriction it contains. To convert this to a bound

on the total weight of S we must divide this by the total weight of R

`

n

times the factor by

which the map decreases the weight of a restriction.

The total weight of the image set is

�

n

`�s

�

� jstars(r; s)j � 2

s

. The decrease in the weight

of restriction � under the map is simply the weight of �. Since j�j = s, the total decrease

is at worst minfq; 1� qg

s

. Thus the total weight of S as a fraction of the weight of R

`

n

is

11

at most

�

n

`�s

�

�

n

`

�

�minfq; 1� qg

s

� (r= ln 2)

s

� 2

s

�

�

2r`

(n� `)minfq; 1� qg ln 2

�

s

=

�

2pr

(1� p)minfq; 1� qg ln 2

�

s

:

where ` = pn. For q = 1=2 this gives exactly the same bounds as before. If we assume

that q � 1=2 and if p � 1=7 then this bound is less than (4pr=q)

s

.

Now for q(1� q)n growing with n, it is almost certain that the restriction will assign

a fraction of 1's roughly proportional to q and so one can obtain imbalanced restrictions

that cause the decision tree height to be small.

An alternative argument for obtaining imbalanced restrictions that keep the decision

tree height small is to �x the exact number of 1's that a restriction assigns at a q fraction of

the variables set; call the set of such restrictions R

`;q

n

. Rather than a weighting argument,

one again obtains a counting argument in this case, i.e. one argues that the set S � R

`;q

n

of bad restrictions is a small proportion of the total number of restrictions. For example,

instead of replacing a 2

s

by (1=minfq; 1� qg)

s

in the calculations, one ends up replacing

2

s

by

P

0�i�s

�

n�`+s

q(n�`)+i

�

=

�

n�`

q(n�`)

�

. For q(n� `)+ s �

1

2

(n� `+ s) the largest term has i = s

and in this case, instead of the directly calculated (1=q)

s

factor, one notes that

n� `+ s

q(n� `) + s

!

=

n � `

q(n� `)

!

= (n�`+s)

(s)

=(q(n�`)+s)

(s)

� [(n�`)=(q(n�`))]

s

= (1=q)

s

:

Finally, consider the restrictions in C

`

n

with an imbalanced probability of 0's and 1's;

call the distribution C

`;q

n

. We'll compute the new bounds here with a weighting argument as

opposed to �xing the proportion of 0's and 1's. This time however, we need to compute the

net decrease that the map produces in the total weight of the set of restrictions that �maps

to. The decrease in weight for any individual restriction ��� in the image is due to the

weight of �� . However, since the set of restrictions includes all possible restrictions on the

variables of � , the decrease in the total weight under the map is simply minfq; 1� qg

j�j

=

minfq; 1 � qg

e

. Thus instead of 2

2e

in the numerator in the calculations one obtains

(2=minfq; 1� qg)

e

and thus if q � 1=2, the �nal bound is less than

8

3

((2=q)

(s+r�1)=2

pr)

s

provided that p � 1=(r(2=q)

(r+s)=2

)

The bounds one obtains by choosing restrictions from R

`

n

with a bias towards 0 or 1

can usually be proven just as easily by a reduction argument. However in the case of C

`;q

n

these biased restrictions are critical for obtaining lower bounds for the Clique

k

n

problem

for k � logn.

12

5 Switching Lemma for q-Matching Restrictions

We now apply these new techniques to give a switching lemma for a family of restrictions

where the variables are q-dimensional hyperedges and the restrictions are partial match-

ings. These restrictions for q = 2 (and similar ones) were used to provide exponential

lower bounds for the lengths of proofs of tautologies related to the propositional pigeon-

hole principle in bounded-depth Frege proof systems ([Ajt88, Ajt90, BIK

+

92, KPW91,

PBI93, BP93]).

There is a signi�cant di�erence from the switching lemmas that we have previously

considered since the decision trees involved do not exactly compute the original function

but rather represent that function in a certain natural sense. Because of the di�erence

in the sets of variables and the kind of decision trees, we write out the entire switching

lemma argument in full rather than refer to the previous lemmas.

The original arguments to show this switching lemma in the case q = 2 were quite

complicated because the conditioning on an arbitrary function being forced to 0 was prob-

lematic. In fact, without certain bounds on the probability of �, it was no longer the case

with these restrictions that the conditioning could only help. Here, however, the argument

is fairly simple overall and is only about 20% of the length of the original proof.

We now give the de�nitions for partial q-dimensional matching restrictions. The q-

variables over D will be the set fx

e

: e � D; jej = qg. If e = fi

1

; : : : ; i

q

g then i

1

; : : : ; i

q

will be called the endpoints of x

e

. A q-term over D is de�ned to be a conjunction of

the form

V

�, where � is a set of variables over D such that distinct variables in � have

distinct endpoints. The q-terms are in 1-1 correspondence with the partial q-matchings on

the set D. Given a partial q-matching, �, let term(�) denote the q-term associated with

�. The emit size of a q-term

V

� is j�j. An OR of q-terms where each q-term is of size at

most t will be called a t-disjunction. When q is understood from the context we simply

call a q-term a term. A truth assignment ' over D is any total assignment of f0; 1g to the

variables over D. Let D

0

� D. A truth assignment ' over D is a q-matching on D

0

if for

each i 2 D

0

there is a unique e � D such that '(P

e

) = 1.

If Y is a q-term or a set of variables, then v(Y) denotes the set of endpoints of variables

in Y .

For jDj = qn+ 1, de�ne M

`

D;q

to be the set of all partial q-matchings on D, �, which

match all but q`+ 1 nodes of D.

Every � inM

`

D;q

determines a unique restriction, r, of the variables over D as follows.

r(e) =

8

>

>

<

>

>

:

1 if e 2 �

0 if there is an e

0

2 � such that e

0

6= e

and e \ e

0

6= ;

� otherwise

If r is the restriction obtained from �, we will refer to both the restriction and the partial

13

q-matching by �. For a Boolean formula F in the q-variables and a partial q-matching �,

F restricted by � will be denoted by F�

�

.

We say that two partial q-matchings � and � are compatible if � [� is also a partial

q-matching. When viewed as restrictions, we use the notation �� to denote the restriction

de�ned by the partial q-matching � [� .

A q-matching decision tree over domain D is de�ned as follows. It is a rooted tree

where each interior node v is labelled by a query i 2 D and each edge is labelled by

some q-edge e � D, jej = q with i 2 e. Leaves are labelled with either \0" or \1". For

each interior node v labelled by i 2 D, there is exactly one out-edge labelled e for each

e � D; jej = q such that i 2 e and no endpoint of e is contained in the label of any edge

on the path from the root to v. The label of an interior node v may not appear in any

edge label on the path from the root to v. Thus the set of edge labels on any path de�nes

a partial q-matching.

A matching decision tree T over D represents a function f over domain D provided

that for all leaf nodes v 2 T , if we let � be the partial q-matching de�ned by the path in

T from the root to v then for all truth assignments � over D that are q-matchings on v(�)

and satisfy �, f(�) is equal to the label of v.

If F is a DNF formula that we say that T re�nes and represents F over domain D if

T represents F as a function over D and furthermore for every path in T with leaf label 1

there is a term in F which is forced to 1 by the partial matching � in T that reaches that

leaf.

For any q-matching decision tree T let disj(T) be the disjunction which has as its

terms term(�) for each partial q-matching � de�ned by some path p in T that ends in a

leaf labelled 1. Note that if T has height t, then disj(T) is a t-disjunction.

Note that if T represents f over D then the tree T

c

obtained by switching the 1's and

0's labelling the leaves of T represents :f .

We assume that there is a total order on the elements of D. Let K � D. Then

Proj

D

[K] is the set of all minimal partial q-matchings over D which involve all of the

elements of K.

We de�ne the complete q-matching tree for K � D over D inductively as follows. If K

consists of a single node k 2 D, then label the root \k", and create

�

jDj�1

q�1

�

edges adjacent

to the root, labelled by those e � D such that k 2 e respectively. Otherwise, suppose that

k is the largest element of K and let K

0

= K n fkg. Assume that we have created the

complete q-matching tree for K

0

; we will now extend it to a complete tree for K. This is

done by extending each leaf node v

`

as follows. Let p

`

be the path from the root to v

`

. The

edge labellings along p

`

de�ne a partial q-matching involving all elements of K

0

. If this

partial q-matching does not include k, then label v

`

by k, and add new edges leading out of

v

`

, one for every possible q-edge containing k that results in a partial q-matching extending

the partial q-matching along p

`

. Otherwise, if k is involved in the partial matching, leave

14

v

`

unlabelled. Note that each path of the complete tree over K will be labelled by some

� 2 Proj

D

[K].

Given a disjunction F over D, assume that F has a total order on its terms and an

order on the variables within each term. A restriction � is applied to F in order, so that

F �

�

is the q-term disjunction whose terms consist of those q-terms of F that are not

falsi�ed by �, each shortened by removing any variables that are satis�ed by �, and taken

in the order of occurrence of the original terms on which they are based.

The canonical decision tree for F over D, T

D

(F) is de�ned inductively as follows:

1. If F is the constant function 0 or 1 (contains no terms or has an empty �rst term,

respectively) then T

D

(F) consists of a single leaf node labelled by the appropriate

constant value.

2. If the �rst term C

1

of F is not empty then let F

0

be the remainder of F so that

F = C

1

_ F

0

. Let K = v(C

1

). We start with the complete q-matching tree for K.

The paths of this tree correspond exactly to elements of Proj

D

[K]. Let v

�

be the

leaf node corresponding to the path labelled by � 2 Proj

D

[K]. To obtain T

D

(F),

for each � we replace the leaf node, v

�

, by the subtree T

D�

�

(F �

�

). (Note that for

the unique element � 2 Proj

D

(K) which satis�es C

1

the leaf label of v

�

will be 1.

For all other choices of �, T

D�

�

(F�

�

) = T

D�

�

(F

0

�

�

).)

T

D

(F) clearly re�nes and represents F over D. We'll show that for appropriately

chosen restriction � the height of T

D

(F�

�

), jT

D

(F�

�

)j, is small with high probability. This

lemma is a switching lemma in the spirit of [H�as87] because it will allow us to obtain a

disjunction that approximates the negation of F by representing F by a matching decision

tree T and then taking disj(T

c

).

Lemma 4: Let D be a set with qn + 1 elements. Let F be an r-disjunction over D.

If s � 0 and 6 � ` = pn � (n=r)

1=q

2

=e then

jf� 2 M

`

D;q

: jT

D�

�

(F�

�

)j � sgj

jM

`

D;q

j

< (4e

q

r

1=q

p

q

n

q�1=q

)

s

:

Proof: We only need to consider s > 0. Let S 2 M

`

D;q

be the set of restrictions �

such that jT

D�

�

(F�

�

)j � s. As in Lemma 1 we obtain a bound on jSj=jM

`

D;q

j by de�ning

a 1-1 map from S to a small set.

We will de�ne a 1-1 map

S !

[

s=q�j�s

M

`�j

D;q

� stars(r; j)��

j

where �

j

is a set of size

�

q`+1

q�1

�

s

.

15

Let F = C

1

_ C

2

_ : : :. Suppose that � 2 S and let � be the partial q-matching

labelling the lexicographically �rst path in T

D�

�

(F�

�

) that has length � s. Trim the last

few q-edges of � along the path from the root so that j�j = s. We use the formula F and

� to determine the image of �. Let C

�

1

be the �rst term of F that is not set to 0 by �.

Then C

�

1

�

�

will be the �rst term in F �

�

. Since j�j > 0, such a term must exist and is

not the empty term. Let K = v(C

�

1

�

�

) and let �

1

be the unique partial q-matching in

Proj

D�

�

[K] that satis�es C

�

1

�

�

. Let �

1

be the portion of � that touches K. We have two

cases based on whether or not �

1

= �.

1: If �

1

6= � then by the construction of �, �

1

2 Proj

D�

�

[K]. Note also that C

�

1

�

��

1

= 1

but since �

1

6= �, �

1

6= �

1

, and thus C

�

1

�

��

1

= 0.

2: If �

1

= � then it is possible that v(�) does not contain all of K. In this case we

shorten �

1

so that it is the unique element of Proj

D�

�

[K

0

] that does not falsify C

�

1

�

�

where K

0

= v(�

1

) \K.

Note that in either case j�

1

j � qj�

1

j.

De�ne �

1

to be the vector of length r based on the �xed ordering of the variables in

term f

�

1

by letting the j-th component of �

1

be � if and only if The j-th variable in C

�

1

is in v(�

1

). Note that since C

�

1

�

�

is not the empty term then there is at least one � in �

1

.

From C

�

1

and �

1

we can reconstruct �

1

.

Now, by the de�nition of T

D�

�

(F �

�

), � n �

1

labels a path in the canonical tree

T

D�

��

1

(F �

��

1

). If �

1

6= �, we repeat the above argument, with � n �

1

in place of �,

��

1

in place of � and �nd a term C

�

2

which is the �rst term of F not set to 0 by ��

1

.

Based on this we generate �

2

, �

2

, �

2

, as before. We repeat this process until the round k

in which �

1

�

2

:::�

k

= �.

For each i, �

i

matches all elements of v(�

i

), so the �

1

; : : : ; �

k

are mutually compatible

and thus �

1

:::�

k

= �

1

[� � � [�

k

. The image of � under the 1-1 map we de�ne is a triple,

h��

1

:::�

k

; (�

1

; :::; �

k

); �i where � is de�ned below. Let � = �

1

:::�

k

and j = j�j. Clearly

�� = ��

1

:::�

k

2 M

`�j

D;q

and (�

1

; :::; �

k

) 2 stars(r; j).

We now de�ne the information � 2 �

j

. This will encode the relationships between all

the �

i

and �

i

. Since the elements of v(�) are all nodes unset by �, every element of v(�) is

either in v(�) or among the q(`�j)+1 nodes unset by ��. To encode � we consider a �xed

numbering of these q`+ 1 nodes: the qj nodes in v(�) are numbered 1; :::; qj in the order

v(�

1

) < v(�

2

) < ::: < v(�

k

) and the nodes unset by �� are numbered qj+1; :::; q`+1. For

each i, to specify �

i

we list the q-edges in �

i

in order of their smallest numbered elements.

The �rst such edge will contain the smallest numbered node in v(�

i

), the next will contain

that smallest numbered node in v(�) not touched by the �rst edge and so on. Thus to

specify � it is only necesary to the numbers of the q� 1 other elements in the q-edge. For

each such edges there are

�

q`+1

q�1

�

choices of these elements. Note that by construction, for

16

each i, v(�

i

) \ v(�) = v(�

i

). � is the vector of these speci�cations, one per q-edge of �.

Thus the image of the map is as required.

It remains to show that the map we have just de�ned is indeed 1-1. To do this, as

in Lemma 1, we show how to recover � from its image. The reconstruction is iterative.

In the general stage of the reconstruction we will have recovered �

1

; :::; �

i�1

, �

1

; :::; �

i�1

,

and will have constructed ��

1

:::�

i�1

�

i

:::�

k

. Recall that for i < k, C

�

i

�

��

1

:::�

i�1

�

i

= 1 and

C

j

�

��

1

:::�

i�1

�

i

= 0 for all j < �

i

. This clearly also holds when we append �

i+1

:::�

k

to

the restriction. When i = k, something similar occurs except the only guarantee is that

C

nu

i

�

��

1

:::�

k�1

�

k

6= 0. Thus we can recover �

i

as the index of the �rst term of F that is not

set to 0 by ��

1

:::�

i�1

�

i

:::�

k

.

Now, based on C

�

i

and �

i

we can determine �

i

. Since we know �

1

; :::; �

i

we can

examine the entries in the vector � associated with each of the vertices in v(�

i

). At this

point, although �

i+1

; :::; �

k

are still undetermined, �

i

can still be determined since �

i

does

not touch any of the vertices these restrictions touch.

We can now change ��

1

:::�

i�1

�

i

:::�

k

to ��

1

:::�

i�1

�

i

�

i+1

:::�

k

using the knowledge of �

i

and �

i

. Finally, given all the values of the �

i

we can reconstruct �.

Now we compute the value jSj=jM

`

D;q

j. We can describe an element of M

`

D;q

by

choosing q(n � `) elements from D in order and then ignoring the order within each

of the n � ` groups of q elements and between these n � ` groups. Thus jM

`

D;q

j =

(qn+ 1)!=(q`+ 1)!(q!)

n�`

(n� `)!. We now compute

jM

`�j

D;q

j

jM

`

D;q

j

=

(q`+ 1)

(qj)

(q!)

j

(n � `+ j)

(j)

�

(q`+ 1)

qj

(q!)

j

(n � `)

j

:

Now applying our bounds we obtain

jSj

jM

`

D;q

j

�

X

s=q�j

jM

`�j

D;q

j

jM

`

D;q

j

� jstars(r; j)j � j�

j

j

�

X

s=q�j

(q`+ 1)

qj

(q!)

j

(n� `)

j

(r= ln 2)

j

q`+ 1

q � 1

!

s

=

q`+ 1

q � 1

!

s

X

s=q�j

�

(q`+ 1)

q

r

q!(n� `) ln 2

�

j

�

(q`+ 1)

q�1

q

q!

!

s

X

s=q�j

�

(q`+ 1)

q

r

q!(n� `) ln2

�

j

17

�

e

q

(q`+ 1)

q�1

q

q

q

!

s

X

s=q�j

�

e

q

(q`+ 1)

q

r

q

q

(n� `) ln 2

�

j

since q! � (q=e)

q

. Thus

jSj

jM

`

D;q

j

� [e

q

`

q�1

(1 + 1=q`)

q�1

]

s

X

s=q�j

�

(e`)

q

(1 + 1=q`)

q

r

(n� `) ln 2

�

j

� [e

1+(q�1)=q`

(e`)

q�1

]

s

X

s=q�j

e

1=`

(e`)

q

r

(n� `) ln 2

!

j

< [(e

1=6

)

(q�1)=q

e(e`)

q�1

]

s

X

s=q�j

e

1=6

(e`)

q

r

(n� `) ln 2

!

j

: (1)

since ` � 6. Because 6 � ` � (n=r)

1=q

2

=e it must be the case that r � n=(6e)

q

2

and thus

it follows that

e

1=6

(e`)

q

r

(n� `) ln2

� 2

(e`)

q

r

n

� 2(r=n)

1�1=q

� 2=(6e)

q(q�1)

� 1=(12e

2

) < 1=88:

and thus the sum in line 1 is bounded by a geometric series with ratio < 1=88. From this

we derive that it is less than 1.02 times its largest term which occurs when j = s=q so

jSj

jM

`

D;q

j

� 1:02

e

1+1=6

(e`)

q

r

(n� `)

1=q

(ln 2)

1=q

!

s

�

1:02e

1+1=6

e

q

p

q

n

q�1=q

r

1=q

(1� p)

1=q

(ln 2)

1=q

!

s

for p = `=n. Now since q � 2 and ` � (n=r)

1=q

2

=e � n

1=4

=e we have

1:02e

1+1=6

(1� p)

1=q

(ln 2)

1=q

� 4:

Thus we can bound jSj=jM

`

D;q

j above by (4e

q

p

q

r

1=q

n

q�1=q

)

s

. 2

6 Applying the Switching Lemmas

For completeness we include an overview of how these switching lemmas are applied to

produce lower bounds for bounded-depth circuits. To do this we �rst de�ne unbounded-

depth circuits.

18

An unbounded fan-in circuit with basis B on a set of n Boolean input variables is given

by a directed acyclic graph with each source node labelled by an input from fx

i

j i 2 [n]g

with a single sink node and with each non-source node labelled an element from the set B

of allowable Boolean operations. We call the labelled node a gate. Each gate of the circuit

computes a Boolean function in the obvious way and the function computed by the circuit

is the function computed by the output gate. For this section we will identify the gates

and the functions computed at them.

It is standard to allow labels on the inputs to a circuit to be both inputs and their

negations and let B = f_;^g. The size of such a circuit is the number of its gates and

the depth of a circuit is the length of the longest path from any input to the output in

this de�nition. However, we will �nd it more convenient to give an equivalent de�nition

where B = f_;:g where : only labels nodes of in-degree 1. For these circuits we take the

equivalent notion of size as the number of _-gates. We de�ne the depth of a gate to be

the maximum number of _-gates on a path from any input to the gate and the depth of

a circuit to the depth of its output node.

6.1 Parity

We �rst apply Lemma 1 to obtain a slightly weaker form of the parity lower bound in

[H�as87].

Lemma 5: Let n

i+1

= n=14(14 log

2

S)

�i

for 0 � i � d� 1. If C is a circuit of size S

and depth d then for every i, 1 � i � d, if n

i

� log

2

S there is a restriction �

i

2 R

n

i

n

such

that for every gate g of C of depth at most i, g�

�

i

is computed by a decision tree of height

� log

2

S.

Proof: We �rst note that if we can prove the result for the _-gates then it will follow

immediately for the :-gates since a decision tree for :g is exactly the same as that for g

except that the leaf labels 1 and 0 are reversed. We now prove the result for the _-gates

by induction:

Base Case: The inputs to an _-gate at depth 1 are merely inputs or negations of inputs

which we can think of as DNF terms of size 1. Let p = 1=14 and note that n

1

= np. By

Lemma 1, for each _-gate at depth 1, less than a (7p)

log

2

S

= 1=S fraction of all restrictions

�

1

in R

n

1

n

fail to keep the decision tree height of the _-gate at most log

2

S. Since there

are at most S _-gates at depth 1 there is at least one restriction � that keeps the height

of all the decision trees at most log

2

S. Since this is already true for gates of depth 0 the

base case holds.

Induction Step: Suppose that there is a restriction �

i

2 R

n

i

n

so that for all gates g of

depth at most i, g�

�

i

has decision tree height at most log

2

S. Therefore these functions

can expressed by DNF formulas with term length at most log

2

S. Consider any _-gate

19

g at depth i + 1. All the inputs to this gate have depth at most i so after �

i

is applied

they can be expressed as DNF formulas with term length at most log

2

S. Thus after �

i

is

applied g�

�

i

itself may be expressed as a DNF formula with term length at most log

2

S.

We now let p = 1=(14 log

2

S) = n

i+1

=n

i

. By Lemma 1 less than a (7p log

2

S)

log

2

S

= 1=S

fraction of all restrictions � 2 R

n

i+1

[n

i

]

fail to keep the decision tree height of (g�

�

i

)�

�

= g�

�

i

�

bounded by log

2

S. As in the base case, since there at most S _-gates of depth i+1, there

is some �xed restriction � such that for all gates at depth i+ 1, applying �

i

� leaves their

decision tree height at most log

2

S. Since �

i

� 2 R

n

i+1

n

, we let �

i+1

= �

i

� and, observing

that all gates of depth less than i+1 maintain their small decision tree height, we see that

�

i+1

satis�es the conditions of the lemma. 2

Theorem 6: Any unbounded fan-in circuit of depth d computing the parity function

requires size at least 2

1

14

n

1=(d�1)

.

Proof: Let S be the size of such a circuit C. The most straightforward way to apply

Lemma 5 to the parity function would be to apply the restriction �

d

to the output of the

circuit computing the parity function and thus argue that n

d

� log

2

S since a restricted

parity function must have decision tree height equal to the number of variables unset.

However, the lower bound in that case is slightly inferior to our claimed bound.

Instead, �x the restriction �

d�1

2 R

n

d�1

n

for C. Then, as in the proof of Lemma 5, for

the unique _-gate of depth d, g�

�

d�1

is expressible as a DNF formula with term length at

most log

2

S. Clearly g is either parity or its negation. It follows that after �

d�1

is applied

the term length of g must still be n

d�1

. Thus log

2

S � n

d�1

= (n=14)(14 log

2

S)

�d+2

.

From this we obtain (log

2

S)

d�1

� n=14

d�1

, log

2

S � n

1=(d�1)

=14, and so S � 2

1

14

n

1=(d�1)

as required. 2

In the argument above we �xed the restriction in an iterative fashion, with one piece

�xed per level. Another way to show that the restriction exists is simply to choose the

�nal restriction �rst. As we'll see in the case of distributions with 0 and 1 not equally

likely, this method has advantages.

6.2 Clique

The main virtue of this approach is that we can now apply known properties of random

assignments to �nd restrictions with extra properties from among those that keep the

decision tree height small.

Lemma 7: Let k � log

2

n, q = n

�3=k

� 1=2, and for i � 0 let `

i

= n=(n

5i

p

(log

n

6Sd)=k

).

Let C be a circuit of size S and depth d computing a function f and suppose that `

d

�

p

k(logn6Sd). For � chosen at random from C

`

d

;q

, with probability at least 1=2, f�

�

, is

representable by a decision tree with vertex height �

p

k(log

n

6Sd).

20

Proof: Choose a restriction � at random from C

`

d

;q

n

. Choose a random ordering of

the vertices set by � and order the edge variables set by � so that an edge is listed in order

of the endpoint that occurs �rst in this ordering. For 1 � i � d, let �

i

be the restriction

in C

`

i

;q

`

i�1

that agrees with � on the edge variables associated with vertices `

i

� `

i�1

in this

ordering. Note that the probability of � is the same as that of the joint probability of the

set of �

i

's. Let �

0

be the empty restriction and �

i+1

= �

i

�

i

for i � 0.

Let p

i

be the probability that �

i

fails to keep the vertex heights of the decision trees

for the functions computed at gates of depth � i bounded by

p

k(log

n

6Sd). We'll show

that p

0

= 0 and p

i

� 1=2d for each i � 1 and derive the desired result. The proof is by an

induction like that of Lemma 5. Again we do not need to worry about :-gates.

Base Case: i = 0. Since each gate at height 0 depends on only one variable, its

associated function has vertex height 2. Thus p

0

= 0.

Induction Step: Suppose that the vertex height of the decision trees computing the

functions associated with each gate of depth � i is at most

p

k(log

n

6Sd) after �

i

is applied.

Consider the function g associated with an _-gate at depth i + 1. As in Lemma 5, g�

�

i

is expressible as a DNF formula with terms having vertex length at most

p

k(log

n

6Sd).

Let s =

p

k(log

n

6Sd) and note that p = `

i+1

=`

i

= n

�5

p

(log

n

6Sd)=k

= n

�5s=k

. Now

applying the modi�ed version of Lemma 3 from section 4, the total weight (probability) of

restrictions � 2 C

`

i+1

;q

`

i

that fail to keep the vertex height of the decision tree for (g�

�

i

)�

�

at most s =

p

k(log

n

6Sd) is most

(8=3)((2=q)

s�1=2

ps)

s

< 3[s(2n

3=k

)

s�1=2

n

�5s=k

]

s

� 3n

4s

2

=k

n

�5s

2

=k

= 3n

�s

2

=k

= 3n

�(log

n

6Sd)

=

1

2Sd

:

Since there are at most S _-gates at depth i+ 1 in C, we have p

i+1

<

1

2d

.

It now follows that the total failure probability is at most 1=2 as required. 2

Having randomly chosen the restriction at once, we can use the following simple prop-

erty of random restrictions with probability q. (We include the proof merely for complete-

ness. Much sharper bounds are available.)

Lemma 8: Let k � 4 and q = n

�3=k

. With probability at least 3=4, the size of the

largest clique �xed by a random � 2 C

`

d

;q

n

is at most k � 1.

Proof: There are fewer than n

k

vertex sets of size k that are potential cliques.

For each such set the probability that all its edges are set to 1 by � is q

(

k

2

)

. Thus the

probability that some such set contains a clique on k nodes is at most

n

k

q

(

k

2

)

= (nq

(k�1)=2

)

k

= (n

1�

3(k�1)

2k

)

k

= (n

3

2k

�

1

2

)

k

� n

�

k

8

< 1=4

21

for n su�ciently large. 2

Although the technique of choosing the whole restriction at once as in Lemma 7 makes

Lemma 8 easy to state and prove, there is a slight degradation of the failure probability

which leads to a slight reduction in the bound when compared with what might be obtained

by choosing the restriction iteratively. To get this better bound one would need to prove

a more detailed version of Lemma 8 which would say that each additional restriction �

i

does not add much to the size of the largest clique generated so far. In any case, we can

now derive the resulting lower bound.

Theorem 9: (Beame [Bea90]) Any unbounded fan-in circuit of depth d computing

the Clique

k

n

function for 4 � k � log

2

n requires size S > n

k

100d

2

=6d.

Proof: Suppose that C computes the Clique

k

n

function in size S and depth d.

From Lemma 7 with probability � 1=2 a randomly chosen restriction � 2 C

`

d

;q

n

is such

that Clique

k

n

�

�

is computable by a decision tree of vertex height at most

p

k(log

n

6Sd).

Furthermore, with probability at least 3/4, by Lemma 8 a clique of at most k � 1 nodes

is set by �. Thus there is a restriction � 2 C

`

d

;q

n

that has both properties.

Fix such a restriction � and suppose that `

d

� 2k. In this case, Clique

k

n

�

�

is not

identically 1 or 0. Any assignment that forces Clique

k

n

�

�

to 0 must set edge variables to

0 touching more than `

d

� k vertices unset by �. Thus the vertex height of the decision

tree for Clique

k

n

�

�

must be more than k. In this case we must have

p

k(log

n

6Sd) > k or

log

n

6Sd > k from which S > n

k

=6d which is much stronger than required.

Thus `

d

< 2k and so n=(n

5d

p

(log

n

6Sd)=k

) < 2k. Rewriting this we obtain n

5d

p

(log

n

6Sd)=k

>

n=2k or 5d

p

(log

n

6Sd)=k > log

n

n

2k

� 1=2 for n su�ciently large. Squaring both sides we

obtain 25d

2

(log

n

6Sd)=k > 1=4 or 6Sd > n

k

100d

2

which gives S > n

k

100d

2

=6d as required.

2

6.3 q-Matchings

We now give the analogue of Lemma 5 for the q-matching restrictions from M

`

D;q

. Unlike

the switching lemma for R

`

n

and C

`

n

, the conclusion of the switching lemma forM

`

D;q

only

says that the function after restriction may be represented by a small height q-matching

decision tree as opposed to being exactly computed by such a tree. Thus we will not even

be able to carry out the iterative restriction process to say that each gate of a small depth

circuit in the q-matching variables can be represented by a small height decision tree. The

statement will of necessity be somewhat weaker than that. First, in order to state the

result we give a couple of de�nitions and a simple lemma.

If � is a partial q-matching restriction over D and T is a q-matching decision tree over

D, then de�ne T�

�

to be the decision tree obtained from T by removing all paths which

22

have a label that has been set to \0" by �, and contracting all edges whose labels are set to

\1" by �. Note that for any partial q-matching restriction � overD, disj(T�

�

) = disj(T)�

�

.

Lemma 10: Let f be a boolean function over D and let T be a q-matching decision

tree representing f over D. If � is a partial q-matching restriction over D, then T�

�

is a

q-matching decision tree representing f�

�

over D�

�

.

Lemma 11: Let m

0

= n and m

i+1

= (m

i

= log

2

S)

1=q

2

=3e for i � 0 and suppose that

m

d

� log

2

S. If C is a circuit of size S and depth d with q-matching variables over D then

for every i, 0 � i � d, there is a restriction �

i

2 M

m

i

D;q

such that for every node g of C

(including the inputs) of depth at most i, there is an associated q-matching decision tree

T

i

g

of height less than log

2

S such that

(a) if g is an input x

e

then T

i

g

represents x

e

�

�

i

over D�

�

i

,

(b) if g is an _-gate with inputs g

1

; :::; g

k

then T

i

g

re�nes and represents

W

k

j=1

disj(T

i

g

j

)

over D�

�

i

and,

(c) if g is a :-gate with input h then T

i

g

= (T

i

h

)

c

.

Proof: We prove the result by induction.

Base Case: i = 0. Let �

0

be the empty restriction. The only nodes of depth 0 are

inputs and their negations. We associate input x

e

with a decision tree T

0

x

e

of height 1

that queries the smallest numbered node in e and has a leaf label 1 on the unique branch

labelled by e. Clearly this tree represents x

e

over D as required. If g = :x

e

then let

T

0

g

= (T

0

x

e

)

c

.

Induction Step: Assume that the lemma holds for i � 0. Consider an _-gate g at depth

i+1 and suppose that the inputs to g are g

1

; :::; g

k

. The g

j

all have depth at most i and thus

have associated q-matching decision trees T

i

g

of height� log

2

S. Let F

i+1

g

=

W

k

j=1

disj(T

i

g

j

)

and notice that F

i+1

g

is a log

2

S-disjunction over D�

�

i

. Let p =

(m

i

= log

2

S)

1=q

2

3em

i

= m

i+1

=m

i

.

By Lemma 4, for less than a (4e

q

(log

2

S)

1=q

p

q

n

q�1=q

)

log

2

S

< 1=S fraction of all restrictions

� in M

m

i+1

D�

�

i

;q

the height of the q-matching decision tree T

D�

�

i

�

(F

i+1

g

�

�

) is at least log

2

S.

Since there at most S _-gates g of depth i+ 1, there is some �xed restriction � such that

for all gates at depth i+1, applying �

i

� leaves the height of T

D�

�

i

�

(F

i

g

�

�

) less than log

2

S.

Since � 2 M

m

i+1

D�

�

i

;q

, �

i+1

= �

i

� 2 M

m

i+1

D�

�

i

;q

as required.

For each _-gate g at depth i + 1 let T

i+1

g

= T

D�

�

i

�

(F

i+1

g

�

�

). The associated tree for

each :-gate at level i+ 1 is the complement of the tree of its input. For all j � i and all

gates h of depth j let T

i+1

h

= T

i

h

�

�

.

23

Now for each _-gate g at level i+ 1,

F

i+1

g

�

�

= (

k

_

j=1

disj(T

i

g

j

))�

�

=

k

_

j=1

(disj(T

i

g

j

))�

�

=

k

_

j=1

disj(T

i

g

j

�

�

) =

k

_

j=1

disj(T

i+1

g

j

)

and thus T

i+1

g

= T

D�

�

i

�

(F

i+1

g

�

�

) re�nes and represents

W

k

j=1

disj(T

i+1

g

j

) over D�

�

i

�

= D

�

i+1

as required by the condition of the lemma.

It remains to show that all of the relationships at lower levels are maintained. First

note that for each input x

e

, since T

i

x

e

represents x

e

�

�

i

over D�

�

i

, T

i+1

x

e

= T

i

x

e

�

�

represents

x

e

�

�

i

�

= x

e

�

rho

i+1

over D�

�

i

�

= D�

�

i+1

as required. It is also easy to see that if T

i

g

=

(T

i

h

)

c

then T

i+1

g

= T

i

g

�

�

= (T

i

h

)

c

�

�

= (T

i

h

�

�

)

c

= (T

i+1

h

)

c

. Finally we see that for an _-

gate g with inputs g

1

; :::; g

k

, since T

i

g

re�nes and represents

W

k

j=1

disj(T

i

g

j

) over D �

�

i

,

T

i+1

g

= T

i

g

�

�

re�nes and represents

W

k

j=1

disj(T

i

g

j

)�

�

over D�

�

i

�

= D�

�

i+1

; and that this is

W

k

j=1

disj(T

i+1

g

j

) over D�

�

i+1

as before. The lemma follows immediately. 2

Corollary 12: If C is a circuit of depth d and size S < 2

n

1=3q

2d

=3

in the q-matching

variables over D then there is an m and a restriction � 2 M

m

D;q

such that for every node

g of C (including the inputs), there is an associated q-matching decision tree T

g

of height

at most

p

m such that

(a) if g is an input x

e

then T

g

represents x

e

�

�

over D�

�

,

(b) if g is an _-gate with inputs g

1

; :::; g

k

then T

g

re�nes and represents

W

k

j=1

disj(T

g

j

)

over D�

�

and,

(c) if g is a :-gate with input h then T

g

= (T

h

)

c

.

Proof: Consider the sequence of m

i

from the statement of Lemma 11. Let �

i

=

P

i�1

j=0

q

�2j

. It is not hard to show by induction that m

i

= n

q

�2i

=[3e(log

2

S)

q

�2

]

�

i

. Since

q � 2, �

i

< 4=3 som

i

� n

q

�2i

=[3e(log

2

S)

1=q

2

]

4=3

> n

1=q

2i

=(12 log

2

S). Now if S < 2

n

1=3q

2d

=3

then 3 log

2

S < n

1=3q

2d

and 27(log

2

S)

3

< n

1=q

2d

so m

d

> n

1=q

2d

=(12 log

2

S) > (log

2

S)

2

.

Thus we can apply Lemma 11 to C. Letting m = m

d

and � = �

d

produces the desired

result. 2

Corollary 13: With the somewhat smaller bound of S < n

n

1=[5(2q

2

)

d

]

=(2q)

2d

the corol-

lary above also holds with all the associated q-matching decision trees for gates having

height at most (2q)

2d

log

n

S where m is at least n

4=[5(2q

2

)

d

]

=8. Thus for constant d we can

choose a restriction � leaving qm+ 1 nodes unset where m = n

for some constant and

so that the decision tree height is O(log

n

S)

24

Proof: We'll see that a version of Lemma 11 also holds with the height bound

s = (2q)

2d

log

n

S, m

0

0

= n, and m

0

i+1

= (m

0

i

=s)

1=2q

2

=2e. By the same reasoning as the

corollary above we see that m

0

i

= n

1=(2q

2

)

i

=[2es

1=2q

2

]

�

i

where �

i

=

P

i�1

j=0

(1=2q

2

)

j

. Since

�

i

< 8=7 for all i, m

0

i

� n

1=(2q

2

)

i

=(8s). By the condition of the corollary, (2q)

2d

log

n

S <

n

1=[5(2q

2

)

d

]

, so s < n

1=[5(2q

2

)

d

]

. Thus m

0

i

� n

4=[5(2q

2

)

i

]

=8. and (m

0

i

=s) � n

1=[2(2q

2

)

i

]

. Let p =

(m

0

i

=s)

1=2q

2

=(2em

0

i

) =m

0

i+1

=m

0

i

. Therefore applying Lemma 4 we get that the probability

that we fail to �nd the appropriate restriction � for a given gate at depth i+ 1 is at most

(6e

q

p

q

(m

0

i

)

q�1=q

s

1=q

)

s

< (s=m

0

i

)

s=2q

2

� (n

1=[2(2q

2

)

i

]

)

�s=2q

2

= n

�[(2q)

2d�2

=(2q

2

)

i

] log

n

S

� 1=S

2

d�1

and thus the restriction � may always be found and the small height trees may be created

at each step. The rest of the argument goes through exactly as before. 2

7 Lower Bounds for CRCW PRAMs

The lower bounds proofs for CRCW PRAMs in [BH89, Bea90] can also be simpli�ed in

a similar manner to that described above for unbounded fan-in circuits. The key to the

argument is to show at each step of the computation that, as a function of the input

vector after a suitable restriction has been applied, the state of each processor and the

contents of each memory cell may be described by a small height decision tree. (That is

for each processor or memory cell, there is a decision tree of small height whose leaves

are labelled by the potential states of that processor or contents of that memory cell.)

The translations follow in a straightforward manner using the characterizations of CRCW

PRAM computations in [BH89] and the arguments above.

Acknowledgements

The presentation of the results in this note was the result of discussions with several

people, particularly Johan H�astad, Toni Pitassi, Russell Impagliazzo, and Steve Cook.

Special thanks to Johan H�astad for suggesting the one-to-many approach for handling the

Clique restrictions and to Sam Buss for suggesting a re�nement to the proof of Lemma 4.

Thanks also to Alasdair Urquhart for his comments on the paper.

25

References

[Ajt83] M. Ajtai. �

1

1

-formulae on �nite structures. Annals of Pure and Applied Logic,

24:1{48, 1983.

[Ajt88] M. Ajtai. The complexity of the pigeonhole principle. In 29th Annual Sympo-

sium on Foundations of Computer Science, pages 346{355, White Plains, NY,

October 1988. IEEE.

[Ajt89] M. Ajtai. First-order de�nability on �nite structures. Annals of Pure and

Applied Logic, 45:211{225, 1989.

[Ajt90] M. Ajtai. Parity and the pigeonhole principle. In Feasible Mathematics, pages

1{24. Birkhauser, 1990.

[Bea90] P. Beame. Lower bounds for recognizing small cliques on CRCW PRAM's.

Discrete Applied Mathematics, 29(1):3{20, 1990.

[BH89] P. Beame and J. H�astad. Optimal bounds for decision problems on the CRCW

PRAM. Journal of the ACM, 36(3):643{670, July 1989.

[BIK

+

92] P. Beame, R. Impagliazzo, J. Kraj���cek, T. Pitassi, P. Pudl�ak, and A. Woods.

Exponential lower bounds for the pigeonhole principle. In Proceedings of the

Twenty Fourth Annual ACM Symposium on Theory of Computing, pages 200{

220, Victoria, B.C., Canada, May 1992.

[BP93] P. Beame and T. Pitassi. An exponential separation between the matching

principle and the pigeonhole principle. In 8th Annual IEEE Symposium on

Logic in Computer Science, Montreal, Quebec, June 1993.

[BPU91] S. Bellantoni, T. Pitassi, and A. Urquhart. Approximation and small depth

Frege proofs. In Proceedings, Structure in Complexity Theory, Sixth Annual

Conference, pages 367{391, Chicago, IL, June 1991. IEEE.

[Cai86] Jin-Yi Cai. With probability one, a random oracle separates PSPACE from

the polynomial-time hierarchy. In Proceedings of the Eighteenth Annual ACM

Symposium on Theory of Computing, pages 21{29, Berkeley, California, May

1986.

[FSS81] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time

hierarchy. In 22nd Annual Symposium on Foundations of Computer Science,

pages 260{270, Nashville, TN, October 1981. IEEE.

[H�as87] Johan H�astad. Computational Limitations of Small-Depth Circuits. ACM doc-

toral dissertation award, 1986. MIT Press, 1987.

26

[Ko91] Ker-I Ko. Separating the low and high hierarchies by oracles. Information and

Computation, 90(2):156{177, 1991.

[KPW91] J. Kraj���cek, P. Pudl�ak, and A. Woods. Exponential lower bounds to the size of

bounded-depth Frege proofs of the pigeonhole principle. Manuscript, 1991.

[Lyn86] J. Lynch. A depth-size tradeo� for Boolean circuits with unbounded fan-in. In

Alan L. Selman, editor, Structure in Complexity Theory, volume 223 of Lecture

Notes in Computer Science, pages 234{248, Berkeley, CA, June 1986. Springer-

Verlag.

[PBI93] T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower bounds for the

pigeonhole principle. Computational Complexity, 3(2):97{140, 1993.

[Raz93] A. Razborov. Bounded arithmetic and lower bounds in Boolean complexity.

Submitted to Feasible Mathematics II, 1993.

[Sip83] M. Sipser. Borel sets and circuit complexity. In Proceedings of the Fifteenth

Annual ACM Symposium on Theory of Computing, pages 61{69, Boston, MA,

April 1983.

[Yao85] A. C. Yao. Separating the polynomial hierarchy by oracles: Part I. In 26th

Annual Symposium on Foundations of Computer Science, pages 1{10, Portland,

OR, October 1985. IEEE.

27

