
NP-completeness: A Retrospective

Christos H. Papadimitriou

?

University of California, Berkeley, USA

Abstract. For a quarter of a century now, NP-completeness has been

computer science's favorite paradigm, fad, punching bag, buzzword, alibi,

and intellectual export. This paper is a fragmentary commentary on its

origins, its nature, its impact, and on the attributes that have made it

so pervasive and contagious.

1. A keyword search in Melvyl, the University of California's on-line library,

reveals that about 6,000 papers each year have the term \NP-complete" on

their title, abstract, or list of keywords. This is more than each of the terms

\compiler," \database," \expert," \neural network," and \operating system."

Even more surprising is the diversity of the disciplines with papers referring to

\NP-completeness:" They range from statistics and arti�cial life to automatic

control and nuclear engineering. What is the nature and extent of the impact of

NP-completeness on theoretical computer science, computer science in general,

computing practice, as well as other domains of the natural sciences, applied sci-

ence, and mathematics? And why did NP-completeness become such a pervasive

and in
uential concept?

2. One of the reasons of the immense impact of NP-completeness has to be

the appeal and elegance of the class P, that is, of the thesis that \polynomial

worst-case time" is a plausible and productive mathematical surrogate of the

empirical concept of \practically solvable computational problem." But, obvi-

ously, NP-completeness also draws on the importance of NP, as it rests on the

widely conjectured contradistinction between these two classes. In this regard,

it is crucial that NP captures vast domains of computational, scienti�c, and

mathematical endeavor, and seems to roughly delimit what mathematicians and

scientists had been aspiring to compute feasibly. True, there are domains, such

as strategic analysis and counting, which have been within our computational

ambitions, and still seem to lie outside NP; but they are the exceptions rather

than the rule. NP-completeness has thus become a valuable intermediary be-

tween the abstraction of computational models and the reality of computational

problems, grounding complexity theory to computational practice.

3. Also crucial for the success of NP-completeness has been its surprising ubiq-

uity and e�ectiveness as a classi�cation tool, and the scarcity of problems in

?

christos@cs.berkeley.edu. Partially supported by the National Science Foundation.

A version of this talk was given at a meeting in the Fall of 1995 celebrating the 60th

birthday of Richard M. Karp, to whom this paper is also a�ectionately dedicated.



NP that resist classi�cation as either polynomial-time solvable or NP-complete.

(Ladner's result on intermediate degrees between P and NP-completeness [12]

had been known almost as soon as NP-completeness was introduced, and thus

theoretically the world could be full of mysterious intermediate problems.) In sev-

eral occasions, extremely broad classes of computational problems in NP have

been dichotomized with surprising accuracy into polynomially solvable and NP-

complete, see [21, 22] for two early examples.

4. The founders of NP-completeness [2, 10, 13] appear to have anticipated its

broad applicability and classi�cation power. Leonid Levin [13] wrote in 1973:

\The method described here clearly provides a means for readily obtaining re-

sults of [this type] for the majority of important sequential search problems." In

Karp's paper [10] twenty one problems were proved NP-complete, showing be-

yond any doubt the surprisingly broad applicability of the method. Signi�cantly,

Karp seems annoyed and surprised that three other problems (linear program-

ming, primality, and graph isomorphism) resisted at the time such classi�cation.

Primality and graph isomorphism were also mentioned by Cook [2]. Knuth was

su�ciently convinced about the importance and broad applicability of the new

concept to take early and deliberate action on the terminological front [11].

5. NP-completeness has had tremendous impact even in areas where, in some

sense, it should not have. It is now common knowledge among computer sci-

entists that NP-completeness is largely irrelevant to public-key cryptography,

since in that area one needs sophisticated cryptographic assumptions that go

beyond NP-completeness and worst-case polynomial-time computation [19]; fur-

thermore, cryptographic protocols based on NP-complete problems have been

ill-fated. Fortunately, the founders of modern cryptography did not know this.

Di�e and Hellman base their famous pronouncement \We stand today on the

brink of a revolution in cryptography" [3] on two facts: (1) Very fast hardware

and software, and (2) novel techniques for proving problems hard (they cite

Karp's paper [10]).

6. NP-completeness has also exhibited a great amount of versatility, adapting

to contexts and computational aspects beyond its original scope of worst-case

analysis of exact algorithms for decision and optimization problems. For exam-

ple, it was used early on to show that certain optimization problems cannot be

approximated satisfactorily [20], and indeed in a most ingenious and compre-

hensive way more recently [1]. By showing that even less ambitious goals than

worst-case polynomial exact solution are unattainable, NP-completeness is thus

a most useful tool for repeatedly pruning unpromising research directions and

thus redirecting research to new ones (in a manner reminiscent of the struggle

between Hercules and the monster Hydra [16]).

7. Let me illustrate this versatility of NP-completeness by a technical interlude

on an aspect of e�cient computation that has interested me recently, namely,

output polynomial time. Certain computational problems require an output f(x)

on input x that is in the worst case exponential in the input. For such problems,

one would like to have algorithms that are polynomial in jxj and jf(x)j. The class



of problems thus solvable can be called output polynomial time. One can use NP-

completeness to prove that certain functions are not in output-polynomial time,

unless P=NP. For example, consider the function MIN which maps a regular

expression to the minimum-state equivalent deterministic �nite-state automaton.

MIN can be computed by �rst designing a nondeterministic automatonM , then

an equivalent deterministic automaton M

0

, and next minimizing the states of

M

0

to obtain the �nal output; the problem is, of course, that the intermediate

result M

0

could be exponential in both the input and the output. It is rather

straightforward to use \traditional" NP-completeness techniques to show the

following:

Theorem1. Unless P=NP, MIN is not in output polynomial time.

In fact, we cannot even compute in output-polynomial time a deterministic au-

tomaton that has at most polynomially more states than the minimum |unless,

of course, P=NP.

8. Often the required output f(x) is a set fy

1

; : : : ; y

k

g of strings that are related

to x via an NP mapping; for example, if G is a graph, let AMIS(G) be the set of

all maximal independent sets of G. AMIS is known to be in output-polynomial

time (see [9] for an exposition and strengthening of this result, and an early

discussion of output polynomial time). For such problems we have an elegant

alternative de�nition of output polynomial time. A function f : �

�

7! 2

�

�

is

in output polynomial time if the following problem is solvable in polynomial

time: Given x and y � �

�

, either decide that y = f(x), or �nd a string in

y � f(x). It is easy to see that, if such an algorithm exists, then its iteration

starting with S = ; gives an output polynomial time algorithm for f ; and vice-

versa, if an output polynomial time algorithm exists for f , it can be used to

produce an element of y � f(x). For example, AMIS is in output polynomial

time; its generalization to hypergraphs is open, but was recently shown to be

in output n

c logn

time [6]; see [5] for an extensive discussion of the hypergraph

generalization of AMIS. One can use again \traditional" NP-completeness to

show that the following generalization is not in output polynomial time, unless

P=NP: Given a monotone circuit, compute the set of all minimal (with respect

to the set of true inputs) satisfying truth assignments.

9. But, sometimes, \traditional" NP-completeness techniques do not seem to suf-

�ce to bring out the intractability of a problem, because this problem belongs to

a class or computational mode that appears to be \between" P and NP. In such

cases NP-completeness has acted as an open-ended research paradigm, spawn-

ing variants that are appropriate for the computational context being studied;

examples are classes that capture local search [8], the parity argument [14], loga-

rithmic nondeterminism [18], the related concept of �xed-parameter tractability

[4], and approximability [17].

10. Complexity classes introduced this way, as abstractions of natural compu-

tational problems of mysteriously intermediate complexity, are in some precise

sense well-motivated, indeed necessary; they are discovered, not invented, as they



have always existed by dint of their natural complete problems. The only way to

make them go away is to collapse them with P or NP |as occasionally happens,

recall [17] and its brilliant follow-up [1].

11. NP-completeness is of course a valuable tool for demonstrating the di�culty

of computational problems. However, NP-completeness is often used \allegori-

cally;" a problem is shown NP-complete that is not, strictly speaking, a natural

computational problem, but an arti�cial problem created to capture a mathe-

matical concept. NP-completeness in this context suggests that a problem, area,

or approach is mathematically nasty.. Because, if we believe that e�cient algo-

rithms are the natural out
ow of the mathematical structure of a problem (a view

shared by all computer scientists, with the possible exception of researchers in

\metaphor-based" algorithmic paradigms such as neural nets, in which algorith-

mic behavior is thought to be \emergent"), then, contrapositively, complexity

must be the manifestation of mathematical poverty, lack of structure. See [7] for

an early example of such a use of NP-completeness in the theory of relational

databases.

12. Beyond mathematics, NP-completeness (and complexity in general) can also

be applied \allegorically" in other disciplines. It can be used as a metaphor

for chaos in dynamical systems, for unbounded rationality in game theory, for

unfairness in economics, for integrity of electoral systems in political science,

for cognitive implausibility in arti�cial intelligence, for genetic indeterminism in

genetics, and so on (see [16] for references).

13. NP-completeness is thus an important \intellectual export" of computer

science to other disciplines. And it does �ll a void in the interdisciplinary intel-

lectual trade: It seems to me that the concept of lower bounds |and negative

results in general| is particular to computer science, and has no well-developed

counterpart in other disciplines. True, one sees isolated results in other sciences

(such as Heisenberg's uncertainty principle in quantum mechanics, Arrow's im-

possibility theorem in economics, and Carnot's theorem in thermodynamics)

which are arguably negative; however, nowhere else in science does one �nd such

a comprehensive methodology for obtaining negative results (with the exception

of complexity's own precursor mathematical logic, with its many incomplete-

ness, undecidability, and inexpressibility results). NP-completeness is therefore

valuable for another reason: It is one of the few precious features which give our

science its special character, which set it apart from the other sciences (see [15]

for another development of this argument).

14. In science, successful ideas are those that are pervasive and invasive, are

invitingly elegant and methodical, are open to extensions and variants, and cap-

ture an objective necessity, answer a widespread but di�use sense of dissatisfac-

tion in the scienti�c community (in the case of NP-completeness, the widespread

feeling among computer scientists in the 1960s that automata theory, the previ-

ous great paradigm, had run its course as a useful abstraction of computation).

Thinking about the nature and history of NP-completeness could give us useful



hints about computer science's next great paradigm, which, for all I know, has

started being articulated somewhere else in this volume.

References

1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, \Proof veri�cation

and hardness of approximation problems." Proc. 33rd FOCS (1992) pp. 14{23.

2. S. A. Cook \The complexity of theorem-proving procedures," Proc. 3rd STOC,

(1971), pp. 151{158.

3. W. Di�e and M. E. Hellman \New directions in cryptography," IEEE

Trans. Inform. Theory, 22, pp. 644{654, 1976.

4. R. G. Downey and M. R. Fellows \Fixed-parameter tractability and completeness

I: Basic results," SIAM Journal on Computing, 24, 4, pp. 873-921, 1995.

5. T. Eiter, G. Gottlob \Identifying the minimal transversals of a hypergraph and

related problems" SIAM Journal on Computing, 24, 6, pp. 1278-1304, 1995.

6. M. Fredman and L. Khachiyan \On the complexity of dualization of monotone

disjunctive normal forms" Journal of Algorithms, 21, 3, pp. 618{628, 1996.

7. P. Honeyman, R. E. Ladner, M. Yannakakis, \Testing the universal instance as-

sumption," Information Processing Letters, 12, pp. 14{19, 1980.

8. D. S. Johnson, C. H. Papadimitriou, M. Yannakakis \How Easy is Local Search?"

J.CSS, 1988 (special issue for the 1985 FOCS Conference).

9. D. S. Johnson, C. H. Papadimitriou, M. Yannakakis \On Generating All Maximal

Independent Sets", Information Processing Letters 1988.

10. R. M. Karp \Reducibility among combinatorial problems," pp. 85{103 in Com-

plexity of Computer Computations, R. E. Miller and J. W. Thatcher (eds), 1972.

11. D. E. Knuth \A terminological proposal," SIGACT News, 6, 1, pp. 12{18, 1974.

12. R. E. Ladner \On the structure of polynomial time reducibility," J.ACM, 22,

pp. 155{171, 1975.

13. L. Levin \Universal sorting problems," Pr. Inf. Transm., 9, p> 265{266, 1973.

14. C. H. Papadimitriou \On the Complexity of the Parity Argument and other Inef-

�cient Proofs of Existence" JCSS, 48, 3, 498{532, 1994.

15. C. H. Papadimitriou \Database metatheory: asking the big queries," Proc. 1995

PODS Conf., reprinted in SIGACT News, spring 1996.

16. C. H. Papadimitriou \The complexity of knowledge representation," Proc. 1996

Computational Complexity Symposium.

17. C. H. Papadimitriou, M. Yannakakis \Optimization, approximation, and complex-

ity classes" Proc. 1988 STOC, and J.CSS,, 1991.

18. C. H. Papadimitriou, M. Yannakakis \On limited nondeterminism and the com-

plexity of the Vapnic-Chervonenkis dimension," special issue of J.CSS 1996 (special

issue for the 1993 Structures Conf.).

19. R. L. Rivest \Cryptography," pp. 717{755 in Handbook of Theoretical Computer

Science, J. van Leeuwen (ed), The MIT Press/Elsevier, 1990.

20. S. Sahni, T. Gonzalez \P-complete approximation problems," J.ACM, 23, pp. 555{

565, 1976.

21. T. J. Schae�er \The complexity of satis�ability problems," Proc. 10th STOC,

(1978), pp. 216{226.

22. M. Yannakakis \Node- and edge-deletion problems," Proc. 10th STOC, (1978),

pp. 253{264.

This article was processed using the L

a

T

E

X macro package with LLNCS style


