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Multiparty Communication
Complexity

How do we define communication complexity for k parties?

Given f : X1 ×X2 × · · · × Xk → Z

Definition 1 (Number-in-hand model, “NOH”) Player i sees
input xi ∈ Xi only.

Definition 2 (Number-on-forehead model, “NOF”) Player i
sees every input xj ∈ Xj for j ̸= i .
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Notation

• Often by f we mean a function family
fn,k : ({0, 1}n)k → {0, 1}.

• Write Dk(f ) for deterministic communication complexity
of fn,k

• For distribution µ over ({0, 1}n)k and ϵ > 0, write Rϵ,µ
k (f )

for communication complexity of fn,k where inputs drawn
µ, and the (deterministic) protocol can err on at most ϵ
fraction of inputs.
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Motivating Example: EQ

• Consider EQk : ({0, 1}n)k → {0, 1}.
• For k = 2, NIH = NOF model.

• For k = 2, D2(EQ) = n (maximal).

• But for k > 3, in NOF model, Dk(EQ) = 2.

• In NIH mode, CC is Ω(n).

• in NOF, we can exploit overlap of information for
efficiency!
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Motivating Example: EQ

Solution: Player 1 sends 1 iff other players’ inputs equal. Player
2 sends 1 iff other players’ input equal. EQ(x1, . . . , xk) =
1 ⇐⇒ both bits are 1.
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Lay of the land

Lower Bounds

Very little is known!!!

“one good method” gives
n/4k -type bounds

• Generalized Inner
Product:
Dk(GIP) ≥ Ω( n

4k
)

• Disjointness:
Dk(DISJ) ≥ Ω( n

4k
)

• Exactly-n, k = 3:
D3(Exactly-n) ≥
Ω(log log log n)

Upper Bounds

We know a few surprising
efficient protocols!

• Generalized Inner
Product:
Dk(GIP) ≤ O(k n

2k
)

• Exactly-n, k = 3:
D3(Exactly-n) ≤√
log n.
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Connection to ACC0

Another reason to care about NOF!

Definition AC0[m] is the class of languages that can be
computed by a family of circuits {Cn} such that each
Cn : {0, 1}n → {0, 1} is: constant depth, size poly(n), gates are
{∧,∨,¬, mod m} with unbounded fan-in.

Definition ACC0 =
⋃

m≥2 ACC0[m]

Theorem (Beigel and Tarui ’94) For L ∈ ACC0, ∃c , d s.t. L

be computed by depth 2 circuits, size 2log
d n, top gate is

symmetric, and bottom layer consists of ∧ gates with fan-in
logc n.
Definition The output of a symmetric gate is determined by
the number of 0 and 1 inputs.
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Connection to ACC0

Theorem 1 (Beigel and Tarui ’94) For L ∈ ACC0, ∃c , d s.t. L

be computed by depth 2 circuits, size 2log
d n, top gate is

symmetric, and bottom layer consists of ∧ gates with fan-in
logc n.

Theorem 2 (Hådstad and Goldmann ’91) Suppose
f : {0, 1}n → {0, 1} can be computed by circuits with: depth
2, top gate is symmetric with fan-in s, bottom layer consists of
∧ gates with fan-in ≤ k − 1. Then (under any partition of n
into k parties), Dk(f ) ≤ k log(s).
Proof Each ∧ gate can be computed by some party. Partition
gates among parties, each sends how many are 1.

Corollary (Theorems 1+2) For any function f in ACC0, c , d
s.t. under any partition of n bits to k = logc n + 1 parties,
NOF Dk(f ) ≤ (logc n + 1) logd n = logO(1) n.
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Connection to ACC0

Corollary (Theorems 1+2) For any function f in ACC0, c , d
s.t. under any partition of n bits to k = logc n + 1 parties,
NOF Dk(f ) ≤ (logc n + 1) logd n = logO(1) n.

• Usefulness of NOF: If we could show some f such that
for any k = logc n + 1, it requires Dk(f ) > logO(1) n, this
would show f /∈ ACC0 !!!

• No such lower bounds, yet...

• major goal in circuit complexity

• we know NEXP ⊊ ACC0 (but not with this method– Ryan
Williams, 2011)
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Limited lower bounds

• If we could show some fn,k such that for any k = logc n, it

requires Dk(f ) > logO(1) n, this would show f /∈ ACC0 !!!

Lower Bounds

• Generalized Inner
Product:
Dk(GIP) ≥ Ω( n

4k
)

Upper Bounds

• Generalized Inner
Product:
Dk(GIP) ≤ O(k n

2k
)

• Lower bound is non-trivial only when k < log n
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Generalized Inner Product

Definition For x1, . . . , xk ∈ ({0, 1}n)k ,
GIPn,k(x1, . . . , xk) =

⊕n
i=1(x1)i ∧ · · · ∧ (xn)i

That is, GIPn,k(x1, . . . , xk) = number of coordinates that all
equal 1, mod 2.

Proposition Viewing GIPn,k for k = logc n and vectors of size
n/(logc n) as a function on n bits, GIPn,k ∈ ACC0. In fact,
GIPn,k ∈ AC0[2].
Proof bottom layer has n/(logc n) AND-gates, computing
(x1)i ∧ · · · ∧ (xk)i for each coordinate; top layer is a mod 2
gate □
Circuit in proof already in Beigel-Tarui form :)
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Cylinders

Definition. A cylinder Ci in the i-th coordinate is a subset of
the input space X1 × · · · × Xk that does not depend on the
i-th coordinate: if (x1, . . . , xi , . . . , xk) ∈ Ci then for all
x ′i ∈ Xi , (x1, . . . , x

′
i , . . . , xk) ∈ Ci .

Definition. A cylinder intersection C is an intersection of
cylinders.

If Ci ,C
′
i are cylinders in the i-th coordinate, so is Ci ∩ C ′

i . So
any cylinder intersection C can be written ∩k

i=1Ci .
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Cylinders
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Cylinders and Protocols
Proposition. For a NOF protocol P with communication c, the
set of inputs that induce communication transcript t ∈ {0, 1}c
is a cylinder intersection.

Proof sketch. Bit by bit. At step i when player j speaks,
whether they write bit ci depends only on the inputs of every
other player.

Corollary. If P is a deterministic NOF protocol computing f :
X1 × X2 × · · · × Xk → Z with c bits of communication, P
partitions X1 × X2 × · · · × Xk into at most 2c monochromatic
cylinder intersections.

• Cylinder intersections are the analogue of rectangles.

• For k = 2, cylinder intersection = rectangle.

• Cylinder intersections are complex combinatorial objects.
Limited understanding of cylinder intersections = limited
NOF bounds.
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Cylinder intersection for k = 2
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Discrepancy

In this section, f : X1 × · · · × Xk → ±1, and by abuse of
notation, C (x1, . . . , xk) = 1 if x1, . . . , xk ∈ C , else 0.

Definition. For distribution µ over X1 × · · · × Xk , function f ,
cylinder intersection C , the discrepancy of f w.r.t µ and C :

discµ(f ,C ) = |Ex1,...,xk∼µ[f (x1, . . . , xk)C (x1, . . . , xk)]|

Definition. The discrepancy of f wrt µ is

discµ(f ) = max
C

discµ(f ,C )

Intuition: “average” of f over cylinders. Close to 0 means
“well-spread” over ±1.
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Discrepancy Method

Definition. The discrepancy of f wrt µ is
discµ(f ) = maxC discµ(f ,C )

Theorem (Discrepancy Method; Babai, Nisan, Szegedy ’92)
For any f

Rϵ,µ
k ≥ log

( 1− 2ϵ

discµ(F )

)
Proof identical to k = 2 case (we did it in class!)

Intuition: upper bound on discrepancy: for any cylinder
intersection, f is “well spread” over ±1, hard to partition
monochromatically. Gives lower bound on NOF.
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Lower bound for GIP

Theorem (Discrepancy Method) For any f

Rϵ,µ
k ≥ log

( 1− 2ϵ

discµ(F )

)

Theorem discU(GIP) ≤ exp(−n/4k)

Theorem (GIP lower bound)

Rϵ,U
k (GIP) ≥ n/4k + log(1− 2ϵ)

And in particular,
Dk(GIP) ≥ n/4k
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Overview of Two Theorems
Theorem 1 (Goal) discU(GIP) ≤exp(−n/4k)

For two inputs to f , that is (x01 , . . . , x
0
k ) and (x11 , . . . , x

1
k ), for a

vector b ∈ {0, 1}k , xb denotes the mixed input (xb11 , . . . , xbkk ).

Theorem 2 (Cube-measure bound for discrepancy)
For any f,

discU(f )
2k ≤ E

(x01 ,...,x
0
k )

(x11 ,...,x
1
k )

[ ∏
b∈{0,1}k

f (xb)
]

Theorem 3 (Cube-measure of GIP)

E
(x01 ,...,x

0
k )

(x11 ,...,x
1
k )

[ ∏
b∈{0,1}k

GIP(xb)
]
≤ e−n/2k−1

discU(GIP) ≤ (e−n/2k−1
)1/2

k ≤ 2−n/4k to get Theorem 1.
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Cube-measure of GIP (Theorem 3)
Theorem 3 (Cube-measure of GIP)

E
(x01 ,...,x

0
k )

(x11 ,...,x
1
k )

[ ∏
b∈{0,1}k

GIP(xb)
]
≤ e−n/2k−1

Proof:

= E
[ ∏
b∈{0,1}k

n∏
i=1

(−1)x
b1
1,i∧···∧x

bk
k,i i

]

= E
[ n∏
i=1

∏
b∈{0,1}k

(−1)x
b1
1,i∧···∧x

bk
k,i

]
Because the inputs are uniform, the coordinates are
independent, hence

=
n∏

i=1

E
[ ∏
b∈{0,1}k

(−1)x
b1
1,i∧···∧x

bk
k,i

]
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Cube-measure of GIP (Theorem 3)
Theorem 3 (Cube-measure of GIP)

E(x01 ,...,x
0
k )

(x11 ,...,x
1
k )

[ ∏
b∈{0,1}k

GIP(xb)
]
≤ e−n/2k−1

=
(
Ex01 ,...,x

0
k∈{0,1}

x11 ,...x
1
k∈{0,1}

[ ∏
b∈{0,1}k

(−1)x
b1
0 ∧···∧xbkk

])n

• if for all j ∈ [k], x0j ̸= x1j then the product is −1

• prob of above = 1/2k

• if for some j , x0j = x1j , then product is 1

=
(
(1− 1/2k)− 1/2k)n

= (1− 1/2k−1)n

=≤ e−n/2k−1
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Bounding discrepancy

Theorem 2
For any f,

discU(f )
2k ≤ E

(x01 ,...,x
0
k )

(x11 ,...,x
1
k )

[ ∏
b∈{0,1}k

f (xb)
]

Recall: discU(f ) = maxC discU(f ,C ) =
maxC |Ex1,...,xk [f (x1, . . . , xk)C (x1, . . . , xk)]|

• the main technique (and limitation) for NOF lower-bounds

• uses repeated Cauchy-Schwarz to get rid of cylinder
intersections, replacing them with product over
double-expectation

Cauchy-Schwarz Lemma: E[Z ]2 ≤ E[Z 2].
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Bounding Discrepancy

Proof is by induction: assume true for any function on k − 1
players. For f on k players, for the maximizing cylinder
C = ∩k

i=1Ci ,

discU(f ) = | E
x1,...,xk

[f (x1, . . . , xk)Π
k
i=1Ci (x1, . . . , xk)] |

Since Ck does not depend on xk ,

= | E
x1,...,xk−1

[Ck(x1, . . . , xk−1, ·)E
xk
[f (x1, . . . , xk)Π

k−1
i=1 Ci (x1, . . . , xk)]] |

By Cauchy-Schwarz, and Ck(· · · ) ≤ 1

discU(f )
2 ≤ E

x1,...,xk−1

[(Exk [f (x1, . . . , xk)Π
k−1
i=1 Ci (x1, . . . , xk)])

2]
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Bounding Discrepancy

discU(f )
2 ≤ E

x1,...,xk−1

[(Exk [f (x1, . . . , xk)Π
k−1
i=1 Ci (x1, . . . , xk)])

2]

= E
x1,...,xk−1,x

0
k ,x

1
k

[f (. . . , x0k )f (. . . , x
1
k )Π

k−1
i=1 Ci (. . . , x

0
k )Ci (. . . , x

1
k )]

= E
x0k ,x

1
k

[ E
x1,...,xk−1

[f x
0
k ,x

1
k (x1, . . . , xk−1)Π

k−1
i=1 C

x0k ,x
1
k

i (x1, . . . , xk−1)]

Raise both sides to power of 2k−1. By Cauchy-Schwarz,

discU(f )
2k ≤

E
x0k ,x

1
k

[
(

E
x1,...,xk−1

[f x
0
k ,x

1
k (x1, . . . , xk−1)ΠC

x0k ,x
1
k

i (x1, . . . , xk−1)
)2k−1

]
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Bounding Discrepancy

discU(f )
2k ≤

E
x0k ,x

1
k

[
(

E
x1,...,xk−1

[f x
0
k ,x

1
k (x1, . . . , xk−1)ΠC

x0k ,x
1
k

i (x1, . . . , xk−1)
)2k−1

]

Inner expectation upper bounded by discU(f
x0k ,x

1
k ). This is a

function on k − 1 parties, so by induction,

≤ E
x0k ,x

1
k

E
(x01 ,...,x

0
k−1)

(x11 ,...,x
1
k−1)

[ Π
b∈{0,1}k−1

f x
0
k ,x

1
k (xb)]

= E
(x01 ,...,x

0
k )

(x11 ,...,x
1
k )

[ Π
b∈{0,1}k−1

f (xb, x0k )f (x
b, x1k )]

= E
(x01 ,...,x

0
k )

(x11 ,...,x
1
k )

[ f
b∈{0,1}k

(xb)] □
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Upper bounds: Exactly-n

Definition Exactly-n is a 3-party function f : [n]3 → {0, 1}
where f (x , y , z) = 1 iff x + y + z = n.

• Remember, this is NOF: Alice sees y , z , Bob sees x , y ,
Charlie sees x , y .

• Trivial log n + 1 protocol where Alice sends y

Main theorem: D3(f ) ≤
√
log n
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Colorings

Main theorem: D3(f ) ≤
√
log n

Definition. A coloring is a mapping from [n] to a color set C .
It is “3-AP-free” if for any sequence a, a+ b, a+ 2b ∈ [n], they
do not have the same color.

Examples– 3-AP free?

1 2 3 4 5 6

1 2 3 4 5 6

Theorem (Behrend 1946) There is a 3-AP-free coloring of
[n] with 2O(

√
logn) colors.
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Proof (main theorem)

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n]
with 2O(

√
logn) colors.

Proof of main theorem.

• Let x ′ = n − y − z , y ′ = n − x − z .

• Observe: x − x ′ = y − y ′ = x + y + z − n.

• x + 2y ′, x ′ + 2y , x + 2y is a 3-AP (with jump
x + y + z − n)

• They are all equal iff x + y + z = n.

• All three numbers in [−2n, 2n] and can be computed by
Bob, Alice, and Charlie, respectively.

• Using the coloring for [4n], send colors and check if same:
D3(f ) ≤ log(2O(

√
log4n)) = O(

√
log n)
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Behrend’s theorem
Theorem (Behrend 1946) There is a 3-AP-free coloring of [n]
with 2O(

√
logn) colors.

Intuition: a 3-AP is sequence x , x+y
2 , y ∈ [n]. Suppose we had

homomorphism from [n] to Rd , and color by vector length.
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Behrend’s theorem

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n]
with 2O(

√
logn) colors.

Proof.

• Choose d , r such that 4|d and d r > n. Let v(x) ∈ Rr be
the base-d representation of x .

• If ∥v(x)∥2 coloring worked, d2r = O(d2 log(n)) colors
would suffice. Unfortunately, doesn’t work...

• Even if ∥v(x)∥2 = ∥v(y)∥2, not necessarily true that

v( x+y
2 ) = v(x)+v(y)

2

• Idea: add “extra info” to coloring to force this
homomorphic property.
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Behrend’s Coloring

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n]
with 2O(

√
logn) colors.

• v(x) = base-d representation of x .

• Let w(x) ∈ Rd be the approximation of v(x): w(x)i is
largest number jd/4 for j ∈ {0, 1, 2, 3, 4} such that
jd/4 ≤ xi .

• Color v by (v(x),w(x))

• At most 5r = 2O(r) values for w(x), and d2r for v(x)

• overall have 2O(r)+log d colors. Use r =
√
log n, d = 2

√
log n

to get 2O(
√
log n).
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Behrend’s theorem, ctd.

• Suppose a, a+ b, a+ 2b ∈ [n] have same color.

• ∥v(a)∥ = ∥v(a+ b)∥ = ∥v(a+ 2b)∥.
• Will show that w ’s are the same implies
v(a+ b) = v(a)+v(a+2b)

2 , contradiction with line above!!

• Let W (x) be the number represented by w(x) (that is,∑r
i=0 w(x)id

i .

• The base-d representation of x −W (x) is v(x)− w(x).

• W (a) = W (a+ b) = W (a+ 2b)

a+ 2b + a = 2(a+ b)

a+ 2b −W (a+ 2b) + a−W (a) = 2(a+ b −W (a+ b))

v(a+ 2b)− w(a+ 2b) + v(a)− w(a) = 2(v(a+ b)− w(a+ b))

v(a+ 2b) + v(a) = 2v(a+ b)
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