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How do we define communication complexity for k parties?

Givenf:Xlxng---xXk—>Z

Definition 1 (Number-in-hand model, “NOH") Player i sees
input x; € X; only.

Definition 2 (Number-on-forehead model, “NOF") Player i
sees every input x; € &) for j # i.
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2 of the o ® Often by f we mean a function family
ok - ({0,137 = {0,1}.

e Write Dy (f) for deterministic communication complexity
of fn,k

® For distribution 1 over ({0,1}")% and € > 0, write R,"'(f)
for communication complexity of f, x where inputs drawn

S , and the (deterministic) protocol can err on at most ¢

fraction of inputs.
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Motivating Example: EQ

Consider EQy : ({0,1}") — {0,1}.

For k =2, NIH = NOF model.

For k =2, D>(EQ) = n (maximal).

But for k > 3, in NOF model, D (EQ) = 2.
In NIH mode, CC is Q(n).

in NOF, we can exploit overlap of information for
efficiency!
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Motivating Example: EQ

Solution: Player 1 sends 1 iff other players’ inputs equal. Player
2 sends 1 iff other players' input equal. EQ(xi,...,xx) =
1 <= both bits are 1.
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Definitions Very little is known!!!
Example: £Q Y Upper Bounds

Lay of the land

“one good method” gives

n/4% type bounds We know a few surprising

efficient protocols!
® Generalized Inner

® Generalized Inner

S Product: Product:

Di(GIP) > Q(4) Di(GIP) < O(k2%)
Sest e Disjointness: e Exactly-n, k = 3

D (DISJ) > () Ds(EXACTLY-n) <

® Exactly-n, k = 3: Vlog n.
D3;(EXACTLY-n) >
Q(log log log n)
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Connection to ACC°

Another reason to care about NOF!

Definition AC°[m] is the class of languages that can be
computed by a family of circuits {C,} such that each
Cn:{0,1}" — {0,1} is: constant depth, size poly(n), gates are
{A,V,—, mod m} with unbounded fan-in.

Definition ACC® = (J,,,-, ACCO[m]

Theorem (Beigel and Tarui '94) For L € ACC®, 3c,d s.t. L
be computed by depth 2 circuits, size 2'°gd”, top gate is
symmetric, and bottom layer consists of A gates with fan-in
log® n.
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Connection to ACC°

Theorem 2 (Hadstad and Goldmann '91) Suppose

f:{0,1}" — {0,1} can be computed by circuits with: depth
2, top gate is symmetric with fan-in s, bottom layer consists of
A gates with fan-in < k — 1. Then (under any partition of n
into k parties), Di(f) < klog(s).

Proof Each A gate can be computed by some party. Partition
gates among parties, each sends how many are 1.

Corollary (Theorems 1+2) For any function f in ACC?, ¢, d
s.t. under any partition of n bits to kK = log® n + 1 parties,
NOF Dy () < (log® n+ 1) log? n = log®®) n.
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ay of the land

Connection to
Acc®

e Usefulness of NOF: If we could show some f such that
for any k = log n+ 1, it requires Dy(f) > log®®) n, this
would show f ¢ ACCO 111

® No such lower bounds, yet...

® major goal in circuit complexity

® we know NEXP ¢ ACC? (but not with this method— Ryan
Williams, 2011)
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Lower Bounds Upper Bounds

® Generalized Inner
Product:
D(GIP) > Q(3)

® Generalized Inner
Product:
Dy (GIP) < O(kzik)

® Lower bound is non-trivial only when k < log n
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Definition For xq,...,x € ({0,1}")k,
S GIP, s(x1, -y xi) = @i (x1)i A+ A (Xa)i

That is, GIP,, «(x1, ..., Xxk) = number of coordinates that all
Lower bounds equal 1, mod 2.

Proposition Viewing GIP, , for k = log® n and vectors of size
n/(log® n) as a function on n bits, GIP,, € ACCO. In fact,
Esact GIP,, € AC°]2).

Proof bottom layer has n/(log® n) AND-gates, computing
(x1)i A+ A (xk); for each coordinate; top layer is a mod 2
gate [J

Circuit in proof already in Beigel-Tarui form :)
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Definition. A cylinder C; in the i-th coordinate is a subset of
the input space A7 X --- x X that does not depend on the
i-th coordinate: if (x1,...,X;,...,xx) € C; then for all

XI{ S X,‘,(Xl,.. . ,XI{,... 7Xk) e G.

Definition. A cylinder intersection C is an intersection of
cylinders.

If Cj, C! are cylinders in the i-th coordinate, so is ;N C/. So
any cylinder intersection C can be written ﬂf-‘zl G.
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Discrepancy method

Cube measure of GIP

Boundi . ,

discrepancy o R .
XZ ' . B

Exactly-n L4
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set of inputs that induce communication transcript t € {0,1}¢
is a cylinder intersection.

Proof sketch. Bit by bit. At step / when player j speaks,
whether they write bit ¢; depends only on the inputs of every
other player.

Corollary. If P is a deterministic NOF protocol computing f :
X1 X Xo x -+ x Xy — Z with ¢ bits of communication, P
partitions X7 X A X --- X X into at most 2¢ monochromatic
Eactiyn cylinder intersections.

® Cylinder intersections are the analogue of rectangles.
® For k = 2, cylinder intersection = rectangle.
® Cylinder intersections are complex combinatorial objects.

Limited understanding of cylinder intersections = limited
NOF bounds.
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In this section, f : X7 X --- x X — %1, and by abuse of
notation, C(xi,...,xx) =1if x1,...,xx € C, else 0.

Definition. For distribution p over X7 x - -+ x X, function f,
cylinder intersection C, the discrepancy of f w.r.t ; and C:

diSCM(f, C) = |Ex1,...,xk~u[f(xla Ce. ,Xk)C(Xl, . ,Xk)]|

Definition. The discrepancy of f wrt p is
disc,(f) = mCaxdiscu(f, C)

Intuition: “average” of f over cylinders. Close to 0 means
“well-spread” over +1.
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Discrepancy Method

Theorem (Discrepancy Method; Babai, Nisan, Szegedy '92)
For any f
1—2¢
RyM > |0g <7)
k disc,(F)
Proof identical to k = 2 case (we did it in class!)
Intuition: upper bound on discrepancy: for any cylinder

intersection, f is “well spread” over +1, hard to partition
monochromatically. Gives lower bound on NOF.
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Theorem discy(GIP) < exp(—n/4k)

Theorem (GIP lower bound)
ROY(GIP) > n/4% + log(1 — 2¢)

And in particular,
Dy (GIP) > n/4*
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o For two inputs to f, that is (x{,...,x?) and (x{,...,x}), for a
S vector b € {0,1}%, x> denotes the mixed input (xfl, . ,xfk).

Theorem 2 (Cube-measure bound for discrepancy)
For any f,

discy(F)? < E [ I1 f(xb)]

- (xf,.‘.,xl?) B
(o och) be{0,1}

Theorem 3 (Cube-measure of GIP)

E [ I1 GIP(xb)]ge_”/2k_1

Do

X:

—
EANNEALY
XX O

)
)

—

X7 ey X

discy(GIP) < (e="/27")1/2“ < 2-n/4" 16 get Theorem 1.

19/35



Number-on-
Forehead

Complesity Cube-measure of GIP (Theorem 3)
Mitropolsky Theorem 3 (Cube-measure of GIP)
[ cpd)] <e®”
| 4l o
Lay of the land (le 7Xk)

Proof:

:E[ H ﬁ(_l)xf},.A---Axfﬁ,}

be{0,1}k i=1

n by by,
Exactyn :E[H H (_1)X1,i/\"'/\xk,i]

i=1 be{0,1}

Because the inputs are uniform, the coordinates are
independent, hence

_HE[ H _I)Xf’li/\m/\X:ﬂ

20/35 i=1 bG{O l}k
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Cube-measure of GIP (Theorem 3)

:(Ex{’,...,xfe{o,l}[ H (_1)xé’1/\...Aka]>n

xt,..xte{0,1} be{0,1}k

e if for all j € [k], x) # X' then the product is —1
® prob of above = 1/2k
e if for some j, xJQ = le, then product is 1

= ((1-1/2%) —1/2%)"
— (1 o 1/2k—1)n

:< e_n/2k—1



Number-on-
Forehead
Complexity

Mitropolsky

22/35

Bounding discrepancy

Theorem 2
For any f,

discy(f)2 < E [ I1 f(xb)]

o (X?,...,XE) B
(Xll,.‘.,Xi) be{0,1}

Recall: discy(f) = maxcdiscy(f, C) =
maXxc ‘EX17_“7Xk[f(X1, . ,Xk)C(Xl, e ,Xk)”

® the main technique (and limitation) for NOF lower-bounds

e uses repeated Cauchy-Schwarz to get rid of cylinder
intersections, replacing them with product over
double-expectation

Cauchy-Schwarz Lemma: E[Z]? < E[Z?].
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Proof is by induction: assume true for any function on k — 1
Defitios players. For f on k players, for the maximizing cylinder
L C=nk,G,

diSCU(f) = E [f(xl,...,xk)l'lleC,-(xl,...,xk)] ‘

Since Cj does not depend on x,

=| E [Ck(Xlw~7Xk—1>')E[f(Xla~--7Xk)n,l'(;11Ci(Xla'--an)]]

X1yeeesXk—1
By Cauchy-Schwarz, and Cy(---) <1

diSCU(f)2 < E  [(Ex[f(x1,... an)nf'(:_f Ci(x, - .- 7Xk)])2]

X1yeeesXk—1
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= E [FCe XD X G XD G xE)]
X17“"Xk717XE7X/:<l

) E x0 x1 k—1 ~x2.x}

= [ [f k k(Xl,...7Xk,1)r|I-:1 C,- (X17~--7Xk71)]

0,1
X o Xje X1ye-9Xk—1

Raise both sides to power of 2<~1. By Cauchy-Schwarz,

dich(f)zk <
0.1 %0 x1 ok—1
E [( E [f-Xk’Xk(Xl,...,Xk_l)ncl-k7 k(Xl,...,Xk_l))

0,1
XpoXjo XL Xk—1

]
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dlch(f)2k <
Definitions 0 1 k—1
e E[( E [PP50a. oG %, xe)” ]

Inner expectation upper bounded by dich(fX(k)’X;). This is a
function on k — 1 parties, so by induction,

éour:ding U P

ez <E E [ N F%x5)
(0,0 ,) bE{0, 1}

Exactly-n (X117"'7X11—1)

- E I_I f b7 0 f b;X]'
(X?v---vxf)[bG{O,l}kﬂ (<, X )F (X7, xi0)]
(X]]_-7"'7Xl1)

= E f (Xb)] 0
(x0,..x0) bE{0,1}F
(Xll,...,x,})
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Definition Exactly-n is a 3-party function f : [n]® — {0, 1}
where f(x,y,z) =1iff x+y+z=n.

® Remember, this is NOF: Alice sees y, z, Bob sees x, y,
Charlie sees x, y.

® Trivial log n+ 1 protocol where Alice sends y

Exactly-n

Main theorem: Ds(f) < +/logn

26/35
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D Definition. A coloring is a mapping from [n] to a color set C.
It is "3-AP-free" if for any sequence a,a+ b,a+ 2b € [n], they
do not have the same color.

Examples— 3-AP free?

Theorem (Behrend 1946) There is a 3-AP-free coloring of
[n] with 20(vgn) colors.

27/35
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et Proof of main theorem.

¢ letx’=n—y—z,yy=n—x—1z

® Observe: x —xX' =y —y' =x+y+z—n.

® x+ 2y, x' +2y,x+2yis a 3-AP (with jump
xX+y+z—n)

® They are all equal iff x+y +2z=n.

Exactly-n

® All three numbers in [-2n,2n] and can be computed by
Bob, Alice, and Charlie, respectively.

e Using the coloring for [4n], send colors and check if same:

Ds() < log(20(V£%7)) — O(,/log n)

28/35
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Behrend's theorem

Theorem (Behrend 1946) There is a 3-AP-free coloring of [n]
with 20(v/egn) colors.

Intuition: a 3-AP is sequence x, %,y € [n]. Suppose we had
homomorphism from [n] to R?, and color by vector length.
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Proof.

® Choose d, r such that 4|d and d" > n. Let v(x) € R" be
the base-d representation of x.

® If ||v(x)||? coloring worked, d?r = O(d? log(n)) colors
would suffice. Unfortunately, doesn't work...

e Even if |v(x)||> = ||[v(y)||?, not necessarily true that

Exactly-n

® |dea: add “extra info” to coloring to force this
homomorphic property.

30/35
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® v(x) = base-d representation of x.

® Let w(x) € RY be the approximation of v(x): w(x); is
largest number jd/4 for j € {0,1,2,3,4} such that
Jjd/4 < x;.

e Color v by (v(x), w(x))

® At most 5" = 2°(") values for w(x), and d?r for v(x)

* overall have 29(N+ogd colors. Use r = \/logn, d = 2V'eeg”n
to get 20(vlogn),

Exactly-n
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® Suppose a,a+ b, a+ 2b € [n] have same color.

Iv(a)ll = [Iv(a+ b)|| = l[v(a + 2b)].

e Will show that w's are the same implies

R v(a+b) = w, contradiction with line above!!

Let W(x) be the number represented by w(x) (that is,
Do w(x)id'.

® The base-d representation of x — W(x) is v(x) — w(x).
e W(a)=W(a+b)=W(a+2b)

a+2b+a=2(a+b)
a+2b— W(a+2b)+a—W(a)=2(a+b— W(a+ b))
v(a+ 2b) — w(a+ 2b) + v(a) — w(a) = 2(v(a + b) — w(a + b))
v(a+ 2b) + v(a) = 2v(a+ b)

32/35
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First part covers connection to ACC,

https://www.cs.toronto.edu/~toni/Courses/PvsNP/
Lectures/lectureb.pdf.
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