Direct Sum in Interactive Communication Models Using Information-theoretic Tools

COMS 6998 Communication Complexity Applications

Alexander Lindenbaum, Yunya Zhao
April 6, 2022

Review: Information Theory Preliminaries

- Entropy of a random variable X

$$
\mathrm{H}(X)=\sum_{x} p(x) \cdot \log \frac{1}{p(x)}=\underset{p(x)}{\mathbb{E}}\left[\log \frac{1}{p(x)}\right]
$$

- Conditional Entropy

$$
\mathrm{H}(Y \mid X)=\underset{p(x y)}{\mathbb{E}}\left[\log \frac{1}{p(y \mid x)}\right]=\underset{p(x)}{\mathbb{E}}[\mathrm{H}(Y \mid X=x)]
$$

- Chain Rule of Entropy

$$
\mathrm{H}(X Y)=\mathrm{H}(X)+\mathrm{H}(Y \mid X)
$$

Review: Information Theory Preliminaries

- Mutual Information

$$
\mathrm{I}(A ; B)=\mathrm{H}(A)-\mathrm{H}(A \mid B)
$$

- Conditional Mutual Information

$$
\mathrm{I}(A ; B \mid C)=\mathrm{H}(A \mid C)-\mathrm{H}(A \mid B C)
$$

- Chain Rule of Mutual Information

$$
\mathrm{I}(A B ; C)=\mathrm{I}(A ; C)+\mathrm{I}(B ; C \mid A)
$$

- Chain Rule of Conditional Mutual Information

$$
\mathrm{I}(A B ; C \mid D)=\mathrm{I}(A ; C \mid D)+\mathrm{I}(B ; C \mid A D)
$$

Relating to Communication: Information Complexity

Analogous to Communication Cost and Communication Complexity:

Information Cost is related to the amount of information gained through the execution of a communication protocol π Information Complexity is related to a function f (a problem) over all protocols that computes it.

Relating to Communication: Information Complexity

- Transcript of a protocol

Given a protocol π, the transcript $\pi(\mathbf{X}, \mathbf{Y})$ is the concatenation of the public randomness with all the messages that are sent during the execution of π on input X, Y

- Internal Information Cost
(Distributional) Internal information cost $\operatorname{IC}_{\mu}^{i}(\pi)$ is how much each party learns about the other party's input during the execution of π

$$
\mathrm{IC}_{\mu}^{i}(\pi)=I(X ; \pi(X, Y) \mid Y)+I(Y ; \pi(X, Y) \mid X)
$$

Relating to Communication: Information Complexity

- Internal Information Cost
(Distributional) Internal information cost $\mathrm{IC}_{\mu}^{i}(\pi)$ is how much each party learns about the other party's input during the execution of π

$$
\mathrm{IC}_{\mu}^{i}(\pi)=I(X ; \pi(X, Y) \mid Y)+I(Y ; \pi(X, Y) \mid X)
$$

- External Information Cost
(Distributional) External information cost $\mathrm{IC}_{\mu}^{\text {ext }}(\pi)$ is how much information an outside observer learns about both parties' input just by looking at Alice and Bob chat

$$
I_{\mu}^{e x t}(\pi)=I(X Y ; \pi(X, Y))
$$

Internal IC \leq External IC

For protocol π and distribution μ, we have

$$
\mathrm{IC}_{\mu}^{i}(\pi) \leq \mathrm{IC}_{\mu}^{\mathrm{ext}}(\pi)
$$

[Intuition] at each round, an independent observer is always going to learn more new info about $X Y$ than X and Y about each other, or more formally:

Internal IC \leq External IC

For protocol π and distribution μ, we have

$$
\operatorname{IC}_{\mu}^{i}(\pi) \leq \mathrm{IC}_{\mu}^{e x t}(\pi)
$$

Proof.

Let ω be any fixed prefix of the transcript of length $i-1$.
If it is the X player's turn to speak, the amount of info she learns about Y is zero

$$
I\left(Y ; \pi(X, Y)_{i} \mid X, \pi(X, Y)_{\leq i-1}=\omega\right)=0
$$

Similarly, if it is the Y player's turn to speak, the amount of info he learns about X is zero. So at each round, there has to be one player who learns nothing new.

Internal IC \leq External IC

For protocol π and distribution μ, we have

$$
\operatorname{IC}_{\mu}^{i}(\pi) \leq \mathrm{IC}_{\mu}^{e x t}(\pi)
$$

Proof.

On the other hand, an observer always learns something new at each round, and that amount is

$$
\begin{gathered}
\quad I\left(X Y ; \pi(X, Y)_{i} \mid \pi(X, Y)_{\leq i-1}=\omega\right) \\
=I\left(X ; \pi(X, Y)_{i} \mid \pi(X, Y)_{\leq i-1}=\omega\right)+I\left(Y ; \pi(X, Y)_{i} \mid X \pi(X, Y)_{\leq i-1}=\omega\right) \\
\geq I\left(X ; \pi(X, Y)_{i} \mid Y \pi(X, Y)_{\leq i-1}=\omega\right)+I\left(Y ; \pi(X, Y)_{i} \mid X \pi(X, Y)_{\leq i-1}=\omega\right)
\end{gathered}
$$

NOTE: if μ is a product distribution, $\mathrm{IC}_{\mu}^{i}(\pi)=\operatorname{IC}_{\mu}^{\text {ext }}(\pi)$

Motivation: Direct Sum

The direct sum question is about the complexity of solving several copies of a given problem. In communication complexity, it can be phrased as follows:
given function

$$
f:\{0,1\}^{m} \times\{0,1\}^{m} \longrightarrow\{0,1\}
$$

define

$$
f^{n}:\left(\{0,1\}^{m}\right)^{n} \times\left(\{0,1\}^{m}\right)^{n} \longrightarrow\{0,1\}^{n}
$$

to be

$$
f^{n}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\left(f\left(x_{1}, y_{1}\right), \ldots, f\left(x_{n}, y_{n}\right)\right)
$$

What is the relationship between the communication costs of f and f^{n} ?

Motivation: Direct Sum

Why direct sum?

Hardness Amplification

direct sum + lower bound on "primitive" problem = lower bound on "composite" problem

- Ex. Karchmer-Raz-Wigderson: $\mathrm{P} \neq \mathrm{NC}^{1}$ if circuit depth has strong direct sum (there are inherently sequential problems)

Very sensitive to models

Motivation: Direct Sum

The communication complexity for f^{n} is most n times the communication complexity of f.

$$
D\left(f^{n}\right) \leq n \cdot D(f)
$$

Is this the best we could do?
We don't know...

Motivation: Direct Sum

- Strong Direct Sum Conjecture "the naive is the optimal"

$$
D_{\rho}^{\mu^{n}}\left(f^{n}\right)=? \Omega(n) \cdot D_{\rho}^{\mu}(f)
$$

One direction is trivial, need to prove the other direction

- Direct Sum Theorem for Simultaneous Communication (the equality function)[CSWY01]

$$
C\left(E Q_{n}^{m}\right)=\Omega(m \sqrt{n})
$$

Why Information Complexity - Information Theoretical tools

- CSWY01 used information theoretic tools to arrive at direct sum.
- Information Complexity has a nice direct sum property

$$
I C^{n}(f) \geq n \cdot I C(f)
$$

- The above property bridges together direct sum of communication:

$$
D^{n}(f) \geq I C^{n}(f) \geq n \cdot I C(f) \quad ? ? ? \quad n \cdot D(f)
$$

Notations

Given a function $f(x, y)$ and a distribution μ on inputs to f

- The communication complexity $D_{\rho}^{\mu}(f)$, maximum number of bits communicated by a protocol that computes f with error ρ
- $D_{\rho}^{\mu, n}(f)$, the communication involved in the best protocol that computes f on n independent pairs of input (x, y) drawn from μ, and getting the answer correct except an error ρ on each coordinate.
- Note that the above is different from $D_{\rho}^{\mu^{n}}\left(f^{n}\right)$, and

$$
D_{\rho}^{\mu, n}(f) \leq D_{\rho}^{\mu^{n}}\left(f^{n}\right)
$$

(Not direct sum but,) Information Equals Amortized Commu-

 nication- The amortized communication complexity

$$
\lim _{n \rightarrow \infty} \frac{D_{\rho}^{\mu, n}(f)}{n}
$$

- Information equals amortized communication complexity:

$$
\lim _{n \rightarrow \infty} \frac{D_{\rho}^{\mu, n}(f)}{n}=I C_{\mu}^{i}(f)
$$

Direct Sum Theorems

(Information Complexity Direct Sum) For every boolean function f, distribution μ,

$$
I C_{\mu}^{n}(f) \geq n \cdot I C_{\mu}(f)
$$

(Weak Direct Sum [BBCR10]) For every boolean function f, distribution μ, and any positive constant $\delta>0$,

$$
D_{\mu^{n}}\left(f^{n}, \epsilon\right) \geq \tilde{\Omega}\left(\sqrt{n} \cdot D_{\mu}(f, \epsilon+\delta)\right)
$$

Compression, IC

(Information Complexity Direct Sum) For every boolean function f, distribution μ,

$$
I C_{\mu}^{n}(f) \geq n \cdot I C_{\mu}(f)
$$

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and $I C_{\mu}^{i}(\tau) \leq \frac{I_{\mu^{n}}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)$

Compression, CC

(Weak Direct Sum [BBCR10]) For every boolean function f, distribution μ, and any positive constant $\delta>0$,

$$
D_{\mu^{n}}\left(f^{n}, \epsilon\right) \geq \tilde{\Omega}\left(\sqrt{n} \cdot D_{\mu}(f, \epsilon+\delta)\right)
$$

(Interactive compression according to internal IC [BBCR10]) over any distribution μ on $X \times Y$, for every $\epsilon>0, \pi$ can be simulated with a protocol τ of length

$$
O\left(\sqrt{I C_{\mu}^{i}(\pi) \cdot C C(\pi)} \frac{\log (C C(\pi) / \epsilon)}{\epsilon}\right)
$$

and $\tau(X, Y)=\pi(X, Y)$ w.h.p.

Proving Information Complexity Direct Sum: Notations

Given a function $f(x, y)$ and a distribution μ on inputs to f

- The communication complexity $D_{\rho}^{\mu}(f)$, maximum number of bits communicated by a protocol that computes f with error ρ
- $D_{\rho}^{\mu, n}(f)$, the communication involved in the best protocol that computes f on n independent pairs of input (x, y) drawn from μ, and getting the answer correct except an error ρ on each coordinate.
- Note that the above is different from $D_{\rho}^{\mu^{n}}\left(f^{n}\right)$, and

$$
D_{\rho}^{\mu, n}(f) \leq D_{\rho}^{\mu^{n}}\left(f^{n}\right)
$$

Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and $I C_{\mu}^{i}(\tau) \leq \frac{I_{\mu^{n}}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)$
[Intuition] given a "more powerful" protocol, construct a new protocol that preserves the CC but saves IC by a factor of n.

Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and $I C_{\mu}^{i}(\tau) \leq \frac{I C_{\mu n}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)$

Proof.

First let us assume that π only uses private randomness (can easily extend to cover public randomness case). The new protocol $\tau(x, y)$ is defined as follows:

Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and
$I C_{\mu}^{i}(\tau) \leq \frac{I C_{\mu^{n}}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)$

Proof.

- the parties publicly sample J uniformly at random from $[n]$. J is understood as an index.
- The parties publicly sample X_{1}, \ldots, X_{J-1} and Y_{J+1}, \ldots, Y_{n}.
- The first party privately samples X_{J+1}, \ldots, X_{n} conditioned on the corresponding Y 's; The second party does similar.
- The parties run the old protocol π on $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}$ and output the result computed for the J 'th coordinate. (i.e. viewing $\left.X_{J}=x, Y_{J}=y\right)$

Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and $I C_{\mu}^{i}(\tau) \leq \frac{I C_{\mu n}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)$

Proof.

Analyze the protocol: observe CC and bounded error: $C C(\pi)=C C(\tau)$, and error is bounded by ρ.

Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and

$$
I C_{\mu}^{i}(\tau) \leq \frac{I C_{\mu^{n}}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)
$$

Proof.

Analyze the protocol: bound $I C_{\mu}^{i}(\tau)=I(X ; \tau \mid Y)+I(Y ; \tau \mid X)$. NOTE: X, Y are r.v. for τ 's inputs (sampled according to μ). Let's bound the first term:

$$
\begin{aligned}
I(X: \tau \mid Y) & \leq I\left(X: \tau Y_{1} \cdots Y_{n} \mid Y\right) \\
& =I\left(X ; J X_{1} \cdots X_{J-1} Y_{1} \cdots Y_{n} \pi \mid Y\right) \\
& =I\left(X ; J X_{1} \cdots X_{J-1} Y_{1} \cdots Y_{n} \mid Y\right)+I\left(X_{J} ; \pi \mid J X_{1} \cdots X_{J-1} Y_{1} \cdots Y_{n}\right) \\
& =I\left(X_{J} ; \pi \mid J X_{1} \cdots X_{J-1} Y_{1} \cdots Y_{n}\right)
\end{aligned}
$$

Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every μ, f, n, let π be a protocol realizing $D_{\rho}^{\mu, n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $C C(\tau)=C C(\pi)$, and
$I C_{\mu}^{i}(\tau) \leq \frac{I C_{\mu n}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu, n}(f)}{n}\left(\leq \frac{D_{\rho}^{\mu^{n}}\left(f^{n}\right)}{n}\right)$

Proof.

Expanding the expectation according to J, apply Chain Rule:

$$
\begin{aligned}
I(X ; \tau \mid Y) & \leq(1 / n) \sum_{j=1}^{n} I\left(X_{j} ; \pi \mid X_{1} \cdots X_{j-1} Y_{1} \cdots Y_{n}\right) \\
& =I\left(X_{1} \cdots X_{n} ; \pi \mid Y_{1} \cdots Y_{n}\right) / n
\end{aligned}
$$

Similarly we can bound $I(Y ; \tau \mid X) \leq I\left(Y_{1} \cdots Y_{n} ; \pi \mid X_{1} \cdots X_{n}\right) / n$, and thus $\operatorname{IC}_{\mu}^{i}(\tau) \leq \mathrm{IC}_{\mu^{n}}^{i}(\pi) / n \leq \mathrm{CC}(\pi) / \mathrm{n}$

Interactive Compression

- Given a protocol π with low information complexity, can we get another protocol with lower communication and slightly more error?
- Yes, by simulating π while sending less bits. The cost is a small chance of error. [BBCR10]: over any distribution μ on $X \times Y$, for every $\epsilon>0, \pi$ can be simulated with a protocol τ of length

$$
O\left(\sqrt{I C_{\mu}^{i}(\pi) \cdot C C(\pi)} \frac{\log (C C(\pi) / \epsilon)}{\epsilon}\right)
$$

and $\tau(X, Y)=\pi(X, Y)$ w.h.p.

- Sufficient to prove direct sum result, but stronger result exists (external IC).

Compression Proof Idea

- In τ, Alice and Bob privately guess π 's transcript $M=m_{1} m_{2} \cdots m_{C}$ without communicating. Then communicate with few bits to correct their guesses.
- Alice will come up with $m_{1}^{A}, m_{2}^{A}, \ldots m_{C}^{A}$, Bob will come up with $m_{1}^{B}, m_{2}^{B}, \ldots m_{C}^{B}$.
- Once $m_{i}^{A}=m_{i}^{B}=m_{i}$ they can output $\pi(X, Y)$. How do Alice and Bob guess M ?
- For each prefix $m_{<i}$ of bits sent in π, let

$$
\gamma\left(m_{<i}\right)=p\left(M_{i}=1 \mid x y m_{<i}\right) .
$$

These numbers are how the messages in are distributed in $\pi(X, Y)$.

- How to sample from this distribution:
- Use (public) randomness to get $\rho_{1}, \ldots, \rho_{C} \sim \operatorname{Unif}([0,1])$.
- set $m_{1}=1$ iff $\rho_{1}<\gamma\left(m_{<1}\right)=p\left(M_{1}=1 \mid x y\right)$,
- set $m_{2}=1$ iff $\rho_{2}<\gamma\left(m_{<2}\right)=p\left(M_{2}=1 \mid x y m_{1}\right)$,
- set $m_{C}=1$ iff $\rho_{C}<\gamma\left(m_{<c}\right)=p\left(M_{C}=1 \mid x y m_{<c}\right)$.
- If Alice, Bob sampled this way, they would have successfully simulated π.
- The problem: Alice does not have y, so does not know the value of $\gamma\left(m_{<i}\right)$. Similarly, Bob is missing $x \ldots$
- Key insight: if Alice communicates first in π, she knows $\gamma\left(m_{<1}\right)$

$$
\gamma\left(m_{<1}\right)=p\left(M_{1}=1 \mid x y\right)=p\left(M_{1}=1 \mid x\right)
$$

since the first bit sent has no dependence on Bob's secret y.

- In general, if Alice speaks next in π and she knows $m_{<i}$, then she knows the value of

$$
p\left(M_{i}=1 \mid x y m_{<i}\right)=p\left(M_{i}=1 \mid x m_{<i}\right)
$$

Likewise, if Bob speaks next and knows $m_{<i}$, then he knows the value of

$$
p\left(M_{i}=1 \mid x y m_{<i}\right)=p\left(M_{i}=1 \mid y m_{<i}\right)
$$

and can sample correctly.

- Let

$$
\begin{aligned}
& \gamma^{A}\left(m_{<i}\right)=p\left(M_{i}=1 \mid x m_{<i}\right) \\
& \gamma^{B}\left(m_{<i}\right)=p\left(M_{i}=1 \mid y m_{<i}\right)
\end{aligned}
$$

- $\operatorname{In} \tau$: Alice computes

$$
\begin{aligned}
& m_{1}^{A}=1 \Longleftrightarrow \rho_{1}<\gamma^{A}\left(m_{<1}\right), \\
& m_{2}^{A}=1 \Longleftrightarrow \rho_{2}<\gamma^{A}\left(m_{<2}\right), \\
& \vdots \\
& m_{C}^{A}=1 \Longleftrightarrow \rho_{C}<\gamma^{A}\left(m_{<C}\right)
\end{aligned}
$$

Bob computes

$$
\begin{aligned}
& m_{1}^{B}=1 \Longleftrightarrow \rho_{1}<\gamma^{B}\left(m_{<1}\right), \\
& \vdots \\
& m_{C}^{B}=1 \Longleftrightarrow \rho_{C}<\gamma^{B}\left(m_{<C}\right)
\end{aligned}
$$

- Alice will sample M correctly, up until the first time $\gamma^{A}\left(m_{<i}\right) \neq \gamma\left(m_{<i}\right)$ (when Bob speaks for the first time).
- Bob will sample M correctly, up until the first time $\gamma^{B}\left(m_{<i}\right) \neq \gamma\left(m_{<i}\right)$ (when Alice speaks for the first time).
- Alice and Bob communicate to find the first i where $m_{i}^{A} \neq m_{i}^{B}$. Who is right?
- If the i th bit is sent by Alice, m_{i}^{A} is sampled correctly.
- If i th bit sent by Bob, m_{i}^{B} is sampled correctly.
- Whoever is wrong: correct their i th bit and recompute their guess. Repeat until $m^{A}=m^{B}$.
- How many bits must Alice and Bob communicate to find first i where m^{A}, m^{B} disagree?
- $O(\log C / \delta)$ bits using binary search + hashing, if probability of error is $\delta>0$.
- By union bound, total error is at most $C \delta=\epsilon / 2 . O(\log (C / \epsilon))$ bits sent for each mistake i.
- Remains to bound the number of corrections Alice, Bob will have to make.
- Will see that $\mathbb{E}[\#$ mistakes made $] \leq \sqrt{I \cdot C}$

$$
\Longrightarrow \mathbb{E}[\text { length of } \tau] \leq O(\sqrt{I C} \cdot \log (C / \epsilon))
$$

- By Markov's inequality,

$$
\operatorname{Pr}\left(|\tau|>\frac{2}{\epsilon} \cdot O(\sqrt{I C} \cdot \log (C / \epsilon))\right) \leq \epsilon / 2
$$

With prob. $\geq 1-\epsilon, \tau$ will simulate π correctly and have desired communication.

- What is the probability that Alice, Bob made the first mistake at i ?
- Both have $m_{<i}$ sampled correctly, and ρ_{i} falls between $\gamma^{A}\left(m_{<i}\right)$ and $\gamma^{B}\left(m_{<i}\right)$.
- So probability of mistake at i is at most

$$
\begin{aligned}
& \mathbb{E}_{x y m}\left[\left|\gamma^{A}\left(m_{<i}\right)-\gamma^{B}\left(m_{<i}\right)\right|\right] \\
& \leq \mathbb{E}_{x y m}\left[\left|p\left(m_{i}=1 \mid x m_{<i}\right)-p\left(m_{i}=1 \mid y m_{<i}\right)\right|\right] .
\end{aligned}
$$

- Useful fact relating mutual information and independence: if A, B are random variables, then

$$
\mathbb{E}_{b \sim B}[|p(a \mid b)-p(a)|] \leq \sqrt{I(A: B)} .
$$

- If $I(A: B)=I(B: A)$ is small, then $p(a \mid b) \approx p(a)$ on average.
- Say Alice sends the i th bit in π. Fixing over $m_{<i}$,

$$
\begin{aligned}
& \mathbb{E}_{x y m_{<i}}\left[\left|p\left(m_{i}=1 \mid x m_{<i}\right)-p\left(m_{i}=1 \mid y m_{<i}\right)\right|\right] \\
& =\mathbb{E}_{x y m_{<i}}\left[\left|p\left(m_{i}=1 \mid x y m_{<i}\right)-p\left(m_{i}=1 \mid y m_{<i}\right)\right|\right] \\
& \leq \sqrt{I\left(M_{i}: X \mid Y m_{<i}\right)} \\
& =\sqrt{I\left(X: M_{i} \mid Y m_{<i}\right)} .
\end{aligned}
$$

If Bob sends the i th bit, we get $\leq \sqrt{I\left(Y: M_{i} \mid X m_{<i}\right)}$

- An upper bound the expected number of corrections made:

$$
\sum_{i=1}^{c} \sqrt{I\left(X: M_{i} \mid Y M_{<i}\right)+I\left(Y: M_{i} \mid X M_{<i}\right)}
$$

$$
\begin{aligned}
& \sum_{i=1}^{C} \sqrt{I\left(X: M_{i} \mid Y M_{<i}\right)+I\left(Y: M_{i} \mid X M_{<i}\right)} \\
& \leq \sqrt{C} \cdot \sqrt{\sum_{i=1}^{C} I\left(X: M_{i} \mid Y M_{<i}\right)+I\left(Y: M_{i} \mid X M_{<i}\right)}
\end{aligned}
$$

by Cauchy-Shwarz;

$$
=\sqrt{C} \cdot \sqrt{I(X: M \mid Y)+I(Y: M \mid X)}=\sqrt{I C}
$$

Intuition for Compression

- If $I C_{\mu}^{i}(\pi)$ is small, then Alice doesn't need to know Bob's y to get a good idea for what M is. Same for Bob.
- Small $I C_{\mu}^{i}(\pi)$ means $m^{A} \approx m$ and $m \approx m^{B}$, as seen in proof.
- NOT guaranteed to give us lower communication. In fact, this is weak.
- Also in [BBCR10] can simulate π such that

$$
C C(\tau) \leq O\left(I C_{\mu}^{o}(\pi) \frac{\log (C C(\pi) / \epsilon)}{\epsilon^{2}}\right)
$$

Almost $C C(\tau) \leq O(I C(\pi))$!

Using Compression to Prove Direct Sum Lower Bound

- Let's show that

$$
C C\left(T^{n}\right)=\tilde{\Omega}(\sqrt{n} \cdot C C(T))
$$

- Specifically, [BBCR10] for every $\epsilon>0$,

$$
R_{\rho}\left(f^{n}\right) \cdot \log \left(R_{\rho}\left(f^{n}\right) / \epsilon\right) \geq \Omega\left(R_{\rho+\epsilon}(f) \epsilon \sqrt{n}\right)
$$

Then apply min-max principle: $R_{\rho}(f)=\max _{\mu} D_{\rho}^{\mu}(f)$.

- Let π be any protocol for f^{n} on inputs drawn from μ^{n} with error prob. $\leq \rho$.
- Recall protocol for single copy f using randomness $R=\left(J, X_{<J}, Y_{>J}\right)$, with

$$
\begin{aligned}
& C C(\tau) \leq C C(\pi) \\
& I C_{\mu}^{i}(\tau) \leq 2 C C(\pi) / n .
\end{aligned}
$$

- Compress τ with error ϵ to get a protocol for f with error $\rho+\epsilon$, communication

$$
C C\left(\tau^{\prime}\right) \leq O\left(\frac{C C(\pi) \log (C C(\pi) / \epsilon)}{\epsilon \sqrt{n}}\right)
$$

- τ^{\prime} computes $f: C C\left(\tau^{\prime}\right) \geq R_{\rho+\epsilon}(f)$
- So for all π for f^{n},

$$
C C(\pi) \log (C C(\pi) / \epsilon) \geq \Omega\left(R_{\rho+\epsilon}(f) \epsilon \sqrt{n}\right)
$$

Closing the Direct Sum Bound

- Is it possible to show that $C C\left(f^{n}\right)=\Theta(n \cdot C C(f))$?
- $C C\left(f^{n}\right)=O(n \cdot C C(f))$ is trivial.
- Lower bound: $C C\left(f^{n}\right)=\tilde{\Omega}(\sqrt{n} \cdot C C(f))$ (proved this).

Separation in IC and CC

- Answer: no. [GKR15] showed that there is a family of functions with information k and communication $2^{\Omega(k)}$.
- Amortized communication:

$$
I C^{i}(T)=\lim _{n \rightarrow \infty} \frac{C C\left(T^{n}\right)}{n}
$$

$C C(T) \geq 2^{\Omega(k)}$ but $C C\left(T^{n}\right) \approx n k$.

- Their T is played on a tree with $k \cdot 2^{100 \cdot 4^{k}}$ layers, goal is to output a path from root to leaf satisfying Alice and Bob's inputs.

Rao and Sinha Easier Separation

- In [RS18], they show an exponential separation for the k-ary pointer jumping function:
- Alice gets $X:[k]^{<n} \rightarrow[k]$ and $F:[k]^{n} \rightarrow[k]$.
- Bob gets $Y:[k]^{<n} \rightarrow[k]$ and $G:[k]^{n} \rightarrow[k]$.
- They have to find the unique $z \in[k]^{n}$ where for all $1 \leq i<n$

$$
X\left(z_{\leq i}\right)+Y\left(z_{\leq i}\right)=z_{r+1} \quad \bmod k,
$$

and output $F(z)+G(z) \bmod 2$.

