Direct Sum in Interactive Communication Models Using Information-theoretic Tools

COMS 6998 Communication Complexity Applications

Alexander Lindenbaum, Yunya Zhao April 6, 2022

Review: Information Theory Preliminaries

• Entropy of a random variable X

$$\mathsf{H}(X) = \sum_{x} p(x) \cdot \log \frac{1}{p(x)} = \mathop{\mathbb{E}}_{p(x)} \left[\log \frac{1}{p(x)} \right]$$

• Conditional Entropy

$$\mathsf{H}(Y|X) = \mathop{\mathbb{E}}_{p(xy)} \left[\log \frac{1}{p(y|x)} \right] = \mathop{\mathbb{E}}_{p(x)} \left[\mathsf{H}(Y|X=x) \right]$$

• Chain Rule of Entropy

$$H(XY) = H(X) + H(Y|X)$$

Review: Information Theory Preliminaries

• Mutual Information

$$I(A;B) = H(A) - H(A|B)$$

• Conditional Mutual Information

$$I(A; B|C) = H(A|C) - H(A|BC)$$

• Chain Rule of Mutual Information

$$I(AB; C) = I(A; C) + I(B; C|A)$$

• Chain Rule of Conditional Mutual Information

I(AB; C|D) = I(A; C|D) + I(B; C|AD)

Relating to Communication: Information Complexity

Analogous to Communication Cost and Communication Complexity:

Information Cost is related to the amount of information gained through the execution of a communication protocol π **Information Complexity** is related to a function f (a problem) over all protocols that computes it.

• Transcript of a protocol

Given a protocol π , the **transcript** $\pi(\mathbf{X}, \mathbf{Y})$ is the concatenation of the public randomness with all the messages that are sent during the execution of π on input X, Y

• Internal Information Cost

(Distributional) Internal information cost $IC^{i}_{\mu}(\pi)$ is how much each party learns about the other party's input during the execution of π

$$\mathsf{IC}^i_\mu(\pi) = I(X; \pi(X,Y)|Y) + I(Y; \pi(X,Y)|X)$$

• Internal Information Cost

(Distributional) Internal information cost $IC^i_{\mu}(\pi)$ is how much each party learns about the other party's input during the execution of π

$$IC^{i}_{\mu}(\pi) = I(X; \pi(X, Y)|Y) + I(Y; \pi(X, Y)|X)$$

• External Information Cost

(Distributional) External information cost $IC_{\mu}^{ext}(\pi)$ is how much information an outside observer learns about both parties' input just by looking at Alice and Bob chat

$$\mathsf{IC}^{ext}_{\mu}(\pi) = I(XY; \pi(X, Y))$$

For protocol π and distribution $\mu,$ we have

 $\mathsf{IC}^i_\mu(\pi) \le \mathsf{IC}^{\mathsf{ext}}_\mu(\pi)$

[Intuition] at each round, an independent observer is always going to learn more *new* info about XY than X and Y about each other, or more formally:

For protocol π and distribution μ , we have

 $\mathsf{IC}^i_\mu(\pi) \le \mathsf{IC}^{\mathsf{ext}}_\mu(\pi)$

Proof.

Let ω be any fixed prefix of the transcript of length i - 1. If it is the X player's turn to speak, the amount of info she learns about Y is zero

$$I(Y; \pi(X, Y)_i | X, \pi(X, Y)_{\leq i-1} = \omega) = 0$$

Similarly, if it is the Y player's turn to speak, the amount of info he learns about X is zero. So at each round, there has to be one player who learns nothing new. For protocol π and distribution $\mu,$ we have

 $\mathsf{IC}^i_\mu(\pi) \le \mathsf{IC}^{\mathsf{ext}}_\mu(\pi)$

Proof.

On the other hand, an observer always learns something new at each round, and that amount is

$$I(XY; \pi(X, Y)_i | \pi(X, Y)_{\leq i-1} = \omega)$$

$$= I(X; \pi(X, Y)_i | \pi(X, Y)_{\leq i-1} = \omega) + I(Y; \pi(X, Y)_i | X \pi(X, Y)_{\leq i-1} = \omega)$$

$$\geq I(X; \pi(X, Y)_i | Y \pi(X, Y)_{\leq i-1} = \omega) + I(Y; \pi(X, Y)_i | X \pi(X, Y)_{\leq i-1} = \omega)$$

NOTE: if μ is a product distribution, $\mathsf{IC}^i_\mu(\pi) = \mathsf{IC}^{\mathsf{ext}}_\mu(\pi)$

The **direct sum question** is about the complexity of solving *several* copies of a given problem. In communication complexity, it can be phrased as follows:

given function

$$f: \{0,1\}^m \times \{0,1\}^m \longrightarrow \{0,1\}$$

define

$$f^n: (\{0,1\}^m)^n \times (\{0,1\}^m)^n \longrightarrow \{0,1\}^n$$

to be

$$f^{n}((x_{1},...,x_{n}),(y_{1},...,y_{n})) = (f(x_{1},y_{1}),...,f(x_{n},y_{n}))$$

What is the relationship between the communication costs of f and f^n ?

Why direct sum?

Hardness Amplification

direct sum + lower bound on "primitive" problem = lower bound on "composite" problem

• Ex. Karchmer-Raz-Wigderson: $P \neq NC^1$ if circuit depth has strong direct sum (there are inherently sequential problems)

Very sensitive to models

The communication complexity for f^n is most n times the communication complexity of f.

 $D(f^n) \leq n \cdot D(f)$

Is this the best we could do? We don't know...

Motivation: Direct Sum

• Strong Direct Sum Conjecture "the naive is the optimal"

$$D^{\mu^n}_{\rho}(f^n) = \Omega(n) \cdot D^{\mu}_{\rho}(f)$$

One direction is trivial, need to prove the other direction

• Direct Sum Theorem for Simultaneous Communication (the equality function)[CSWY01]

 $C(\mathsf{EQ}_n^m) = \Omega(m\sqrt{n})$

Why Information Complexity - Information Theoretical tools

- CSWY01 used information theoretic tools to arrive at direct sum.
- Information Complexity has a nice direct sum property

 $IC^n(f) \ge n \cdot IC(f)$

• The above property bridges together direct sum of communication:

 $D^n(f) \ge IC^n(f) \ge n \cdot IC(f)$??? $n \cdot D(f)$

Notations

Given a function f(x, y) and a distribution μ on inputs to f

- The communication complexity D^μ_ρ(f), maximum number of bits communicated by a protocol that computes f with error ρ
- D^{μ,n}_ρ(f), the communication involved in the best protocol that computes f on n independent pairs of input (x, y) drawn from μ, and getting the answer correct except an error ρ on each coordinate.
- Note that the above is different from $D^{\mu^n}_{\rho}(f^n)$, and

$$D^{\mu,n}_{
ho}(f) \leq D^{\mu^n}_{
ho}(f^n)$$

(Not direct sum but,) Information Equals Amortized Communication

• The amortized communication complexity

$$\lim_{n\to\infty}\frac{D^{\mu,n}_{\rho}(f)}{n}$$

• Information equals amortized communication complexity:

$$\lim_{n\to\infty}\frac{D^{\mu,n}_{\rho}(f)}{n}=IC^{i}_{\mu}(f)$$

(Information Complexity Direct Sum) For every boolean function f, distribution μ ,

 $IC_{\mu}^{n}(f) \geq n \cdot IC_{\mu}(f)$

(Weak Direct Sum [BBCR10]) For every boolean function f, distribution μ , and any positive constant $\delta > 0$,

$$D_{\mu^n}(f^n,\epsilon) \geq \tilde{\Omega}(\sqrt{n} \cdot D_{\mu}(f,\epsilon+\delta))$$

(Information Complexity Direct Sum) For every boolean function f, distribution μ ,

 $IC_{\mu}^{n}(f) \geq n \cdot IC_{\mu}(f)$

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu^{n}}(f^{n})}{n})$

(Weak Direct Sum [BBCR10]) For every boolean function f, distribution μ , and any positive constant $\delta > 0$,

$$D_{\mu^n}(f^n,\epsilon) \ge \tilde{\Omega}(\sqrt{n} \cdot D_{\mu}(f,\epsilon+\delta))$$

(Interactive compression according to internal IC [BBCR10]) over any distribution μ on $X \times Y$, for every $\epsilon > 0$, π can be simulated with a protocol τ of length

$$O\Big(\sqrt{IC^{i}_{\mu}(\pi)\cdot CC(\pi)}\frac{\log(CC(\pi)/\epsilon)}{\epsilon}\Big),$$

and $\tau(X, Y) = \pi(X, Y)$ w.h.p.

Given a function f(x, y) and a distribution μ on inputs to f

- The communication complexity D^μ_ρ(f), maximum number of bits communicated by a protocol that computes f with error ρ
- D^{μ,n}_ρ(f), the communication involved in the best protocol that computes f on n independent pairs of input (x, y) drawn from μ, and getting the answer correct except an error ρ on each coordinate.
- Note that the above is different from $D_{\rho}^{\mu^n}(f^n)$, and

$$D^{\mu,n}_{
ho}(f) \leq D^{\mu^n}_{
ho}(f^n)$$

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu,n}(f^{n})}{n})$

[Intuition] given a "more powerful" protocol, construct a new protocol that preserves the CC but saves IC by a factor of n.

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i,n}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu^{n}}(f^{n})}{n})$

Proof.

First let us assume that π only uses private randomness (can easily extend to cover public randomness case). The new protocol $\tau(x, y)$ is defined as follows:

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i,n}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu^{n}}(f^{n})}{n})$

Proof.

- the parties publicly sample *J* uniformly at random from [n]. *J* is understood as an index.
- The parties publicly sample $X_1, ..., X_{J-1}$ and $Y_{J+1}, ..., Y_n$.
- The first party privately samples X_{J+1}, ..., X_n conditioned on the corresponding Y's; The second party does similar.
- The parties run the old protocol π on X₁, ..., X_n, Y₁, ..., Y_n and output the result computed for the J'th coordinate. (i.e. viewing X_J = x, Y_J = y)

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu^{n}}(f^{n})}{n})$

Proof.

Analyze the protocol: observe CC and bounded error: $CC(\pi) = CC(\tau)$, and error is bounded by ρ .

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i,n}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu^{n}}(f^{n})}{n})$

Proof.

Analyze the protocol: bound $IC^{i}_{\mu}(\tau) = I(X; \tau|Y) + I(Y; \tau|X)$. NOTE: X, Y are r.v. for τ 's inputs (sampled according to μ). Let's bound the first term:

$$I(X:\tau|Y) \leq I(X:\tau Y_1 \cdots Y_n|Y)$$

= $I(X; JX_1 \cdots X_{J-1}Y_1 \cdots Y_n \pi|Y)$
= $I(X; JX_1 \cdots X_{J-1}Y_1 \cdots Y_n|Y) + I(X_J; \pi|JX_1 \cdots X_{J-1}Y_1 \cdots Y_n)$
= $I(X_J; \pi|JX_1 \cdots X_{J-1}Y_1 \cdots Y_n)$

(Theorem 3.17 in [BR11]) For every μ , f, n, let π be a protocol realizing $D_{\rho}^{\mu,n}(f)$. Then there exists a protocol τ computing f with error ρ on inputs drawn from μ such that $CC(\tau) = CC(\pi)$, and $IC_{\mu}^{i}(\tau) \leq \frac{IC_{\mu}^{i}(\pi)}{n} \leq \frac{D_{\rho}^{\mu,n}(f)}{n} (\leq \frac{D_{\rho}^{\mu^{n}}(f^{n})}{n})$

Proof. Expanding the expectation according to J, apply Chain Rule:

$$I(X;\tau|Y) \leq (1/n) \sum_{j=1}^{n} I(X_j;\pi|X_1\cdots X_{j-1}Y_1\cdots Y_n)$$
$$= I(X_1\cdots X_n;\pi|Y_1\cdots Y_n)/n$$

Similarly we can bound $I(Y; \tau | X) \leq I(Y_1 \cdots Y_n; \pi | X_1 \cdots X_n)/n$, and thus $IC^i_{\mu}(\tau) \leq IC^i_{\mu^n}(\pi)/n \leq CC(\pi)/n$

Interactive Compression

- Given a protocol *π* with low *information complexity*, can we get another protocol with lower *communication* and slightly more error?
- Yes, by simulating π while sending less bits. The cost is a small chance of error.
 [BBCR10]: over any distribution μ on X × Y, for every ε > 0, π can be simulated with a protocol τ of length

$$O\Big(\sqrt{IC^{i}_{\mu}(\pi)\cdot CC(\pi)}\frac{\log(CC(\pi)/\epsilon)}{\epsilon}\Big),$$

and $\tau(X, Y) = \pi(X, Y)$ w.h.p.

• Sufficient to prove direct sum result, but stronger result exists (external IC).

Compression Proof Idea

- In τ, Alice and Bob privately guess π's transcript M = m₁m₂···m_C without communicating. Then communicate with few bits to correct their guesses.
- Alice will come up with m₁^A, m₂^A, ..., m_C^A,
 Bob will come up with m₁^B, m₂^B, ..., m_C^B.
- Once m^A_i = m^B_i = m_i they can output π(X, Y). How do Alice and Bob guess M?

• For each prefix $m_{<i}$ of bits sent in π , let

$$\gamma(m_{$$

These numbers are how the messages in are distributed in $\pi(X, Y)$.

- How to sample from this distribution:
 - Use (public) randomness to get $\rho_1, \ldots, \rho_C \sim \text{Unif}([0, 1])$.
 - set $m_1 = 1$ iff $\rho_1 < \gamma(m_{<1}) = p(M_1 = 1|xy)$,
 - set $m_2 = 1$ iff $\rho_2 < \gamma(m_{<2}) = p(M_2 = 1|xym_1)$,
 - set $m_C = 1$ iff $\rho_C < \gamma(m_{< C}) = p(M_C = 1 | xym_{< C})$.
- If Alice, Bob sampled this way, they would have successfully simulated π .

• The problem: Alice does not have y, so does not know the value of $\gamma(m_{< i})$. Similarly, Bob is missing x...

• Key insight: if Alice communicates first in π , she knows $\gamma(m_{<1})$

$$\gamma(m_{<1}) = p(M_1 = 1|xy) = p(M_1 = 1|x)$$

since the first bit sent has no dependence on Bob's secret y.

 In general, if Alice speaks next in π and she knows m_{<i}, then she knows the value of

$$p(M_i = 1 | xym_{< i}) = p(M_i = 1 | xm_{< i})$$

Likewise, if Bob speaks next and knows $m_{<i}$, then he knows the value of

$$p(M_i = 1 | xym_{< i}) = p(M_i = 1 | ym_{< i})$$

and can sample correctly.

• Let

$$\gamma^{A}(m_{
$$\gamma^{B}(m_{$$$$

• In τ : Alice computes

$$\begin{split} m_1^A &= 1 \Longleftrightarrow \rho_1 < \gamma^A(m_{<1}), \\ m_2^A &= 1 \Longleftrightarrow \rho_2 < \gamma^A(m_{<2}), \\ \vdots \\ m_C^A &= 1 \Longleftrightarrow \rho_C < \gamma^A(m_{< C}) \end{split}$$

Bob computes

$$m_{1}^{B} = 1 \iff \rho_{1} < \gamma^{B}(m_{<1}),$$

$$\vdots$$

$$m_{C}^{B} = 1 \iff \rho_{C} < \gamma^{B}(m_{$$

- Alice will sample M correctly, up until the first time $\gamma^A(m_{\leq i}) \neq \gamma(m_{\leq i})$ (when Bob speaks for the first time).
- Bob will sample *M* correctly, up until the first time $\gamma^B(m_{< i}) \neq \gamma(m_{< i})$ (when Alice speaks for the first time).
- Alice and Bob communicate to find the first *i* where $m_i^A \neq m_i^B$. Who is right?
 - If the *i*th bit is sent by Alice, m_i^A is sampled correctly.
 - If *i*th bit sent by Bob, m_i^B is sampled correctly.
- Whoever is wrong: correct their *i*th bit and recompute their guess. Repeat until $m^A = m^B$.

- How many bits must Alice and Bob communicate to find first *i* where *m*^A, *m*^B disagree?
- O(log C/δ) bits using binary search + hashing, if probability of error is δ > 0.
- By union bound, total error is at most Cδ = ε/2. O(log(C/ε)) bits sent for each mistake i.

- Remains to bound the number of corrections Alice, Bob will have to make.
- Will see that $\mathbb{E}[\# \text{ mistakes made}] \leq \sqrt{I \cdot C}$

 $\implies \mathbb{E}[\text{length of } \tau] \leq O(\sqrt{IC} \cdot \log(C/\epsilon)).$

• By Markov's inequality,

$$\Pr\left(| au| > rac{2}{\epsilon} \cdot O(\sqrt{\mathit{IC}} \cdot \log(\mathit{C}/\epsilon))
ight) \leq \epsilon/2.$$

With prob. $\geq 1-\epsilon,\,\tau$ will simulate π correctly and have desired communication.

- What is the probability that Alice, Bob made the first mistake at i?
- Both have $m_{<i}$ sampled correctly, and ρ_i falls between $\gamma^A(m_{<i})$ and $\gamma^B(m_{<i})$.
- So probability of mistake at *i* is at most

$$egin{aligned} & \mathbb{E}_{ ext{sym}}[|\gamma^{\mathcal{A}}(m_{< i}) - \gamma^{\mathcal{B}}(m_{< i})|] \ & \leq \mathbb{E}_{ ext{sym}}[|p(m_i = 1| ext{sm}_{< i}) - p(m_i = 1| ext{ym}_{< i})|]. \end{aligned}$$

• Useful fact relating mutual information and independence: if *A*, *B* are random variables, then

$$\mathbb{E}_{b\sim B}[|p(a|b)-p(a)|] \leq \sqrt{I(A:B)}.$$

• If I(A:B) = I(B:A) is small, then $p(a|b) \approx p(a)$ on average.

• Say Alice sends the *i*th bit in π . Fixing over $m_{\leq i}$,

$$\begin{split} & \mathbb{E}_{xym_{$$

If Bob sends the *i*th bit, we get $\leq \sqrt{I(Y : M_i | Xm_{\leq i})}$

• An upper bound the expected number of corrections made:

$$\sum_{i=1}^{C} \sqrt{I(X:M_i|YM_{< i}) + I(Y:M_i|XM_{< i})}$$

$$\sum_{i=1}^{C} \sqrt{I(X:M_i|YM_{
$$\leq \sqrt{C} \cdot \sqrt{\sum_{i=1}^{C} I(X:M_i|YM_{$$$$

by Cauchy-Shwarz;

$$=\sqrt{C}\cdot\sqrt{I(X:M|Y)+I(Y:M|X)}=\sqrt{IC}$$

Intuition for Compression

- If ICⁱ_μ(π) is small, then Alice doesn't need to know Bob's y to get a good idea for what M is. Same for Bob.
- Small $IC^i_\mu(\pi)$ means $m^A \approx m$ and $m \approx m^B$, as seen in proof.
- NOT guaranteed to give us lower communication. In fact, this is weak.
- Also in [BBCR10] can simulate π such that

$$CC(\tau) \leq O\Big(IC^o_{\mu}(\pi) \frac{\log(CC(\pi)/\epsilon)}{\epsilon^2}\Big).$$

Almost $CC(\tau) \leq O(IC(\pi))!$

Using Compression to Prove Direct Sum Lower Bound

• Let's show that

$$CC(T^n) = \tilde{\Omega}(\sqrt{n} \cdot CC(T)).$$

• Specifically, [BBCR10] for every $\epsilon >$ 0,

$$R_{
ho}(f^n) \cdot \log(R_{
ho}(f^n)/\epsilon) \geq \Omega(R_{
ho+\epsilon}(f)\epsilon\sqrt{n}).$$

Then apply min-max principle: $R_{\rho}(f) = \max_{\mu} D_{\rho}^{\mu}(f)$.

- Let π be any protocol for fⁿ on inputs drawn from μⁿ with error prob. ≤ ρ.
- Recall protocol for single copy f using randomness $R = (J, X_{< J}, Y_{> J})$, with

 $CC(au) \leq CC(\pi)$ $IC^{i}_{\mu}(au) \leq 2CC(\pi)/n.$ • Compress τ with error ϵ to get a protocol for f with error $\rho+\epsilon,$ communication

$$\mathcal{CC}(\tau') \leq O\Big(rac{\mathcal{CC}(\pi)\log(\mathcal{CC}(\pi)/\epsilon)}{\epsilon\sqrt{n}}\Big).$$

- au' computes $f: \ \mathcal{CC}(au') \ge R_{\rho+\epsilon}(f)$
- So for all π for f^n ,

$$CC(\pi)\log(CC(\pi)/\epsilon) \geq \Omega(R_{\rho+\epsilon}(f)\epsilon\sqrt{n}).$$

Closing the Direct Sum Bound

- Is it possible to show that $CC(f^n) = \Theta(n \cdot CC(f))$?
- $CC(f^n) = O(n \cdot CC(f))$ is trivial.
- Lower bound: $CC(f^n) = \tilde{\Omega}(\sqrt{n} \cdot CC(f))$ (proved this).

Separation in IC and CC

- Answer: no. [GKR15] showed that there is a family of functions with information k and communication 2^{Ω(k)}.
- Amortized communication:

$$IC^{i}(T) = \lim_{n \to \infty} \frac{CC(T^{n})}{n}$$

$$CC(T) \ge 2^{\Omega(k)}$$
 but $CC(T^n) \approx nk$.

• Their T is played on a tree with $k \cdot 2^{100 \cdot 4^k}$ layers, goal is to output a path from root to leaf satisfying Alice and Bob's inputs.

Rao and Sinha Easier Separation

- In [RS18], they show an exponential separation for the *k*-ary pointer jumping function:
 - Alice gets $X : [k]^{\leq n} \to [k]$ and $F : [k]^n \to [k]$.
 - Bob gets $Y:[k]^{\leq n} \rightarrow [k]$ and $G:[k]^n \rightarrow [k]$.
 - They have to find the unique $z \in [k]^n$ where for all $1 \le i < n$

$$X(z_{\leq i})+Y(z_{\leq i})=z_{r+1} \mod k,$$

and output $F(z) + G(z) \mod 2$.