
Direct Sum in Interactive Communication

Models Using Information-theoretic Tools

COMS 6998 Communication Complexity Applications

Alexander Lindenbaum, Yunya Zhao

April 6, 2022

1



Review: Information Theory Preliminaries

• Entropy of a random variable X

H(X ) =
∑
x

p(x) · log 1

p(x)
= E

p(x)

[
log

1

p(x)

]
• Conditional Entropy

H(Y |X ) = E
p(xy)

[
log

1

p(y |x)

]
= E

p(x)
[H(Y |X = x)]

• Chain Rule of Entropy

H(XY ) = H(X ) + H(Y |X )
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Review: Information Theory Preliminaries

• Mutual Information

I(A;B) = H(A)− H(A|B)

• Conditional Mutual Information

I(A;B|C ) = H(A|C )− H(A|BC )

• Chain Rule of Mutual Information

I(AB;C ) = I(A;C ) + I(B;C |A)

• Chain Rule of Conditional Mutual Information

I(AB;C |D) = I(A;C |D) + I(B;C |AD)
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Relating to Communication: Information Complexity

Analogous to Communication Cost and Communication

Complexity:

Information Cost is related to the amount of information gained

through the execution of a communication protocol π

Information Complexity is related to a function f (a problem)

over all protocols that computes it.
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Relating to Communication: Information Complexity

• Transcript of a protocol

Given a protocol π, the transcript π(X,Y) is the

concatenation of the public randomness with all the messages

that are sent during the execution of π on input X ,Y

• Internal Information Cost

(Distributional) Internal information cost ICi
µ(π) is how much

each party learns about the other party’s input during the

execution of π

ICi
µ(π) = I (X ;π(X ,Y )|Y ) + I (Y ;π(X ,Y )|X )
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Relating to Communication: Information Complexity

• Internal Information Cost

(Distributional) Internal information cost ICi
µ(π) is how much

each party learns about the other party’s input during the

execution of π

ICi
µ(π) = I (X ;π(X ,Y )|Y ) + I (Y ;π(X ,Y )|X )

• External Information Cost

(Distributional) External information cost ICext
µ (π) is how

much information an outside observer learns about both

parties’ input just by looking at Alice and Bob chat

ICext
µ (π) = I (XY ;π(X ,Y ))
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Internal IC ≤ External IC

For protocol π and distribution µ, we have

ICi
µ(π) ≤ ICext

µ (π)

[Intuition] at each round, an independent observer is always going

to learn more new info about XY than X and Y about each other,

or more formally:
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Internal IC ≤ External IC

For protocol π and distribution µ, we have

ICi
µ(π) ≤ ICext

µ (π)

Proof.
Let ω be any fixed prefix of the transcript of length i − 1.

If it is the X player’s turn to speak, the amount of info she learns

about Y is zero

I (Y ;π(X ,Y )i |X , π(X ,Y )≤i−1 = ω) = 0

Similarly, if it is the Y player’s turn to speak, the amount of info

he learns about X is zero. So at each round, there has to be one

player who learns nothing new.
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Internal IC ≤ External IC

For protocol π and distribution µ, we have

ICi
µ(π) ≤ ICext

µ (π)

Proof.
On the other hand, an observer always learns something new at

each round, and that amount is

I (XY ;π(X ,Y )i |π(X ,Y )≤i−1 = ω)

= I (X ;π(X ,Y )i |π(X ,Y )≤i−1 = ω)+ I (Y ;π(X ,Y )i |Xπ(X ,Y )≤i−1 = ω)

≥ I (X ;π(X ,Y )i |Y π(X ,Y )≤i−1 = ω)+I (Y ;π(X ,Y )i |Xπ(X ,Y )≤i−1 = ω)

NOTE: if µ is a product distribution, ICi
µ(π) = ICext

µ (π)
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Motivation: Direct Sum

The direct sum question is about the complexity of solving

several copies of a given problem. In communication complexity, it

can be phrased as follows:

given function

f : {0, 1}m × {0, 1}m −→ {0, 1}

define

f n : ({0, 1}m)n × ({0, 1}m)n −→ {0, 1}n

to be

f n((x1, ..., xn), (y1, ..., yn)) = (f (x1, y1), ..., f (xn, yn))

What is the relationship between the communication costs of f

and f n? 9



Motivation: Direct Sum

Why direct sum?

Hardness Amplification

direct sum + lower bound on “primitive” problem = lower bound

on “composite” problem

• Ex. Karchmer-Raz-Wigderson: P ̸= NC1 if circuit depth has

strong direct sum (there are inherently sequential problems)

Very sensitive to models
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Motivation: Direct Sum

The communication complexity for f n is most n times the

communication complexity of f .

D(f n) ≤ n · D(f )

Is this the best we could do?

We don’t know...
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Motivation: Direct Sum

• Strong Direct Sum Conjecture “the naive is the optimal”

Dµn

ρ (f n) =? Ω(n) · Dµ
ρ (f )

One direction is trivial, need to prove the other direction

• Direct Sum Theorem for Simultaneous Communication (the

equality function)[CSWY01]

C (EQm
n ) = Ω(m

√
n)
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Why Information Complexity - Information Theoretical tools

• CSWY01 used information theoretic tools to arrive at direct

sum.

• Information Complexity has a nice direct sum property

ICn(f ) ≥ n · IC (f )

• The above property bridges together direct sum of

communication:

Dn(f ) ≥ ICn(f ) ≥ n · IC (f ) ??? n · D(f )
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Notations

Given a function f (x , y) and a distribution µ on inputs to f

• The communication complexity Dµ
ρ (f ), maximum number of

bits communicated by a protocol that computes f with error ρ

• Dµ,n
ρ (f ), the communication involved in the best protocol that

computes f on n independent pairs of input (x , y) drawn

from µ, and getting the answer correct except an error ρ on

each coordinate.

• Note that the above is different from Dµn

ρ (f n), and

Dµ,n
ρ (f ) ≤ Dµn

ρ (f n)
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(Not direct sum but,) Information Equals Amortized Commu-

nication

• The amortized communication complexity

lim
n→∞

Dµ,n
ρ (f )

n

• Information equals amortized communication complexity:

lim
n→∞

Dµ,n
ρ (f )

n
= IC i

µ(f )
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Direct Sum Theorems

(Information Complexity Direct Sum) For every boolean

function f , distribution µ,

ICn
µ(f ) ≥ n · ICµ(f )

(Weak Direct Sum [BBCR10]) For every boolean function f ,

distribution µ, and any positive constant δ > 0,

Dµn(f n, ϵ) ≥ Ω̃(
√
n · Dµ(f , ϵ+ δ))
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Compression, IC

(Information Complexity Direct Sum) For every boolean function

f , distribution µ,

ICn
µ(f ) ≥ n · ICµ(f )

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol

realizing Dµ,n
ρ (f ). Then there exists a protocol τ computing f with

error ρ on inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )
n (≤ Dµn

ρ (f n)
n )
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Compression, CC

(Weak Direct Sum [BBCR10]) For every boolean function f ,

distribution µ, and any positive constant δ > 0,

Dµn(f n, ϵ) ≥ Ω̃(
√
n · Dµ(f , ϵ+ δ))

(Interactive compression according to internal IC [BBCR10])

over any distribution µ on X × Y , for every ϵ > 0, π can be

simulated with a protocol τ of length

O
(√

IC i
µ(π) · CC (π)

log(CC (π)/ϵ)

ϵ

)
,

and τ(X ,Y ) = π(X ,Y ) w.h.p.

18



Proving Information Complexity Direct Sum: Notations

Given a function f (x , y) and a distribution µ on inputs to f

• The communication complexity Dµ
ρ (f ), maximum number of

bits communicated by a protocol that computes f with error ρ

• Dµ,n
ρ (f ), the communication involved in the best protocol that

computes f on n independent pairs of input (x , y) drawn

from µ, and getting the answer correct except an error ρ on

each coordinate.

• Note that the above is different from Dµn

ρ (f n), and

Dµ,n
ρ (f ) ≤ Dµn

ρ (f n)
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol

realizing Dµ,n
ρ (f ). Then there exists a protocol τ computing f with

error ρ on inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )
n (≤ Dµn

ρ (f n)
n )

[Intuition] given a “more powerful” protocol, construct a new

protocol that preserves the CC but saves IC by a factor of n.
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol realizing

Dµ,n
ρ (f ). Then there exists a protocol τ computing f with error ρ on

inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )

n (≤ Dµn

ρ (f n)

n )

Proof.
First let us assume that π only uses private randomness (can easily

extend to cover public randomness case). The new protocol τ(x , y) is

defined as follows:
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol realizing

Dµ,n
ρ (f ). Then there exists a protocol τ computing f with error ρ on

inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )

n (≤ Dµn

ρ (f n)

n )

Proof.

• the parties publicly sample J uniformly at random from [n].

J is understood as an index.

• The parties publicly sample X1, ...,XJ−1 and YJ+1, ...,Yn.

• The first party privately samples XJ+1, ...,Xn conditioned on the

corresponding Y ’s; The second party does similar.

• The parties run the old protocol π on X1, ...,Xn,Y1, ...,Yn and

output the result computed for the J’th coordinate. (i.e. viewing

XJ = x , YJ = y)
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol realizing

Dµ,n
ρ (f ). Then there exists a protocol τ computing f with error ρ on

inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )

n (≤ Dµn

ρ (f n)

n )

Proof.
Analyze the protocol: observe CC and bounded error: CC (π) = CC (τ),

and error is bounded by ρ.
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol realizing

Dµ,n
ρ (f ). Then there exists a protocol τ computing f with error ρ on

inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )

n (≤ Dµn

ρ (f n)

n )

Proof.
Analyze the protocol: bound IC i

µ(τ) = I (X ; τ |Y ) + I (Y ; τ |X ).

NOTE: X ,Y are r.v. for τ ’s inputs (sampled according to µ).

Let’s bound the first term:

I (X : τ |Y ) ≤ I (X : τY1 · · ·Yn|Y )

= I (X ; JX1 · · ·XJ−1Y1 · · ·Ynπ|Y )

= I (X ; JX1 · · ·XJ−1Y1 · · ·Yn|Y ) + I (XJ ;π|JX1 · · ·XJ−1Y1 · · ·Yn)

= I (XJ ;π|JX1 · · ·XJ−1Y1 · · ·Yn)
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every µ, f , n, let π be a protocol realizing

Dµ,n
ρ (f ). Then there exists a protocol τ computing f with error ρ on

inputs drawn from µ such that CC (τ) = CC (π), and

IC i
µ(τ) ≤

IC i
µn (π)

n ≤ Dµ,n
ρ (f )

n (≤ Dµn

ρ (f n)

n )

Proof.
Expanding the expectation according to J, apply Chain Rule:

I (X ; τ |Y ) ≤ (1/n)
n∑

j=1

I (Xj ;π|X1 · · ·Xj−1Y1 · · ·Yn)

= I (X1 · · ·Xn;π|Y1 · · ·Yn)/n

Similarly we can bound I (Y ; τ |X ) ≤ I (Y1 · · ·Yn;π|X1 · · ·Xn)/n, and thus

ICi
µ(τ) ≤ ICi

µn(π)/n ≤ CC(π)/n
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Interactive Compression

• Given a protocol π with low information complexity, can we get

another protocol with lower communication and slightly more error?

• Yes, by simulating π while sending less bits. The cost is a small

chance of error.

[BBCR10]: over any distribution µ on X ×Y , for every ϵ > 0, π can

be simulated with a protocol τ of length

O
(√

IC i
µ(π) · CC (π)

log(CC (π)/ϵ)

ϵ

)
,

and τ(X ,Y ) = π(X ,Y ) w.h.p.

• Sufficient to prove direct sum result, but stronger result exists

(external IC).
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Compression Proof Idea

• In τ , Alice and Bob privately guess π’s transcript M = m1m2 · · ·mC

without communicating. Then communicate with few bits to

correct their guesses.

• Alice will come up with mA
1 ,m

A
2 , . . .m

A
C ,

Bob will come up with mB
1 ,m

B
2 , . . .m

B
C .

• Once mA
i = mB

i = mi they can output π(X ,Y ). How do Alice and

Bob guess M?
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• For each prefix m<i of bits sent in π, let

γ(m<i ) = p(Mi = 1|xym<i ).

These numbers are how the messages in are distributed in π(X ,Y ).

• How to sample from this distribution:

• Use (public) randomness to get ρ1, . . . , ρC ∼ Unif([0, 1]).

• set m1 = 1 iff ρ1 < γ(m<1) = p(M1 = 1|xy),
• set m2 = 1 iff ρ2 < γ(m<2) = p(M2 = 1|xym1),

...

• set mC = 1 iff ρC < γ(m<C ) = p(MC = 1|xym<C ).

• If Alice, Bob sampled this way, they would have successfully

simulated π.
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• The problem: Alice does not have y , so does not know the value of

γ(m<i ). Similarly, Bob is missing x ...
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• Key insight: if Alice communicates first in π, she knows γ(m<1)

γ(m<1) = p(M1 = 1|xy) = p(M1 = 1|x)

since the first bit sent has no dependence on Bob’s secret y .

• In general, if Alice speaks next in π and she knows m<i , then she

knows the value of

p(Mi = 1|xym<i ) = p(Mi = 1|xm<i )

Likewise, if Bob speaks next and knows m<i , then he knows the

value of

p(Mi = 1|xym<i ) = p(Mi = 1|ym<i )

and can sample correctly.
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• Let

γA(m<i ) = p(Mi = 1|xm<i )

γB(m<i ) = p(Mi = 1|ym<i )

• In τ : Alice computes

mA
1 = 1 ⇐⇒ ρ1 < γA(m<1),

mA
2 = 1 ⇐⇒ ρ2 < γA(m<2),

...

mA
C = 1 ⇐⇒ ρC < γA(m<C )

Bob computes

mB
1 = 1 ⇐⇒ ρ1 < γB(m<1),

...

mB
C = 1 ⇐⇒ ρC < γB(m<C )
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• Alice will sample M correctly, up until the first time

γA(m<i ) ̸= γ(m<i ) (when Bob speaks for the first time).

• Bob will sample M correctly, up until the first time

γB(m<i ) ̸= γ(m<i ) (when Alice speaks for the first time).

• Alice and Bob communicate to find the first i where mA
i ̸= mB

i .

Who is right?

• If the ith bit is sent by Alice, mA
i is sampled correctly.

• If ith bit sent by Bob, mB
i is sampled correctly.

• Whoever is wrong: correct their ith bit and recompute their guess.

Repeat until mA = mB .
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• How many bits must Alice and Bob communicate to find first i

where mA, mB disagree?

• O(logC/δ) bits using binary search + hashing, if probability of error

is δ > 0.

• By union bound, total error is at most Cδ = ϵ/2. O(log(C/ϵ)) bits

sent for each mistake i .
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• Remains to bound the number of corrections Alice, Bob will have to

make.

• Will see that E[# mistakes made] ≤
√
I · C

=⇒ E[length of τ ] ≤ O(
√
IC · log(C/ϵ)).

• By Markov’s inequality,

Pr
(
|τ | > 2

ϵ
· O(

√
IC · log(C/ϵ))

)
≤ ϵ/2.

With prob. ≥ 1− ϵ, τ will simulate π correctly and have desired

communication.
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• What is the probability that Alice, Bob made the first mistake at i?

• Both have m<i sampled correctly, and ρi falls between γA(m<i ) and

γB(m<i ).

• So probability of mistake at i is at most

Exym[|γA(m<i )− γB(m<i )|]
≤ Exym[|p(mi = 1|xm<i )− p(mi = 1|ym<i )|].
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• Useful fact relating mutual information and independence: if A,B

are random variables, then

Eb∼B [|p(a|b)− p(a)|] ≤
√
I (A : B).

• If I (A : B) = I (B : A) is small, then p(a|b) ≈ p(a) on average.
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• Say Alice sends the ith bit in π. Fixing over m<i ,

Exym<i [|p(mi = 1|xm<i )− p(mi = 1|ym<i )|]
= Exym<i [|p(mi = 1|xym<i )− p(mi = 1|ym<i )|]

≤
√
I (Mi : X |Ym<i )

=
√
I (X : Mi |Ym<i ).

If Bob sends the ith bit, we get ≤
√
I (Y : Mi |Xm<i )

• An upper bound the expected number of corrections made:

C∑
i=1

√
I (X : Mi |YM<i ) + I (Y : Mi |XM<i )
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C∑
i=1

√
I (X : Mi |YM<i ) + I (Y : Mi |XM<i )

≤
√
C ·

√√√√ C∑
i=1

I (X : Mi |YM<i ) + I (Y : Mi |XM<i )

by Cauchy-Shwarz;

=
√
C ·

√
I (X : M|Y ) + I (Y : M|X ) =

√
IC .

□
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Intuition for Compression

• If IC i
µ(π) is small, then Alice doesn’t need to know Bob’s y to get a

good idea for what M is. Same for Bob.

• Small IC i
µ(π) means mA ≈ m and m ≈ mB , as seen in proof.

• NOT guaranteed to give us lower communication. In fact, this is

weak.

• Also in [BBCR10] can simulate π such that

CC (τ) ≤ O
(
IC o

µ(π)
log(CC (π)/ϵ)

ϵ2

)
.

Almost CC (τ) ≤ O(IC (π))!
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Using Compression to Prove Direct Sum Lower Bound

• Let’s show that

CC (T n) = Ω̃(
√
n · CC (T )).

• Specifically, [BBCR10] for every ϵ > 0,

Rρ(f
n) · log(Rρ(f

n)/ϵ) ≥ Ω(Rρ+ϵ(f )ϵ
√
n).

Then apply min-max principle: Rρ(f ) = maxµ D
µ
ρ (f ).
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• Let π be any protocol for f n on inputs drawn from µn with error

prob. ≤ ρ.

• Recall protocol for single copy f using randomness

R = (J,X<J ,Y>J), with

CC (τ) ≤ CC (π)

IC i
µ(τ) ≤ 2CC (π)/n.
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• Compress τ with error ϵ to get a protocol for f with error ρ+ ϵ,

communication

CC (τ ′) ≤ O
(CC (π) log(CC (π)/ϵ)

ϵ
√
n

)
.

• τ ′ computes f : CC (τ ′) ≥ Rρ+ϵ(f )

• So for all π for f n,

CC (π) log(CC (π)/ϵ) ≥ Ω(Rρ+ϵ(f )ϵ
√
n).

□
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Closing the Direct Sum Bound

• Is it possible to show that CC (f n) = Θ(n · CC (f ))?

• CC (f n) = O(n · CC (f )) is trivial.

• Lower bound: CC (f n) = Ω̃(
√
n · CC (f )) (proved this).
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Separation in IC and CC

• Answer: no. [GKR15] showed that there is a family of functions

with information k and communication 2Ω(k).

• Amortized communication:

IC i (T ) = lim
n→∞

CC (T n)

n

CC (T ) ≥ 2Ω(k) but CC (T n) ≈ nk.

• Their T is played on a tree with k · 2100·4k layers, goal is to output a

path from root to leaf satisfying Alice and Bob’s inputs.
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Rao and Sinha Easier Separation

• In [RS18], they show an exponential separation for the k-ary pointer

jumping function:

• Alice gets X : [k]<n → [k] and F : [k]n → [k].

• Bob gets Y : [k]<n → [k] and G : [k]n → [k].

• They have to find the unique z ∈ [k]n where for all 1 ≤ i < n

X (z≤i ) + Y (z≤i ) = zr+1 mod k,

and output F (z) + G (z) mod 2.
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