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Review: Information Theory Preliminaries

e Entropy of a random variable X

HOX) = 3 Pl o8 o = B oz

x p p(x p(X)

e Conditional Entropy

1
HYIX) = p(@w [Iog (yIX)] p(x) B HYIX =]

e Chain Rule of Entropy

H(XY) = H(X) + H(Y|X)



Review: Information Theory Preliminaries

Mutual Information

I(A; B) = H(A) — H(A|B)

Conditional Mutual Information

I(A; B|C) = H(A|C) — H(A|BC)

Chain Rule of Mutual Information

I(AB; C) = I(A; C) + I(B; C|A)

Chain Rule of Conditional Mutual Information

I(AB; C|D) = I(A; C|D) + I(B; C|AD)



Relating to Communication: Information Complexity

Analogous to Communication Cost and Communication

Complexity:

Information Cost is related to the amount of information gained
through the execution of a communication protocol 7
Information Complexity is related to a function f (a problem)
over all protocols that computes it.



Relating to Communication: Information Complexity

e Transcript of a protocol
Given a protocol 7, the transcript (X, Y) is the
concatenation of the public randomness with all the messages
that are sent during the execution of 7 on input X, Y

e Internal Information Cost
(Distributional) Internal information cost |CL(7T) is how much
each party learns about the other party’s input during the
execution of 7

IC/,(m) = I(X; (X, Y)|Y) + I(Y;7(X, Y)|X)



Relating to Communication: Information Complexity

e Internal Information Cost
(Distributional) Internal information cost ICL(W) is how much
each party learns about the other party’s input during the
execution of 7

IC/,(m) = 1(X; w(X, Y)|Y) + 1(Y;7(X, Y)|X)

e External Information Cost
(Distributional) External information cost IC>*(mr) is how
much information an outside observer learns about both
parties’ input just by looking at Alice and Bob chat

ICS(m) = I(XY; m(X, Y))



Internal IC < External IC

For protocol 7 and distribution 1, we have
i t
IC,,(m) < 1C% ()

[Intuition] at each round, an independent observer is always going
to learn more new info about XY than X and Y about each other,
or more formally:



Internal IC < External IC

For protocol 7 and distribution 1, we have
i t
IC,,(m) < 1CT% ()

Proof.
Let w be any fixed prefix of the transcript of length i — 1.

If it is the X player’s turn to speak, the amount of info she learns
about Y is zero

I(Y;Tr(X, Y),‘|X,7T(X, Y)Sifl :w) =0

Similarly, if it is the Y player’s turn to speak, the amount of info
he learns about X is zero. So at each round, there has to be one
player who learns nothing new.



Internal IC < External IC

For protocol 7 and distribution 1, we have

ICi,() < IC2% ()

Proof.
On the other hand, an observer always learns something new at

each round, and that amount is
I(XY; (X, Y)iln(X, Y)<ic1 = w)

= I()(;’]T()(7 Y),‘|’/T(X, Y)gi—l = w) + /(Y;W(X, Y),|X7T(X, Y)ﬁi—l = w)
> (X (X, Y)ilYr(X, Y)<ici = w)+HI(Y; 7(X, V)il X7(X, Y)<ic1 = w)

NOTE: if 4 is a product distribution, ICL(W) = 1C5 () O



Motivation: Direct Sum

The direct sum question is about the complexity of solving
several copies of a given problem. In communication complexity, it
can be phrased as follows:

given function
f:{0,1}" x {0,1}™ — {0, 1}
define
7 ({0,137)" x ({0,1}7)" — {0,1}"
to be
F((x15 s %n), (V15 -+, ¥n)) = (F(xas y1), o, F(Xn, yn))

What is the relationship between the communication costs of f
and "7 9



Motivation: Direct Sum

Why direct sum?

Hardness Amplification
direct sum + lower bound on “primitive” problem = lower bound

on ‘“composite” problem
e Ex. Karchmer-Raz-Wigderson: P # NC! if circuit depth has
strong direct sum (there are inherently sequential problems)

Very sensitive to models
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Motivation: Direct Sum

The communication complexity for 7 is most n times the
communication complexity of f.

D(f") < n- D(F)

Is this the best we could do?
We don't know...

11



Motivation: Direct Sum

e Strong Direct Sum Conjecture “the naive is the optimal”
o ?
Dy (") =" Q(n) - Dy(f)
One direction is trivial, need to prove the other direction

e Direct Sum Theorem for Simultaneous Communication (the
equality function)[CSWYO01]

C(EQ7) = Q(mv/n)

12



Why Information Complexity - Information Theoretical tools

e CSWYO0L1 used information theoretic tools to arrive at direct

sum.

e Information Complexity has a nice direct sum property
IC"(f) > n-IC(f)

e The above property bridges together direct sum of
communication:

D"(f) > IC™(f) > n- IC(f) 7?7 n-D(f)

13



Given a function f(x,y) and a distribution 4 on inputs to f

e The communication complexity D5 (f), maximum number of
bits communicated by a protocol that computes f with error p

e D/""(f), the communication involved in the best protocol that
computes f on n independent pairs of input (x,y) drawn
from pu, and getting the answer correct except an error p on
each coordinate.

e Note that the above is different from Dﬁn(f”), and

D;)L,n(f) < D’g (f")

14



(Not direct sum but,) Information Equals Amortized Commu-

nication

e The amortized communication complexity
. DY(f
lim Pi()
n—oo n

e Information equals amortized communication complexity:

lim 7D;j’”(f)

n—00 n

= IC;(f)

ii5)



Direct Sum Theorems

(Information Complexity Direct Sum) For every boolean
function f, distribution g,

ICI(F) > n- IC,(f)

(Weak Direct Sum [BBCR10]) For every boolean function f,
distribution 4, and any positive constant § > 0,

Dun(f",€) > Q(v/n- Du(f, e +6))
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Compression, IC

(Information Complexity Direct Sum) For every boolean function
f, distribution p,
IC;(f) > n-IC,(f)

(Theorem 3.17 in [BR11]) For every p, f, n, let ™ be a protocol
realizing D,""(f). Then there exists a protocol 7 computing f with
error p on inputs drawn from p such that CC(7) = CC(x), and

IC;L(T) S ICL’I’,(W) S D;"’:(f) (S D,‘,‘ (fn))

n
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Compression, CC

(Weak Direct Sum [BBCR10]) For every boolean function f,
distribution 1, and any positive constant ¢ > 0,

Dyun(f",€) > Q(v/n- Du(f, e +6))

(Interactive compression according to internal IC [BBCR10])
over any distribution p on X x Y, for every € > 0, 7 can be
simulated with a protocol 7 of length

O( ICi(r) CC(W)M> 7

€
and 7(X,Y) =n(X,Y) w.h.p.
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Proving Information Complexity Direct Sum: Notations

Given a function f(x,y) and a distribution 4 on inputs to f

e The communication complexity D5 (f), maximum number of
bits communicated by a protocol that computes f with error p

e D/""(f), the communication involved in the best protocol that
computes f on n independent pairs of input (x,y) drawn
from pu, and getting the answer correct except an error p on
each coordinate.

e Note that the above is different from Dﬁn(f”), and

D;)L,n(f) < D’g (f")

19



Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every u, f, n, let w be a protocol
realizing D,""(f). Then there exists a protocol T computing f with
error p on inputs drawn from p such that CC(7) = CC(~), and

i ICun(™) _ DE"(F) (_ DL (F7)
IC‘LL(T) S “n S £ n (S £ )

n

[Intuition] given a “more powerful” protocol, construct a new
protocol that preserves the CC but saves IC by a factor of n.

20



Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every u, f, n, let ™ be a protocol realizing
D#:"(f). Then there exists a protocol 7 computing f with error p on
inputs drawn from g such that CC(7) = CC(r), and

; IC (%) _ D™"(f) DH"(£7)
ICM(T)S i (<=2

")

Proof.
First let us assume that m only uses private randomness (can easily

extend to cover public randomness case). The new protocol 7(x, y) is
defined as follows:

21



Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every u, f, n, let ™ be a protocol realizing
D#:"(f). Then there exists a protocol 7 computing f with error p on
inputs drawn from g such that CC(7) = CC(r), and

i ICia(m) _ D&"(f) D" (£7)
IC(r) < == < =5 ‘

(= =5—)

Proof.

e the parties publicly sample J uniformly at random from [n].
J is understood as an index.

e The parties publicly sample Xi,..., X;-1 and Y41, ..., Y,.

e The first party privately samples X1, ..., X, conditioned on the
corresponding Y's; The second party does similar.

e The parties run the old protocol 7 on Xi, ..., Xp, Y1, ..., Y, and
output the result computed for the J'th coordinate. (i.e. viewing

Xi=x, Y =y) "



Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every u, f, n, let ™ be a protocol realizing
D#:"(f). Then there exists a protocol 7 computing f with error p on
inputs drawn from g such that CC(7) = CC(r), and

i ICia(m) _ D&"(f) D" (£7)
GlRs=F=s=5 E=5")

n

Proof.
Analyze the protocol: observe CC and bounded error: CC(w) = CC(7),

and error is bounded by p.
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every u, f, n, let ™ be a protocol realizing
D#:"(f). Then there exists a protocol 7 computing f with error p on
inputs drawn from g such that CC(7) = CC(r), and

i ICia(m) _ D&"(f) D" (£7)
IC(r) < == < =5 ‘

(= =5—)

Proof. _

Analyze the protocol: bound IC/ (1) = I(X; 7|Y) + I(Y;T[X).
NOTE: X, Y are r.v. for 7's inputs (sampled according to p).
Let's bound the first term:

I(X:7)Y)<I(X 7Yy YY)

(X;JXl--'XJ_lyl---ynﬂ"Y)

I(X X Xy Yi - YalY) + I(Xg | IXy - Xy Ya -+ V)
(

I(Xym|IXy - - X1 Yr -+ Ya)

/
/
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Proving Information Complexity Direct Sum

(Theorem 3.17 in [BR11]) For every u, f, n, let ™ be a protocol realizing
D#:"(f). Then there exists a protocol 7 computing f with error p on
inputs drawn from g such that CC(7) = CC(r), and

i ICia(m) _ D&"(f) D" (£7)
IC,(T) < == < =2

(<=57)

Proof.
Expanding the expectation according to J, apply Chain Rule:

n

10GT|Y) < (1/n) Y I(Ximl X X1 Vi Ya)
=1

=Xy Xy | Ve Yo)/n

Similarly we can bound I(Y;7|X) < I(Y1--: Yo, w|X1--- X,)/n, and thus
IC/,(7) < 1C).(m)/n < CC(m)/n O
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Interactive Compression

e Given a protocol 7 with low information complexity, can we get
another protocol with lower communication and slightly more error?

e Yes, by simulating m while sending less bits. The cost is a small
chance of error.
[BBCR10]: over any distribution t on X x Y, for every ¢ > 0, 7 can
be simulated with a protocol 7 of length

O( ICi(m)- CC(W)M)

€

and 7(X, Y) =n(X,Y) w.h.p.

e Sufficient to prove direct sum result, but stronger result exists
(external IC).

22



Compression Proof Idea

e In 7, Alice and Bob privately guess 7's transcript M = mymy - - - m¢
without communicating. Then communicate with few bits to
correct their guesses.

; ; ; A A A
o Alice will come up with m{’, my', ... m¢,
Bob will come up with m&, m&. ... mE.

e Once m* = m® = m; they can output 7(X, Y). How do Alice and

i

Bob guess M?

23



e For each prefix m.; of bits sent in 7, let

7(m<,~) = P(Mi = 1|xym<,-).

These numbers are how the messages in are distributed in (X, Y).

e How to sample from this distribution:

e Use (public) randomness to get p1,. .., pc ~ Unif([0, 1]).
o set m = 1iff p1 < vy(m<1) = p(M1 = 1|xy),
o set my = 1iff p; <y(m<2) = p(M2 = 1|xym),

o set mc = 1iff pc < y(m<c) = p(Mc = 1|xym<c).

e If Alice, Bob sampled this way, they would have successfully
simulated 7.

24



e The problem: Alice does not have y, so does not know the value of
~v(m<;). Similarly, Bob is missing x...

25



e Key insight: if Alice communicates first in 7, she knows v(m.1)

v(m<1) = p(My = 1|xy) = p(M; = 1|x)
since the first bit sent has no dependence on Bob's secret y.

e In general, if Alice speaks next in 7 and she knows m_;, then she
knows the value of

p(M; = 1|xym.;) = p(M; = 1|xm<;)

Likewise, if Bob speaks next and knows m_;, then he knows the
value of
P( - 1|X.ym<l) - P( - 1|ym<l)

and can sample correctly.

26



o let

(m<i) = p(M; = 1|xm;)

IYA
vE(m<i) = p(M; = 1|ym.))

e In 7: Alice computes

Bob computes

mf‘ =l p < fyA(m<1)7

mj =1 <= py <74 (m<2),

m¢ =1 <= pc <v*(m<c)

mf =l<=p < q/‘B(m<1)7

mE =1 pc <~+B(mc)

27



Alice will sample M correctly, up until the first time
yA(m<;) # v(m<;) (when Bob speaks for the first time).

Bob will sample M correctly, up until the first time
vB(m<;) # v(m<;) (when Alice speaks for the first time).
Alice and Bob communicate to find the first i where m? # m5.
Who is right?

e If the ith bit is sent by Alice, m? is sampled correctly.

i

e If ith bit sent by Bob, m? is sampled correctly.

Whoever is wrong: correct their ith bit and recompute their guess.

Repeat until m”* = m&.

28



e How many bits must Alice and Bob communicate to find first i

A

where m”A, mP disagree?

e O(log C/4) bits using binary search + hashing, if probability of error
isd > 0.

e By union bound, total error is at most Cd = ¢/2. O(log(C/¢)) bits
sent for each mistake /.

29



e Remains to bound the number of corrections Alice, Bob will have to
make.

e Will see that E[# mistakes made] < v/ - C
— E[length of 7] < O(VIC - log(C/e)).
e By Markov's inequality,
2
Pr (|7 > = O(VIC - log(C/e))) < /2.
€

With prob. > 1 — ¢, 7 will simulate 7 correctly and have desired
communication.

30



e What is the probability that Alice, Bob made the first mistake at /?

e Both have m_; sampled correctly, and p; falls between 4A(m.;) and
B .
v (m<l)'

e So probability of mistake at / is at most

Exgm[l7*(m<i) =75 (m<))]]
< ]Exym“p(mi - 1|Xm<i) - p(ml = 1‘ym<l)|]

31



e Useful fact relating mutual information and independence: if A, B
are random variables, then

Es~sllp(alb) - p(a)[] < V/I(A " B).

o If [(A: B)=1(B:A)issmall, then p(a|b) =~ p(a) on average.

32



e Say Alice sends the ith bit in 7. Fixing over m;,

Esym_.[lp(m; = L{xm<;) — p(m; = 1|ym;)|]
= Exym<;[|p(mi = 1|Xym<i) - p(mi = 1|ym<,~)|]
I(M, a X‘ Ym<,-)

; \ I(X o M,-\Ym<,-).

If Bob sends the ith bit, we get < \/I(Y : M;|Xm.;)

e An upper bound the expected number of corrections made:
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C
S VX MIIYM) + (Y - MiXM)
i=1

c
<VcC- J D IX M| YMo) + I(Y : M| XM;)

i=1

by Cauchy-Shwarz;

=VC-IX:M|Y)+I(Y : MIX) = VIC.
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Intuition for Compression

e If IC/(m) is small, then Alice doesn't need to know Bob's y to get a
good idea for what M is. Same for Bob.

A B

e Small IC/(7) means m” ~ m and m ~ m”, as seen in proof.

e NOT guaranteed to give us lower communication. In fact, this is
weak.

e Also in [BBCR10] can simulate 7 such that

cc(r) < O(ICﬁ(w)M).

€2

Almost CC(r) < O(IC())!
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Using Compression to Prove Direct Sum Lower Bound

e let's show that

CC(T") = Q(+/n- CC(T)).
e Specifically, [BBCR10] for every € > 0,
Ro(f") - log(Ro(f")/€) = QRpse(fev/n).

Then apply min-max principle: R,(f) = max,, D5(f).
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e Let m be any protocol for f” on inputs drawn from p"” with error
prob. < p.

e Recall protocol for single copy f using randomness
R =(J,X<y, Y~J), with

CC(1) < CC(m)
IC/(T) < 2CC(m)/n.
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e Compress 7 with error € to get a protocol for f with error p + ¢,
communication

CC(m) Iog(CC(W)/e))'

cclr') < o( -

e 7’ computes f: CC(7") > R,.(f)

e So for all 7 for 7,

CC(m) log(CC(m)/€) > QRye(F)e/n).
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Closing the Direct Sum Bound

e Is it possible to show that CC(f") = ©(n- CC(f))?
e CC(f")= O(n- CC(f)) is trivial.

e Lower bound: CC(f") = Q(+/n- CC(f)) (proved this).
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Separation in IC and CC

e Answer: no. [GKR15] showed that there is a family of functions
with information k and communication 2(k),

e Amortized communication:

ICY(T) = lim cc(rr)

n— oo n

CC(T) > 29K put CC(T") ~ nk.

e Their T is played on a tree with k - 2100-4* layers, goal is to output a
path from root to leaf satisfying Alice and Bob's inputs.
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Rao and Sinha Easier Separation

e In [RS18], they show an exponential separation for the k-ary pointer
Jjumping function:

o Alice gets X : [k]<" — [k] and F : [K]" — [K].

e Bob gets Y : [k]<" — [k] and G : [k]" — [K].

e They have to find the unique z € [k]” where for all 1 </ <n
X(z<i) + Y(2<i) = z-+1 mod k,

and output F(z) + G(z) mod 2.
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