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Intro

• Cover basics of information theory:

1 Entropy
2 Mutual Information
3 Important Properties

• Use information theory to prove an Ω(n) lower bound on
the randomized complexity of disjointness.
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Entropy

The fundamental concept in information theory is “entropy.”
For a random variable X , the entropy of X (denoted H(X )) is
a measure of the “information content” of a typical sample
from X .
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How Should We Define Entropy?

It’s not immediately clear what the proper definition of such a
concept is, but it should satisfy some key properties, for
example:

1 Should be nonnegative (reading a message, or viewing a
sample, should never decrease your total knowledge)

2 For independent random variables X ,Y , we should have
H(X ) + H(Y ) = H(XY ), i.e. the information gained from
a pair of independent sources should equal the sum of the
information gained from each.

3 Should only depend on the distribution of X and not the
specific values it takes on.
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Entropy Definition

It was discovered by Shannon that there is a unique measure
satisfying these (and a few other) requirements, which he
called entropy:

H(X ) =
∑
x

p(x) log
1

p(x)

Here, we take p log 1
p = 0 when p = 0, which agrees with the

limit as p → 0.
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Basic Properties of Entropy

1 Entropy is oblivious to the specific universe of elements
and only depends on the distribution

2 Let X be a distribution over a finite set U.

1 H(X ) ≥ 0, with equality if p(x) = 1 for some x ∈ U.
2 H(X ) ≤ log |U|, with equality if X is the uniform

distribution over U.
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Jensen’s Inequality

A basic lemma used again and again in information theory is
Jensen’s inequality:

Theorem
If ϕ : R → R is a concave function and X is a real-valued
random variable, then ϕ(E[X ]) ≥ E[ϕ(X )].

By symmetry the same inequality holds in the other direction if
ϕ is instead assumed to be convex. The above is often applied
in information theory in the setting ϕ(x) = log x , which can be
readily seen to be concave.
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Proof of Jensen’s Inequality
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Entropy is at most log of Support

Again let X be a distribution over some finite set U.
Then:

H(X ) =
∑
x∈U

p(x) log
1

p(x)

= Ex∼X

(
log

1

p(x)

)
≤ log

(
Ex∼X

1

p(x)

)

= log

∑
x∈U

p(x)
1

p(x)

 = log |U|

So if X is a distribution over n-bit strings, then H(X ) ≤ n.
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Operational Interpretation of
Entropy

As it turns out, the entropy of a random variable X can be
defined (up to a ±1 error) in purely operational terms as
follows:

Theorem
Let X be a random variable taking on values in some universe
U, and let Q(X ) be the minimum, over all uniquely decodable
encodings U → {0, 1}∗, of the expected code-length of of a
sample from X .
Then we have H(X ) ≤ Q(X ) ≤ H(X ) + 1.
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Conditional Entropy

When we have two jointly distributed random variable X ,Y ,
we would like some way of quantifing the information entropy
that remains in X when we know Y . We call this the
conditional entropy, denoted H(X |Y ), defined as:

H(X |Y ) = Ey∼YH(X |Y = y)

In other words, its the expected entropy of X conditioned on a
particular value of y , when y is sampled from Y .
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Mutual Information

In many situations we will have multiple jointly distributed
random variables and it will be useful to measure the amount
of information that is shared between them. For random
variables X ,Y , we will use I (X : Y ) (“mutual information
between X ,Y ”) to quantify this.

1 I (X : Y ) should capture the amount of information gained
on X by knowing Y .

2 When X ,Y are independent, we should have
I (X : Y ) = 0. If X = Y , we should have
I (X : Y ) = H(X ) = H(Y ).
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Defining Mutual Information

We will define mutual information as follows for jointly
distributed X ,Y :

I (X : Y ) = Ex ,y∼XY

(
log

p(x , y)

p(x)p(y)

)
We now show the following alternative characterization:

I (X : Y ) = H(X ) + H(Y )− H(XY )

Note that mutual information is symmetric.
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Mutual Information

I (X : Y ) = Ex ,y∼XY

(
log

p(x , y)

p(x)p(y)

)
= Ex ,y∼XY

(
log

1

p(x)
+ log

1

p(y)
− log

1

p(x , y)

)
= H(X ) + H(Y )− H(XY )
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Mutual Information is Nonnegative

Ex ,y∼XY log
p(x , y)

p(x)p(y)
= −Ex ,y∼XY log

p(x)p(y)

p(x , y)

≥ − log

(
Ex ,y∼XY

p(x)p(y)

p(x , y)

)
= − log

∑
x ,y

p(x)p(y)


= − log 1 = 0
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Conditional Mutual Information

Analogously to entropy, we will define I (X : Y |Z ) to be the
expectation over z ∼ Z of I (X : Y |Z = z):

I (X : Y |Z ) = Ez∼Z

(
I (X |Z = z : Y |Z = z)

)
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Chain Rules

Chain rules allow us to break down a joint distribution into a
marginal and a conditional part. The basic chain rule of
probabilities says:

P(x , y) = P(x)P(y |x)

This simple fact will allow us to similarly break down the
various information measures into such a nice form.



Information
Theory and
Disjointness
Lower Bounds

Introduction

Information
theory basics

Key properties

Chain Rules

Subadditivity

Disjointness
lower bound

Refresher

Discussion

Proof

18/49

Chain Rule for Entropy

For entropy of joint distributions we have the following:

H(XY ) = H(X |Y ) + H(Y )

Intuitively, this says that the entropy of XY is equal to the
entropy in X plus the entropy that remains in Y once you
know X .
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Chain Rule for Entropy

H(X |Y ) =
∑
y

p(y)H(X |y)

=
∑
y

p(y)

(∑
x

p(x |y) log 1

p(x |y)

)

=
∑
x ,y

p(x , y) log
1

p(x |y)

=
∑
x ,y

p(x , y) log
p(y)

p(x , y)

=
∑
x ,y

p(x , y) log
1

p(x , y)
−
∑
x ,y

p(x , y) log
1

p(y)

= H(XY )− H(Y )
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Chain Rule for Entropy

Recall that we showed before that:

I (X : Y ) = H(X ) + H(Y )− H(XY )

Combining this with the chain rule for entropy we get an
alternative expression:

I (X : Y ) = H(X )− H(X |Y )

So the information between X and Y is the amount of
uncertainty about X which you eliminate by knowing Y (and
vice versa).
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Chain Rule for Mutual Information

For mutual information we have the following chain rule:

I (XY : Z ) = I (X : Z ) + I (Y : Z |X )
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Subadditivity

As we have hinted at, the various information quantities satisfy
several nice inequalities, whereby conditioning on some
additional information can only increase or decrease some
partiticular measure. We will refer to such inequalities as
“subaditivity” inequalities.
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Subadditivity of Entropy

For entropy we have the following natural inequality:

H(AB) ≤ H(A) + H(B)

This follows from the identity
I (A : B) = H(A) + H(B)− H(AB), and the fact from before
that mutual information is always nonnegative.



Information
Theory and
Disjointness
Lower Bounds

Introduction

Information
theory basics

Key properties

Chain Rules

Subadditivity

Disjointness
lower bound

Refresher

Discussion

Proof

24/49

Conditioning Never Increases
Entropy

Combining the chain rule and subadditivity we have:

H(Y ) + H(X |Y ) = H(XY ) ≤ H(Y ) + H(X )

So in particular, H(X |Y ) ≤ H(X ).
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Disjointness Problem Refresher

Alice has a vector u ∈ {0, 1}n and Bob has a vector
v ∈ {0, 1}n. They want to compute the DISJ function, defined
by

DISJ(u, v) =

{
0, If ∃i : ui = vi = 1

1, otherwise

We will also refer to the equivalent task of INT instead of DISJ.
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Disjointness Lower Bound

Theorem
Any randomized protocol that computes the disjointness
function with error ≤ 1

2 − ε must have communication Ω(ε2n).

By repeating Θ( 1
ε2
) times, this is equivalent to

Theorem
Any randomized protocol that computes the disjointness
function with error ≤ 1

100 must have communication Ω(n).
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Disjointness Lower Bound -
Obstacles

• Hard distribution?

• Uniform is not - disjointness probability (3/4)n.

• Neither does any product distribution. But we can get
Ω(

√
n) lower bound with it, but also have O(

√
n log n)

upper bound.

• Easy upper bound of Õ(n2/3) for product distributions:

1 Fix ε = n−1/3.
2 Alice sends coordinates with H(Ai ) ≤ ε, needs ≤ εn bits.
3 Bob sends coordinates with H(Bi ) ≤ ε, needs ≤ εn bits.
4 Exchange 1

ε2 coordinates where H(Ai ),H(Bi ) > ε.
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Disjointness Lower Bound - Proof

• Considering distribution ζ over {0, 1}2 × {a, b}.
• Let D be uniform on {a, b} and Z be uniform on {0, 1}.
• If D = a then (A,B) ∼ (0,Z ).
• If D = b then (A,B) ∼ (Z , 0).

• Let ((A,B),D) ∼ ζ⊗n. Properties:

1 A,B are dependent.
2 A,B are independent if conditioning on D.
3 A,B are always disjoint.
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Disjointness Lower Bound - Proof

Reduction to information: study I (AB;T (A,B)|D), where
T (A,B) is the transcript.
Interesting because I (AB;T (A,B)|D) ≤ H(T ) ≤ |comm|.
Will be done if we show I (AB;T (A,B)|D) ≥ Ω(n).
Split to bits:

I (AB;T |D) ≥
n∑

i=1

I (AiBi ;T |D)
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Disjointness Lower Bound - Proof
Split to bits:

I (AB;T |D) ≥
n∑

i=1

I (AiBi ;T |D)

Proof:

I (AB;T |D)

= H(AB|D)− H(AB|TD)

=
n∑

i=1

H(AiBi |D)− H(AB|TD)

≥
n∑

i=1

H(AiBi |D)−
n∑

i=1

H(AiBi |TD)

=
n∑

i=1

I (AiBi ;T |D)
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Reduction Lemma

We reduce the problem to lower bounding the information
obtained by a protocol computing AND of two bits.

Lemma (Reduction Lemma)

For any i ∈ [n]:

I (AiBi ;T (A,B)|D) ≥ inf
P

I (UV ;P(U,V )|D)

where the infimum is over protocols P computing AND2 (AND
of two bits) with error ≤ 1

100 . In RHS, ((U,V ),D) ∼ ζ.
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Reduction Lemma - Proof

I (AiBi ;T (A,B)|D) ≥ inf
P

I (UV ;P(U,V )|D)

Proof idea: construct protocol for AND2 using T .
By definition of mutual information:

I (AiBi ;T (A,B)|D) = E
d∼{a,b}n−1[I (AiBi ;T (A,B)|Di ,D−i = d)]

For each fixing D−i = d , the following is a protocol P for
AND, given two input bits x , y :

1 Use this D−i . Alice draws A−i , Bob draws B−i .

2 Set Ai = x and Bi = y .

3 Run the INT protocol on these A,B.
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Reduction Lemma - Proof Cont.

I (AiBi ;T (A,B)|D) = E
d∼{a,b}n−1[I (AiBi ;T (A,B)|Di ,D−i = d)]

Protocol P:

1 Use this D−i . Alice draws A−i , Bob draws B−i .

2 Set Ai = x and Bi = y .

3 Run the INT protocol on these A,B.

Now (U,V ,D,P(U,V )) ∼ (Ai ,Bi ,Di ,T (A,B)) conditioned
on D−i = d . So

I (AiBi ;T (A,B)|Di ,D−i = d) = I (UV ;P(U,V )|D)
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A Corollary

Corollary

BPP(DISJ) ≥ n · inf
P

I (UV ;P(U,V )|D).

It remains to prove that infP I (UV ;P(U,V )|D) > 0. In other
words, that there’s κ > 0 such that I (UV ;P(U,V )|D) > κ for
all P solving AND2 with high probability.
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Manipulation

We want I (UV ;P(U,V )|D) > κ > 0.
By definition, letting Z be uniformly random from {0, 1}:

I (UV ;P(U,V )|D)

=
1

2
I (UV ;P(U,V )|D = a) +

1

2
I (UV ;P(U,V )|D = b)

=
1

2
I (Z ;P(0,Z )) +

1

2
I (Z ;P(Z , 0))

(No more D!)
For fixed (u, v) ∈ {0, 1}2 let puv be the distribution over
P(u, v). We will now relate the mutual informations above to
distance between these distributions.
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Hellinger Distance

We present a new notion of distance between distributions p, q:

Definition (Hellinger Distance)

For two distributions p, q over domain X , the squared Hellinger
distance h2(p, q) is

h2(p, q) =
1

2

∑
x∈X

(
√
p(x)−

√
q(x))2 = 1−

∑
x∈X

√
p(x)q(x)

Why is this useful?

• h(p, q) ∝ ∥√p −√
q∥2, hence it is a metric over

√
p

vectors. Can use triangle inequality.

• This metric comes from an inner product, so we can use
appropriate Cauchy-Schwartz.

• And some other useful properties.
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Back on Track

We need to show I (Z ;P(0,Z )) + I (Z ;P(Z , 0)) is bounded
from below. We have:

I (Z ;P(0,Z )) ≥ h2(p00, p01)

I (Z ;P(Z , 0)) ≥ h2(p00, p10)

So their sum is at least

h2(p00, p10) + h2(p00, p10)

Let f =
√
p00 −

√
p10, g =

√
p00 −

√
p01, then

h2(p00, p10) + h2(p00, p10) =
1

2
(∥f ∥2 + ∥g2∥)

=
1

4
(∥f − g∥2 + ∥f + g∥2) ≥ 1

4
∥f − g∥2 = 1

2
h2(p01, p10)
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Finishing

Enough to prove that 1
2h

2(p01, p10) is bounded from below.

Lemma (Cut-and-Paste Lemma)

Let P be a randomize protocol over X × Y . Then for every
x , x ′ ∈ X and every y , y ′ ∈ Y , we have

h(Pxy ,Px ′y ′) = h(Px ,y ′ ,Px ′,y ).

Applying the Cut-and-Paste lemma, we have

h2(p01, p10) = h2(p00, p11)

so it is enough to prove h2(p00, p11) is bounded from below.
This much is now intuitive.
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Finishing - Cont.

The last bit:

Lemma (Distinguishing Lemma)

If P computes a function f with error at most ε on every input,
and (x , y) and (x ′, y ′) are such that f (x , y) ̸= f (x ′, y ′), then

h2(pxy , px ′y ′) ≥ 1− 2
√
ε.



Information
Theory and
Disjointness
Lower Bounds

Introduction

Information
theory basics

Key properties

Chain Rules

Subadditivity

Disjointness
lower bound

Refresher

Discussion

Proof

40/49

Recap

|communication| ≥ H(T (A,B)) ≥ I (AB;T (A,B)|D)

≥
n∑

i=1

I (AiBi ;T |D) ≥ n · inf
P

I (UV ;P(U,V )|D)

= n · 1
2
(I (Z ;P(0,Z )) + I (Z ;P(Z , 0)))

≥ n

2
(h2(p00, p01) + h2(p00, p10))

≥ n

4
h2(p01, p10)

=
n

4
h2(p00, p11)

≥ n

4
(1− 2

√
ε)
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Proof of Cut-and-Paste Lemma

For any transcript P we can decompose

Pr(P(x , y) = T ) = qA(x ,T )qB(y ,T )

for some functions qA, qB . Now:

1− h2(pxy , px ′y ′)

=
∑
T

√
Pr(P(x , y) = T )Pr(P(x ′, y ′) = T )

=
∑
T

√
qA(x ,T )qB(y ,T )qA(x ′,T )qB(y ′,T )

=
∑
T

√
Pr(P(x ′, y) = T )Pr(P(x , y ′) = T )

= 1− h2(px ′,y , px ,y ′)
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Divergence

In the expression for information Ex ,y∼XY

(
log p(x ,y)

p(x)p(y)

)
, we

are implicitly quantifying a relation between two distributions
over pairs x , y , one being the joint distribution with
probabilities p(x , y), and one being the product distribution of
marginals with probabilities p(x)p(x). This quantity is more
generally referred to as divergence.

For two distributions P,Q over a common domain:

(P||Q) = Ex∼P log
p(x)

q(x)
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Divergence

We have the following:

(P||Q) = Ex∼P log
p(x)

q(x)
= Ex∼P log

1

q(x)
− H(P)

Recall that the optimal prefix-free encoding for q assigns x a
string of length log 1

q(x) . So Ex∼P log 1
q(x) can be seen as

quantifying expected performance (codeword length) of using
the optimal code for Q over the distribution P. Thus (P||Q)
quantifies the additional number of bits you need (in
expectation) to encode samples from P when using an
encoding optimized for Q, as opposed to one optimized for P.
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Important Properties of
Divergence

We see that the definition of divergence is not symmetric, and
indeed we can have (P||Q) ̸= (Q||P). However an important
fact is that it is always nonnegative:

Ex∼P log
p(x)

q(x)
= −Ex∼P log

q(x)

p(x)

≥ − log

(
Ex∼P

q(x)

p(x)

)
= − log 1 = 0

In particular, since mutual information can be expressed as a
divergence, it is always nonnegative as well.
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Proof of Operational Interpretation

We first show that for any X distributed over a universe U,
there is a prefix-free encoding scheme f : U → {0, 1}∗ such
that

Ex∼X |f (x)| ≤ H(X ) + 1
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Proof of Operational Interpretation

We will assume without loss of generality that U = [n], and
that the elements of U are arranged in decreasing order of
probability so that 1 ≥ p(1) ≥ · · · ≥ p(n) ≥ 0. We will give a
prefix-free encoding which assigns each x ∈ [n] a codeword of
length ℓx := ⌈log 1

p(x)⌉. If this holds, then we have:

Ex∼X |f (x)| = Ex∼X ℓx

= Ex∼X ⌈log
1

p(x)
⌉

≤ Ex∼X

(
1 + log

1

p(x)

)
= H(X ) + 1

completing the proof.
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Proof of Operational Interpretation

To construct such a code, we initialize a complete binary tree
of depth n. Now, for each x ∈ [n] in increasing order of x , we
find a node of depth ℓx and delete all of its descendants so
that this node becomes a leaf. We then give x the codeword
specifying the root-to-leaf path of this node, and continue for
the next value of x .

So long as we can always find a node of the appropriate depth,
each x will be given a codeword of the appropriate length, and
no codeword will be a prefix of another since all codewords are
leaves.
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Proof of Operational Interpretation

It suffices to show that after all the vertex deletions at step x ,
there is still a remaining vertex of depth ℓx+1. For y < x , the
number of vertices of depth ℓx deleted at step y is exactly
2ℓx−ℓy . So the number of vertices of depth ℓx that are deleted
before the x th step is:∑

y<x

2ℓx−ℓy = 2ℓx
∑
y<x

2−ℓy ≤ 2ℓx
∑
y<x

p(y) < 2ℓx

By definition there are 2ℓx leaves of depth ℓx to begin with, so
one must remain.
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Proof of Operational Interpretation

We now show that no encoding can do better than H(X ) in
expectation. Again, assume that X lies over the universe [n],
and say that x ∈ [n] is given a codeword of length ℓx . So then
we have:

Ex∼X (ℓx) = Ex∼X

(
log

1

p(x)
− log(2−ℓx/p(x))

)
= H(X )− Ex∼X

(
log(2−ℓx/p(x))

)
≥ H(X )− log

(
Ex∼X

(
2−ℓx/p(x)

))
= H(X )− log

(∑
x

2−ℓx

)

If we can show that
∑
x
2−ℓx ≤ 1 then we are done.
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