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The Gap Hamming Distance Problem

The gap Hamming distance problem is a partial function

-1 if <X7Y> < —\/ﬁ,

GHD,(x,y) =
+1 if (x,y) > ++/n.
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where x,y € {—1,+1}".



Linear lower bound

Theorem 1

D"(GHD,) = Q(n).

We'll present the proof from
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Corruption bound

(partial)

Fix f: X x Y ——— {—1,+1} and p a distribution on X x Y.
We say a rectangle R C X x Y is e-corrupt if

p(RNF(41)) > (RN FL(=1)).

Theorem 2 (Corruption Bound)

If every rectangle R with p(R) > § is e-corrupt, then

240 > 2 (e -v)- £).
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We'll use the corruption bound to prove the (n) lower bound.
Fix 1 to be the uniform distribution.

Let R = A x B be a rectangle that's not e-corrupt. Then

Pr[f(x,y) = +1] < RO (G

_ : 1
xcAyeB RAFI(—1) ~° (1)

We'll show (1) implies that R must be small, i.e.
H(R) = 47" Al|B| < § = 270,
Then by the corruption bound, have

D¢(%) = Antog (1) - £
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Gap orthogonality

However, GHD does have a large uncorrupted rectangle.

Instead of working on GHD directly, we'll use a similar function
called gap orthogonality:

—1 if [(x,y)| < +/n/8,
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Observe that f,(x, y) can be computed using 2 calls to the GHD
function, so lower bound f is also a lower bound for GHD.



Corruption bound requires proving the following:

Theorem 3

Let R=Ax B s.t. PrycayeBl|(x,¥)| < 4] >1—¢. Then
47| A||B| < exp(~Q(n)).



Proof of theorem 3

The goal is to show that 47"|A||B| < exp(—(n)).

If |A] is small enoungh by it self, e.g. 27"|A| < 227" for some
constant «, then we're done.

Therefore, we'll assume that [A| > 2 - 2(1=®)" and show

27"|B| < e ),



Proof of theorem 3

Recall that we have

Pr_[l(x )] <

n
—]>1-c¢.
xEA,yeB 4

We may further assume that for every x € A,

/i

Pelltxy] < L= 1-2 @

by discarding violating elements.

This decreases the size of A by at most half, so now |A| > 2(1=a)n,



Proof of theorem 3

Next, we'll show that there's some x,...,xx € As.t.
Vn —Q(n)
Pr max |[(xi,y)| < —| <e
ye{—1,4+1}" | i€[K] 4

where k = ©(n).
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Assume that A is large, then it's always possible to find
k = |n/10] vectors from A that are “almost orthogonal”.

Lemma 1

Let o be a sufficiently small constant. Fix A C {—1,+1}" with
|A| > 272", Then for k = [n/10] there exist xi,x2,...,xx € A
such that for each i,

. ﬁ
| PrOJspan{x x,,....xi } Xiva|l < 3 &
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Talagrand

Proof of lemma 1 (and lemma 2) relies on the following:

Fact 1 (Talagrand)

For every linear subspace V C R" and every t > 0, one has

[H projy x|| — Vdim V > t] < 4e=,

6{1

where ¢ > 0 is an absolute constant.
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Proof of lemma 1

The proof is by induction.
Having selected x1,...,x; € A, pick xj11 € {—1,+1}" uniformly
random. Then

Pr [X,'+1 € A] > 27N

Xi+1

Fact 1 implies that

n —
Pr 1 proige,. oy pisall < %] 212707

Xi+1

Hence, there exists x;11 € A with || projg,, .y X1l < f O
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Eq. (3) implies that only a small amount of y € {—1,41}" can
have small inner product with all x;'s. Formally,

Lemma 2
Fix vectors xi,x2,...,xm € {—1,+1}" that obey (3) for all i.

Then
Vn

Pr max |(x;, y)| < < g Pm (4)

ye{—1,+1}" |ie[m] 4

for some absolute constant 3 > 0.
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Proof of theorem 3

Let x1,...,xx € A be the vectors from lemma 1.

Recall that we have for every x; € A,

Vn

n
P iy Si 21_2 .
Politxo)l < Y2122

By averaging,

Vn
P iy S A 2 1-—2e.
bl < Y= 1-2

Again, we may assume that for every y € B,

J

n
Pr [|(x,y)] < 71> 1-3e,
Pl ) < 7213

which decreases the size of B by at most 2/3.
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Proof of theorem 3

Then,

FAEEREY
P P iy <2 1-3
P [,-G[Z]WX y)l< Y] -

is an upper bound for Pr,[y € B] = 27"|B|.

By union bound, this is bounded by

k Vn
P iy S |
(35k> yel-141)n [miaxHX U }
which, by lemma 2, is bounded by (3§k)e*9(”) = e~ SUn), O
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Linear lower bound

By theorem 3 and the corruption bound, we have

D) = ntog (41 (1) - £ )

&

Since u(f, 1(—1)) is ©(1), the above gives a linear lower bound for
the gap orthogonality function.

which also implies a linear lower bound for GHD.
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