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The Gap Hamming Distance Problem

The gap Hamming distance problem is a partial function

GHDn(x , y) :=

−1 if ⟨x , y⟩ ≤ −
√
n,

+1 if ⟨x , y⟩ ≥ +
√
n.

where x , y ∈ {−1,+1}n.
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Linear lower bound

Theorem 1

Dµ(GHDn) = Ω(n).

We’ll present the proof from

Alexander A. Sherstov. “The Communication Complexity of Gap

Hamming Distance”. In: Theory of Computing 8.8 (2012),

pp. 197–208. doi: 10.4086/toc.2012.v008a008. url:

http://www.theoryofcomputing.org/articles/v008a008
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Corruption bound

Fix f : X × Y
(partial)−−−−−→ {−1,+1} and µ a distribution on X × Y .

We say a rectangle R ⊆ X × Y is ε-corrupt if

µ(R ∩ f −1(+1)) > εµ(R ∩ f −1(−1)).

Theorem 2 (Corruption Bound)

If every rectangle R with µ(R) > δ is ε-corrupt, then

2D
µ
ξ (f ) ≥ 1

δ

(
µ(f −1(−1))− ξ

ε

)
.
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Plan

We’ll use the corruption bound to prove the Ω(n) lower bound.

Fix µ to be the uniform distribution.

Let R = A× B be a rectangle that’s not ε-corrupt. Then

Pr
x∈A,y∈B

[f (x , y) = +1] ≤ |R ∩ f −1(+1)|
|R ∩ f −1(−1)|

< ε. (1)

We’ll show (1) implies that R must be small, i.e.

µ(R) = 4−n|A||B| ≤ δ = 2−Ω(n).

Then by the corruption bound, have

Dµ
ξ (fn) ≥ Ω(n) log

(
µ(f −1(−1))− ξ

ε

)
.
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Gap orthogonality

However, GHD does have a large uncorrupted rectangle.

Instead of working on GHD directly, we’ll use a similar function

called gap orthogonality:

fn(x , y) =

−1 if |⟨x , y⟩| ≤
√
n/8,

+1 if |⟨x , y⟩| ≥
√
n/4.

Observe that fn(x , y) can be computed using 2 calls to the GHD

function, so lower bound f is also a lower bound for GHD.
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Theorem 3

Corruption bound requires proving the following:

Theorem 3

Let R = A× B s.t. Prx∈A,y∈B [|⟨x , y⟩| ≤
√
n
4 ] ≥ 1− ε. Then

4−n|A||B| ≤ exp(−Ω(n)).
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Proof of theorem 3

The goal is to show that 4−n|A||B| ≤ exp(−Ω(n)).

If |A| is small enoungh by it self, e.g. 2−n|A| ≤ 2 · 2−αn for some

constant α, then we’re done.

Therefore, we’ll assume that |A| > 2 · 2(1−α)n, and show

2−n|B| ≤ e−Ω(n).

.
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Proof of theorem 3

Recall that we have

Pr
x∈A,y∈B

[|⟨x , y⟩| ≤
√
n

4
] ≥ 1− ε.

We may further assume that for every x ∈ A,

Pr
y∈B

[|⟨x , y⟩| ≤
√
n

4
] ≥ 1− 2ε (2)

by discarding violating elements.

This decreases the size of A by at most half, so now |A| > 2(1−α)n.
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Proof of theorem 3

Next, we’ll show that there’s some x1, . . . , xk ∈ A s.t.

Pr
y∈{−1,+1}n

[
max
i∈[k]

|⟨xi , y⟩| ≤
√
n

4

]
≤ e−Ω(n)

where k = Θ(n).
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Lemma 1

Assume that A is large, then it’s always possible to find

k = ⌊n/10⌋ vectors from A that are “almost orthogonal”.

Lemma 1

Let α be a sufficiently small constant. Fix A ⊆ {−1,+1}n with

|A| > 2−αn. Then for k = ⌊n/10⌋ there exist x1, x2, . . . , xk ∈ A

such that for each i ,

∥ projspan{x1,x2,...,xi} xi+1∥ ≤
√
n

3
. (3)
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Talagrand

Proof of lemma 1 (and lemma 2) relies on the following:

Fact 1 (Talagrand)

For every linear subspace V ⊆ Rn and every t > 0, one has

Pr
x∈{−1,+1}n

[∥ projV x∥ −
√
dimV > t] ≤ 4e−ct2 ,

where c > 0 is an absolute constant.
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Proof of lemma 1

The proof is by induction.

Having selected x1, . . . , xi ∈ A, pick xi+1 ∈ {−1,+1}n uniformly

random. Then

Pr
xi+1

[xi+1 ∈ A] > 2−αn.

Fact 1 implies that

Pr
xi+1

[
∥ proj{x1,...,xi} xi+1∥ ≤

√
n

3

]
≥ 1− 2−αn.

Hence, there exists xi+1 ∈ A with ∥ proj{x1,...,xi} xi+1∥ ≤
√
n
3 .
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Lemma 2

Eq. (3) implies that only a small amount of y ∈ {−1,+1}n can

have small inner product with all xi ’s. Formally,

Lemma 2

Fix vectors x1, x2, . . . , xm ∈ {−1,+1}n that obey (3) for all i .

Then

Pr
y∈{−1,+1}n

[
max
i∈[m]

|⟨xi , y⟩| ≤
√
n

4

]
≤ e−βm (4)

for some absolute constant β > 0.
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Proof of theorem 3

Let x1, . . . , xk ∈ A be the vectors from lemma 1.

Recall that we have for every xi ∈ A,

Pr
y∈B

[|⟨xi , y⟩| ≤
√
n

4
] ≥ 1− 2ε.

By averaging,

Pr
i∈[k],y∈B

[|⟨xi , y⟩| ≤
√
n

4
] ≥ 1− 2ε.

Again, we may assume that for every y ∈ B,

Pr
i∈[k]

[|⟨xi , y⟩| ≤
√
n

4
] ≥ 1− 3ε,

which decreases the size of B by at most 2/3.
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Proof of theorem 3

Then,

Pr
y∈{−1,+1}n

[
Pr
i∈[k]

[|⟨xi , y⟩| ≤
√
n

4
] ≥ 1− 3ε

]
is an upper bound for Pry [y ∈ B] = 2−n|B|.

By union bound, this is bounded by(
k

3εk

)
Pr

y∈{−1,+1}n

[
max

i
|⟨xi , y⟩| ≤

√
n

4

]
,

which, by lemma 2, is bounded by
( k
3εk

)
e−Ω(n) = e−Ω(n).
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Linear lower bound

By theorem 3 and the corruption bound, we have

Dµ
ξ (fn) ≥ Ω(n) log

(
µ(f −1

n (−1))− ξ

ε

)
.

Since µ(f −1
n (−1)) is Θ(1), the above gives a linear lower bound for

the gap orthogonality function.

which also implies a linear lower bound for GHD.
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