Extension Complexity vs Communication Complexity

Chengyue He

April 20, 2022

Linear Programming Relaxation

A discrete optimization problem usually has the formula

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in V \tag{1}
\end{array}
$$

where $V \subset \mathbb{R}^{d}$ is a finite set.

Linear Programming Relaxation

A discrete optimization problem usually has the formula

$$
\begin{array}{ll}
& \max _{x} c^{T} x \\
\text { s.t. } & x \in V \tag{1}
\end{array}
$$

where $V \subset \mathbb{R}^{d}$ is a finite set.
A linear relaxation of (1) is defined by

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in P \tag{2}
\end{array}
$$

where $P:=\operatorname{conv}(V)$ is the convex hull of V.

Linear Programming Relaxation

A discrete optimization problem usually has the formula

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \tag{1}\\
\text { s.t. } & x \in V
\end{array}
$$

where $V \subset \mathbb{R}^{d}$ is a finite set.
A linear relaxation of (1) is defined by

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in P \tag{2}
\end{array}
$$

where $P:=\operatorname{conv}(V)$ is the convex hull of V.
We can solve (2) by linear programming, and the solution x^{*} applies for (1).

Linear Programming Relaxation

A discrete optimization problem usually has the formula

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in V \tag{1}
\end{array}
$$

where $V \subset \mathbb{R}^{d}$ is a finite set.
A linear relaxation of (1) is defined by

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in P \tag{2}
\end{array}
$$

where $P:=\operatorname{conv}(V)$ is the convex hull of V.
We can solve (2) by linear programming, and the solution x^{*} applies for (1).
We hope P has a 'easy form' to describe. Specifically, P is defined by polynomially many inequalities.

Outline

1 Extended Formulation and Extension Complexity

2 Slack Matrix, Yannakakis' Factorization Theorem

3 EF Lower Bounds of the Clique Polytope

4 EF Lower Bounds of Other Polytopes

Main Goal

■ Given an n-vertices graph G, we want to solve maximum clique using LP:

$$
\max _{x} c^{T} x
$$

$$
\text { s.t. } x \in P
$$

by giving a poly-size 'description' of P whose vertices correspond to cliques.

Main Goal

■ Given an n-vertices graph G, we want to solve maximum clique using LP:

$$
\max _{x} c^{T} x
$$

$$
\text { s.t. } x \in P
$$

by giving a poly-size 'description' of P whose vertices correspond to cliques.

- The size is lower bounded by the nonnegative rank r of some matrix $S \in \mathbb{R}_{\geq 0}^{2^{n} \times 2^{n}}$.

Main Goal

■ Given an n-vertices graph G, we want to solve maximum clique using LP:

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in P
\end{array}
$$

by giving a poly-size 'description' of P whose vertices correspond to cliques.

- The size is lower bounded by the nonnegative rank r of some matrix $S \in \mathbb{R}_{\geq 0}^{2^{n} \times 2^{n}}$.

■ r is lower bounded by the number of 1-rectangles needed to cover $M=\operatorname{suppmat}(S)$.

Main Goal

■ Given an n-vertices graph G, we want to solve maximum clique using LP:

$$
\begin{array}{ll}
& \max _{x} c^{\top} x \\
\text { s.t. } & x \in P
\end{array}
$$

by giving a poly-size 'description' of P whose vertices correspond to cliques.

- The size is lower bounded by the nonnegative rank r of some matrix $S \in \mathbb{R}_{\geq 0}^{2^{n} \times 2^{n}}$.

■ r is lower bounded by the number of 1-rectangles needed to cover $M=\operatorname{suppmat}(S)$.

- The unique disjointness matrix is embedded in M, where UDISJ has nondeterministic communication complextiy $\Omega(n)$.

Polytope

Suppose $P \subset \mathbb{R}^{d}$ is bounded, we say P is a polytope if it can be represented by finite inequalities:

$$
P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}
$$

Polytope

Suppose $P \subset \mathbb{R}^{d}$ is bounded, we say P is a polytope if it can be represented by finite inequalities:

$$
P=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\} .
$$

Equivalently, P is a polytope iff there exists a finite set V such that

$$
P=\operatorname{conv}(V)
$$

Extended Formulation and Extension Complexity

An extended formulation (EF) of $P=\{x: A x \leq b\} \subset \mathbb{R}^{d}$ is a linear system

$$
\begin{equation*}
\pi:=\{E x+F y \leq g\} \tag{3}
\end{equation*}
$$

in variables $(x, y) \in \mathbb{R}^{d+(k-d)}$, such that $x \in P$ iff (3) holds.
The size of an EF is the number of inequalities in system (3).

Extended Formulation and Extension Complexity

An extended formulation (EF) of $P=\{x: A x \leq b\} \subset \mathbb{R}^{d}$ is a linear system

$$
\begin{equation*}
\pi:=\{E x+F y \leq g\} \tag{3}
\end{equation*}
$$

in variables $(x, y) \in \mathbb{R}^{d+(k-d)}$, such that $x \in P$ iff (3) holds.
The size of an EF is the number of inequalities in system (3).
The extension complexity of P is defined by

$$
\begin{equation*}
x c(P):=\min _{\pi \text { is an } \mathrm{EF}} \operatorname{size}(\pi) \tag{4}
\end{equation*}
$$

Example: Regular Polygons

Example: Regular Polygons

Theorem

Let P be a regular n-gon in \mathbb{R}^{2}. Then $x c(P)=O(\log n)$.

Slack Matrix

Suppose P is contained in $Q=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$. Let $V=\left\{v_{1}, \ldots, v_{k}\right\}$ be a finite set of points in P :

$$
V \subset P \subset Q .
$$

The slack matrix of P with respect to V, Q is the $n \times k$ matrix $S(V, Q)$ with

$$
S(V, Q)_{i, j}=b_{i}-A_{i} \cdot v_{j}
$$

where A_{i} is the i-th row of A.

Slack Matrix

Suppose P is contained in $Q=\left\{x \in \mathbb{R}^{d}: A x \leq b\right\}$. Let $V=\left\{v_{1}, \ldots, v_{k}\right\}$ be a finite set of points in P :

$$
V \subset P \subset Q .
$$

The slack matrix of P with respect to V, Q is the $n \times k$ matrix $S(V, Q)$ with

$$
S(V, Q)_{i, j}=b_{i}-A_{i} \cdot v_{j}
$$

where A_{i} is the i-th row of A.
Observation 1: S is a nonnegative matrix.
Observation 2: $S_{i, j}$ is proportional to the distance from v_{j} to the hyperplane $\left\{x: A_{i x}=b_{i}\right\}$.

Slack Matrix

1
2
3
4
4
6 $\left[\begin{array}{llllllll}a & b & c & d & e & f & g & h \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0\end{array}\right]$

Nonnegative rank, factorization

The nonnegative rank of a matrix $M \in \mathbb{R}_{\geq 0}^{m \times n}$ is defined by the smallest number r such that there exists $T \in \mathbb{R}_{\geq 0}^{m \times r}$ and $U \in \mathbb{R}_{\geq 0}^{r \times n}$ such that $M=T U$, denoted by rank (M).

The factorization theorem

Theorem (Yannakakis)

Let $P=\operatorname{conv}(V)$ and $P \subset Q$, then

$$
\operatorname{rank}_{+}(S(V, Q))=x c(P)
$$

Clique Polytope (Correlation Polytope)

Let $G_{n}=\left(V_{n}, E_{n}\right)$ be a graph of n-vertices. Set $d=n+\binom{n}{2}$, for $A \subset[n]$, define

$$
\begin{gathered}
x_{i}^{A}= \begin{cases}1, & \text { if } i \in A \\
0, & \text { otherwise }\end{cases} \\
x_{(i, j)}^{A}=\left\{\begin{array}{ll}
1, & \text { if } i, j \in A \\
0, & \text { otherwise }
\end{array} .\right.
\end{gathered}
$$

Then $x^{A}:=\left(x_{1}^{A}, \ldots, x_{n}^{A}, x_{(1,2)}^{A}, x_{(1,3)}^{A}, \ldots, x_{(n-1, n)}^{A}\right)^{T}$.
Define P_{n} as the convex hull of all these 2^{n} vectors.

Main Results

Theorem (Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12')
The clique polytope P_{n} has

$$
x c\left(P_{n}\right)=2^{\Omega(n)}
$$

1st Step: Construct a Slack Matrix

For any $A \subset[n], x^{A}$ is a clique vector of P_{n}.

1st Step: Construct a Slack Matrix

For any $A \subset[n], x^{A}$ is a clique vector of P_{n}.
For any $B \subset[n]$, consider the inequality

$$
\begin{equation*}
\sum_{i \in B} x_{i} \leq 1+2 \sum_{i, j \in B, i<j} x_{(i, j)} . \tag{5}
\end{equation*}
$$

1st Step: Construct a Slack Matrix

For any $A \subset[n], x^{A}$ is a clique vector of P_{n}.
For any $B \subset[n]$, consider the inequality

$$
\begin{equation*}
\sum_{i \in B} x_{i} \leq 1+2 \sum_{i, j \in B, i<j} x_{(i, j)} . \tag{5}
\end{equation*}
$$

If $A \cap B=\emptyset$, then (5) has slack 1 ;
If $|A \cap B|=1$, then (5) is tight;
If $|A \cap B| \geq 2$, then (5) has potitive slack.

1st Step: Construct a Slack Matrix

For any $A \subset[n], x^{A}$ is a clique vector of P_{n}.
For any $B \subset[n]$, consider the inequality

$$
\begin{equation*}
\sum_{i \in B} x_{i} \leq 1+2 \sum_{i, j \in B, i<j} x_{(i, j)} . \tag{5}
\end{equation*}
$$

If $A \cap B=\emptyset$, then (5) has slack 1 ;
If $|A \cap B|=1$, then (5) is tight;
If $|A \cap B| \geq 2$, then (5) has potitive slack.
Define $S(V, Q)$ be the slack matrix with $V=\left\{x^{A}: A \subset[n]\right\}$ and

$$
Q=\{x: x \text { satisfies (5) for all } B \subset[n]\}
$$

2nd Step: Support of the slack matrix, rectangle covering

Let $M \in \mathbb{R}_{\geq 0}^{m \times n}$ be any nonnegative matrix.
The support matrix suppmat (M) is defined by

$$
\operatorname{suppmat}(M)_{i j}= \begin{cases}1 & \text { if } M_{i j}>0 \\ 0 & \text { otherwise }\end{cases}
$$

2nd Step: Support of the slack matrix, rectangle covering

Let $M \in \mathbb{R}_{\geq 0}^{m \times n}$ be any nonnegative matrix.
The support matrix suppmat (M) is defined by

$$
\operatorname{suppmat}(M)_{i j}= \begin{cases}1 & \text { if } M_{i j}>0 \\ 0 & \text { otherwise }\end{cases}
$$

Theorem

Let M be any nonnegative matrix. Then rank (M) is lower bounded by the number of 1 -rectangles needed to cover suppmat (M).

2nd Step: Support of the slack matrix, rectangle covering

Theorem

Let M be any nonnegative matrix. Then rank (M) is lower bounded by the number of 1 -rectangles needed to cover suppmat(M).

Proof.

Let $M=T U$ be the rank- r nonnegative factorization, then M can be written as the sum of r-nonnegative rank-1 matrices:

$$
M=\sum_{k=1}^{r} T^{k} U_{k}
$$

2nd Step: Support of the slack matrix, rectangle covering

Theorem

Let M be any nonnegative matrix. Then rank (M) is lower bounded by the number of 1 -rectangles needed to cover suppmat(M).

Proof.

Let $M=T U$ be the rank- r nonnegative factorization, then M can be written as the sum of r-nonnegative rank-1 matrices:

$$
M=\sum_{k=1}^{r} T^{k} U_{k}
$$

Taking the support on each side,

$$
\begin{aligned}
\operatorname{supp}(M) & =\bigcup_{k=1}^{r} \operatorname{supp}\left(T^{k} U_{k}\right) \\
& =\bigcup_{k=1}^{r} \operatorname{supp}\left(T^{k}\right) \times \operatorname{supp}\left(U_{k}\right)
\end{aligned}
$$

3rd Step: Reduction to Unique Disjointness

Notice that

$$
M_{A B}=\left\{\begin{array}{cc}
0, & \text { if }|A \cap B|=1 \\
1, & \text { otherwise }
\end{array}\right.
$$

Thus we have

$$
M_{A B}=U D I S J(A, B)
$$

3rd Step: Reduction to Unique Disjointness

Notice that

$$
M_{A B}=\left\{\begin{array}{lc}
0, & \text { if }|A \cap B|=1 \\
1, & \text { otherwise }
\end{array}\right.
$$

Thus we have

$$
M_{A B}=U D I S J(A, B)
$$

Theorem (Razborov)

The nondeterministic communication complexity $N P^{c c}(U D I S J)=\Omega(n)$.

3rd Step: Reduction to Unique Disjointness

Notice that

$$
M_{A B}=\left\{\begin{array}{cc}
0, & \text { if }|A \cap B|=1 \\
1, & \text { otherwise }
\end{array}\right.
$$

Thus we have

$$
M_{A B}=U D I S J(A, B)
$$

Theorem (Razborov)

The nondeterministic communication complexity $N P^{c c}($ UDISJ $)=\Omega(n)$.
Thus, we need $2^{\Omega(n)} 1$-rectangles to cover M.

suppmat (M) with large 1-monochromatic rectangle cover

Consider the following $2^{n} \times 2^{n}$ matrix $M(n)$ with rows and columns indexed by n-bit strings a and b, and nonnegative entries:

$$
\begin{equation*}
M(n)_{a b}:=\left(1-a^{T} b\right)^{2} . \tag{6}
\end{equation*}
$$

Theorem (De Wolf, 03')
Every 1-monochromatic rectangle cover of suppmat $(M(n))$ has size $2^{\Omega(n)}$.

suppmat (M) with large 1-monochromatic rectangle cover

Lemma (Razborov, 92')

There exists sets $A, B \in\{0,1\}^{n} \times\{0,1\}^{n}$ and probability distribution μ on $\{0,1\}^{n} \times\{0,1\}^{n}$ such that
$1 a^{T} b=0$, for all $(a, b) \in A$.
2 $a^{T} b=1$, for all $(a, b) \in B$.
3. $\mu(A)=\frac{3}{4}$

4 For all rectangles $R, \mu(R \cap B) \geq \alpha \cdot \mu(R \cap A)-2^{-\delta n}$.

suppmat (M) with large 1-monochromatic rectangle cover

Lemma (Razborov, 92')

There exists sets $A, B \in\{0,1\}^{n} \times\{0,1\}^{n}$ and probability distribution μ on $\{0,1\}^{n} \times\{0,1\}^{n}$ such that
$1 a^{T} b=0$, for all $(a, b) \in A$.
2 $a^{T} b=1$, for all $(a, b) \in B$.
3. $\mu(A)=\frac{3}{4}$

4 For all rectangles $R, \mu(R \cap B) \geq \alpha \cdot \mu(R \cap A)-2^{-\delta n}$.

Theorem (De Wolf, 03')

Every 1-monochromatic rectangle cover of suppmat $(M(n))$ has size $2^{\Omega(n)}$.

suppmat (M) with large 1-monochromatic rectangle cover

Lemma (Razborov, 92')

There exists sets $A, B \in\{0,1\}^{n} \times\{0,1\}^{n}$ and probability distribution μ on $\{0,1\}^{n} \times\{0,1\}^{n}$ such that
$1 a^{T} b=0$, for all $(a, b) \in A$.
2 $a^{T} b=1$, for all $(a, b) \in B$.
3. $\mu(A)=\frac{3}{4}$

4 For all rectangles $R, \mu(R \cap B) \geq \alpha \cdot \mu(R \cap A)-2^{-\delta n}$.

Theorem (De Wolf, 03')

Every 1-monochromatic rectangle cover of suppmat $(M(n))$ has size $2^{\Omega(n)}$.

Proof.

Let R_{1}, \ldots, R_{k} be a 1-monochromatic rectangle cover of $\operatorname{suppmat}(M(n))$. Then any R_{i} cannot contain elements from B. Hence $\mu\left(R_{i} \cap B\right)=0$ and $\mu\left(R_{l} \cap A\right) \leq 2^{-\delta n} / \alpha$.

suppmat (M) with large 1-monochromatic rectangle cover

Theorem (De Wolf, 03')

Every 1-monochromatic rectangle cover of suppmat $(M(n))$ has size $2^{\Omega(n)}$.

Proof.

Let R_{1}, \ldots, R_{k} be a 1-monochromatic rectangle cover of $\operatorname{suppmat}(M(n))$. Then any R_{i} cannot contain elements from B. Hence $\mu\left(R_{i} \cap B\right)=0$ and $\mu\left(R_{l} \cap A\right) \leq 2^{-\delta n} / \alpha$. Since A is covered by these rectangles, we have

$$
\frac{3}{4}=\mu(A)=\mu\left(\bigcup_{i=1}^{k}\left(R_{i} \cap A\right)\right) \leq \sum_{i=1}^{k} \mu\left(R_{i} \cap A\right) \leq k \cdot \frac{2^{-\delta n}}{\alpha}
$$

suppmat (M) with large 1-monochromatic rectangle cover

Theorem (De Wolf, 03')

Every 1-monochromatic rectangle cover of suppmat $(M(n))$ has size $2^{\Omega(n)}$.

Proof.

Let R_{1}, \ldots, R_{k} be a 1-monochromatic rectangle cover of $\operatorname{suppmat}(M(n))$. Then any R_{i} cannot contain elements from B. Hence $\mu\left(R_{i} \cap B\right)=0$ and $\mu\left(R_{l} \cap A\right) \leq 2^{-\delta n} / \alpha$. Since A is covered by these rectangles, we have

$$
\frac{3}{4}=\mu(A)=\mu\left(\bigcup_{i=1}^{k}\left(R_{i} \cap A\right)\right) \leq \sum_{i=1}^{k} \mu\left(R_{i} \cap A\right) \leq k \cdot \frac{2^{-\delta n}}{\alpha} .
$$

Hence, $k \geq 2^{\Omega(n)}$.

Lower Bounds on Extension Complexity

The following famous polytopes have exponential extension complexity:
■ Cut Polytope [Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12']
■ Stable Set Polytope [Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12’]
■ TSP Polytope [Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12']

- Matching Polytope [Rothvoss, 14']

References

1 Fiorini, Samuel, et al. "Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds." Proceedings of the forty-fourth annual ACM symposium on Theory of computing. 2012.
$\boxed{2}$ Rao, Anup, and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge University Press, 2020.
3 Rothvoß, Thomas. "The matching polytope has exponential extension complexity." Journal of the ACM (JACM) 64.6 (2017): 1-19.
4 Razborov, Alexander A. "On the distributional complexity of disjointness." International Colloquium on Automata, Languages, and Programming. Springer, Berlin, Heidelberg, 1990.

5 Yannakakis, Mihalis. "Expressing combinatorial optimization problems by linear programs." Journal of Computer and System Sciences 43.3 (1991): 441-466.

