
Extended Formulation and Extension Complexity
Slack Matrix, Yannakakis’ Factorization Theorem

EF Lower Bounds of the Clique Polytope
EF Lower Bounds of Other Polytopes

Extension Complexity vs Communication Complexity

Chengyue He

April 20, 2022

Chengyue He Extension Complexity vs Communication Complexity



Extended Formulation and Extension Complexity
Slack Matrix, Yannakakis’ Factorization Theorem

EF Lower Bounds of the Clique Polytope
EF Lower Bounds of Other Polytopes

Linear Programming Relaxation

A discrete optimization problem usually has the formula

max
x

cT x

s.t. x ∈ V
(1)

where V ⊂ Rd is a finite set.

A linear relaxation of (1) is defined by

max
x

cT x

s.t. x ∈ P
(2)

where P := conv(V ) is the convex hull of V .

We can solve (2) by linear programming, and the solution x∗ applies for (1).

We hope P has a ’easy form’ to describe. Specifically, P is defined by
polynomially many inequalities.
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Main Goal

Given an n-vertices graph G , we want to solve maximum clique using LP:

max
x

cT x

s.t. x ∈ P

by giving a poly-size ’description’ of P whose vertices correspond to
cliques.

The size is lower bounded by the nonnegative rank r of some matrix
S ∈ R2n×2n

≥0 .

r is lower bounded by the number of 1-rectangles needed to cover
M = suppmat(S).

The unique disjointness matrix is embedded in M, where UDISJ has
nondeterministic communication complextiy Ω(n).
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Polytope

Suppose P ⊂ Rd is bounded, we say P is a polytope if it can be represented by
finite inequalities:

P = {x ∈ Rd : Ax ≤ b}.

Equivalently, P is a polytope iff there exists a finite set V such that

P = conv(V ).
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Extended Formulation and Extension Complexity

An extended formulation (EF) of P = {x : Ax ≤ b} ⊂ Rd is a linear system

π := {Ex + Fy ≤ g} (3)

in variables (x , y) ∈ Rd+(k−d), such that x ∈ P iff (3) holds.

The size of an EF is the number of inequalities in system (3).

The extension complexity of P is defined by

xc(P) := min
π is an EF

size(π) (4)
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Example: Regular Polygons
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Example: Regular Polygons

Theorem

Let P be a regular n-gon in R2. Then xc(P) = O(log n).
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Slack Matrix

Suppose P is contained in Q = {x ∈ Rd : Ax ≤ b}. Let V = {v1, . . . , vk} be a
finite set of points in P:

V ⊂ P ⊂ Q.

The slack matrix of P with respect to V ,Q is the n × k matrix S(V ,Q) with

S(V ,Q)i,j = bi − Ai · vj

where Ai is the i-th row of A.

Observation 1: S is a nonnegative matrix.

Observation 2: Si,j is proportional to the distance from vj to the hyperplane
{x : Aix = bi}.
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Slack Matrix

Chengyue He Extension Complexity vs Communication Complexity



Extended Formulation and Extension Complexity
Slack Matrix, Yannakakis’ Factorization Theorem

EF Lower Bounds of the Clique Polytope
EF Lower Bounds of Other Polytopes

Nonnegative rank, factorization

The nonnegative rank of a matrix M ∈ Rm×n
≥0 is defined by the smallest number

r such that there exists T ∈ Rm×r
≥0 and U ∈ Rr×n

≥0 such that M = TU, denoted
by rank+(M).
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The factorization theorem

Theorem (Yannakakis)

Let P = conv(V ) and P ⊂ Q, then

rank+(S(V ,Q)) = xc(P).
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Clique Polytope (Correlation Polytope)

Let Gn = (Vn,En) be a graph of n-vertices. Set d = n+
(
n
2

)
, for A ⊂ [n], define

xA
i =

{
1, if i ∈ A
0, otherwise

.

xA
(i,j) =

{
1, if i , j ∈ A
0, otherwise

.

Then xA := (xA
1 , . . . , x

A
n , x

A
(1,2), x

A
(1,3), . . . , x

A
(n−1,n))

T .

Define Pn as the convex hull of all these 2n vectors.
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Main Results

Theorem (Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12’)

The clique polytope Pn has
xc(Pn) = 2Ω(n).
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1st Step: Construct a Slack Matrix

For any A ⊂ [n], xA is a clique vector of Pn.

For any B ⊂ [n], consider the inequality∑
i∈B

xi ≤ 1 + 2
∑

i,j∈B,i<j

x(i,j). (5)

If A ∩ B = ∅, then (5) has slack 1;

If |A ∩ B| = 1, then (5) is tight;

If |A ∩ B| ≥ 2, then (5) has potitive slack.

Define S(V ,Q) be the slack matrix with V = {xA : A ⊂ [n]} and

Q = {x : x satisfies (5) for all B ⊂ [n]}.
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2nd Step: Support of the slack matrix, rectangle covering
Let M ∈ Rm×n

≥0 be any nonnegative matrix.

The support matrix suppmat(M) is defined by

suppmat(M)ij =

{
1 if Mij > 0,
0 otherwise.

Theorem

Let M be any nonnegative matrix. Then rank+(M) is lower bounded by the
number of 1-rectangles needed to cover suppmat(M).

Proof.

Let M = TU be the rank-r nonnegative factorization, then M can be written
as the sum of r -nonnegative rank-1 matrices:

M =
r∑

k=1

T kUk

Taking the support on each side,

supp(M) =
r⋃

k=1

supp(T kUk)

=
r⋃

k=1

supp(T k)× supp(Uk).
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3rd Step: Reduction to Unique Disjointness

Notice that

MAB =

{
0, if |A ∩ B| = 1
1, otherwise

.

Thus we have
MAB = UDISJ(A,B).

Theorem (Razborov)

The nondeterministic communication complexity NPcc(UDISJ) = Ω(n).

Thus, we need 2Ω(n) 1-rectangles to cover M.
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suppmat(M) with large 1-monochromatic rectangle cover

Consider the following 2n × 2n matrix M(n) with rows and columns indexed by
n-bit strings a and b, and nonnegative entries:

M(n)ab := (1− aTb)2. (6)

Theorem (De Wolf, 03’)

Every 1-monochromatic rectangle cover of suppmat(M(n)) has size 2Ω(n).
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suppmat(M) with large 1-monochromatic rectangle cover

Lemma (Razborov, 92’)

There exists sets A,B ∈ {0, 1}n × {0, 1}n and probability distribution µ on
{0, 1}n × {0, 1}n such that

1 aTb = 0, for all (a, b) ∈ A.

2 aTb = 1, for all (a, b) ∈ B.

3 µ(A) = 3
4

4 For all rectangles R, µ(R ∩ B) ≥ α · µ(R ∩ A)− 2−δn.

Theorem (De Wolf, 03’)

Every 1-monochromatic rectangle cover of suppmat(M(n)) has size 2Ω(n).

Proof.

Let R1, . . . ,Rk be a 1-monochromatic rectangle cover of suppmat(M(n)).
Then any Ri cannot contain elements from B. Hence µ(Ri ∩ B) = 0 and
µ(RI ∩ A) ≤ 2−δn/α. Since A is covered by these rectangles, we have

3

4
= µ(A) = µ

(
k⋃

i=1

(Ri ∩ A)

)
≤

k∑
i=1

µ(Ri ∩ A) ≤ k · 2
−δn

α
.

Hence, k ≥ 2Ω(n).
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Theorem (De Wolf, 03’)

Every 1-monochromatic rectangle cover of suppmat(M(n)) has size 2Ω(n).

Proof.

Let R1, . . . ,Rk be a 1-monochromatic rectangle cover of suppmat(M(n)).
Then any Ri cannot contain elements from B. Hence µ(Ri ∩ B) = 0 and
µ(RI ∩ A) ≤ 2−δn/α. Since A is covered by these rectangles, we have

3

4
= µ(A) = µ

(
k⋃

i=1

(Ri ∩ A)

)
≤

k∑
i=1

µ(Ri ∩ A) ≤ k · 2
−δn

α
.

Hence, k ≥ 2Ω(n).

Chengyue He Extension Complexity vs Communication Complexity



Extended Formulation and Extension Complexity
Slack Matrix, Yannakakis’ Factorization Theorem

EF Lower Bounds of the Clique Polytope
EF Lower Bounds of Other Polytopes

Lower Bounds on Extension Complexity

The following famous polytopes have exponential extension complexity:

Cut Polytope [Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12’]

Stable Set Polytope [Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12’]

TSP Polytope [Fiorini, Massar, Pokutta, Tiwary, De Wolf, 12’]

Matching Polytope [Rothvoss, 14’]
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