APPLICATIONS

- Streaming
- · Property Testing
- s game theory
- TIME/SPACE TUring Machine LBS
- · Circuit complexity
- · Proot complexity
- · Extension Complexity
- · clique/coclique, graph Theory, Learning Partial Functions

Main cc Lower Bounds
UDISJ: disjointness with
promise that either
Ixnyl=0 or Ixnyl=1
BPP^{cc} (UDISJ) =
$$\mathcal{L}(\mathcal{N})$$

LONP^{cc} (UDISJ) = $\mathcal{L}(\mathcal{N})$

Theorem. The k-player NOF randomized cc of DISJ, UDISJ is $\mathcal{A}\left(\frac{n}{2^{\kappa}}\right)$

We will prove these in a couple of weeks

APPLICATIONS

- o Streaming
- · Property Testing
- s game theory
- · TIME/SPACE TUring Machine LBS
- · Circuit complexity
- · Proot complexity
- · Extension Complexity
- · clique/coclique, graph Theory, Learning Partial Functions

STREAMING LOWER BOUNDS

S
$$\in$$
 $[n]^m$ is a length m stream
computing frequency moments \mathcal{F}_{S} :
Let $\mathcal{M}_{i} = \{2j \in [m] \mid S_{j} = i \} \{$
The \mathcal{K}^{m} brequency moment $\mathcal{G}_{i} S_{i}, F_{k} = \sum_{i=1}^{n} \mathcal{M}_{i}^{k}$
 $\mathcal{F}_{0} = \mathbb{H}$ distinct elements in stream
 $\mathcal{F}_{i} = [ength \mathcal{G}_{i} stream$
 $\mathcal{F}_{0} = \mathbb{H}$ occurrences \mathcal{G}_{i} most frequent item

STREAMING LOWER BOUNDS

S
$$\in$$
 [n]^m is a length *m* stream
computing frequency moments of S:
Let $M_i = \{4j \in [m] \mid S_j = i\} \}$
The K^m brequency moment $Q_i S_i, F_k = \sum_{i=1}^n M_i^m$
 $F_o = H \text{ distinct elements in stream}$
 $F_i = \text{ length } Q_i \text{ stream}$
 $F_{\infty} = H \text{ occurrences } Q_i \text{ most frequent item}$
Theorem F_o, F_2 can be approxed to within a $(1 \le i)$ factor $(wp \ge 1 - s)$
in space $O((10qn + 10qm) \log \frac{1}{s})$

STREAMING LOWER BOUNDS

requires space $\Omega(\min\{m,n\})$.

S
$$\in$$
 $[n]^m$ is a length *m* stream
computing frequency moments of S:
Let $M_1 = \{\{i\} \in [m] \mid S_j = i\} \}$

The Kth frequency moment $Q_1 S_1, F_k = \sum_{i=1}^n M_i^k$
 $F_0 = H$ distinct elements in stream
 $F_i = length Q_i$ stream
 $F_0 = H$ occurrences Q most frequent item
Theorem computing F_0 requires $\Omega(\min\{m, n\})$ space
Stronger : any randomized alg for F_0 to within $(l \pm .2)$ factor $wp = \frac{2}{3}$

Alice:
$$x \longrightarrow \text{stream } a_x = \sum_{i=1}^{n} |x_i| = 1$$
 011011 $\longrightarrow z_1 z_1 z_2, z_2, z_3, z_5, G$
BGb: $Y \longrightarrow \text{stream } b_x = \sum_{i=1}^{n} |y_i| = 1$ 100100 $\longrightarrow 1, 4$

Fact
$$Dist(x,y)=1 \implies F_{\infty}(a_{x}b_{x})=1$$

 $Dist(x,y)=0 \implies F_{\infty}(a_{x}b_{x})=1$

MORE STREAMING LOWER BOUNDS

Previous Lis actually shaved something stronger:
Than Any randomized streaming alg that for any shear
S & length m computes F₂ to within (1±.2) factor
(with prob > 3) requires space
$$\Omega(\min 2m, n3)$$
.
Then For k=1 every randomized streaming alg for computing
F_k exactly requires space $\Omega(\min 2m, n3)$
In our reduction F₂ is 1 vs a
so a factor of 2 difference.
For k=1 the correct value will still be different in the 2 cases

MORE STREAMING LOWER BOUNDS

The F, Fz can be approx'd to within
$$(1 \pm \varepsilon)$$

factor with prob > (1-s) using
gave $O(\varepsilon^2(\log n + \log m) \log \frac{1}{5})$

APPLICATIONS

- · Streaming
- · Property Testing
- s game theory
- · TIME/SPACE TUring Machine LBS
- · Circuit complexity
- · Proot complexity
- · Extension Complexity
- Data structures

PROPERTY TESTING

Let D = domain (usually D = 80,13ⁿ) R = range

A property P is a set of functions from $D \rightarrow R$ <u>Gramples</u> $D = IF^n$ F_2 R = IF $P = set G_0$ all linear functions

(3) graph testing D= 20,13⁽¹²⁾ R= 20,13 P= all graphs that have a k-clique, etc...

Example 1 : Linearity Testing (over IFZ) Input f: 50,13 -> 50,13 (fas a vector of length z) 1s f E-close to a pairity function? Parity fine = Linean fine = $f(x \oplus y) = f(x) \oplus f(y) \forall x, y \in [0, 1]^n$ BLR Test: Repeat $\Theta(\pm)$ times Pick x, y ~ 20,13ⁿ unif. at random
If f(x0y) * f(x) @ f(y) halt * reject If havent yet rejected then ACCEPT

Theorem. With constant probability, every function E-for from Linear is rejected Example 2: Monotone graph Properties

Boolean case: f: {0,1} → {0,1}. Picture f as choosing a subset of vertices of n-dim boolean hypercube Let (b, X.i) be an assignment where it bit is b, remaining n-1 bits are K-i Then f is monotone if $\forall i \in [n] \forall x_i \quad f(0, x_{-i}) \leq f(1, x_{-i})$ Monotonicity Test Repeat O(?) times: Fick i, x_i at random. [If f(0, x_i) > f(1, x_i) hali + reject If haven't rejected yet, ACCEPT

Thm with prob > 33 every function z-for from monotone is rejected

Example 2: Monotone graph Properties

	NB		LB	
Boolean	[gglRS 2000]	$O(\frac{n}{\epsilon})$	[FLNRRS 2002]	$\mathcal{A}(\mathbf{M})$ nonadaptive
	[KMS 2015]	$O\left(\frac{m}{\epsilon^2}\right)$	[8B '18]	-L(n'3) adaptive
Range R	[gglRs 2000] [DglRR5 '99]	$O(n R /\epsilon)$ $O(\frac{n}{\epsilon} \log R)$	EBBM 2012	$\int \mathcal{L}(n), R = \mathcal{L}(\mathbb{R})$ $= \mathcal{L}(R ^{2})$
	LES: Many excel Chen, serv	edio, Tan, n	laingarten, Xie	NEXT

.

<u>general Template</u>: Map 1-unputs (x,y) of a hard cc problem (UDISJ) to functions h_{x,y} e P May 0-injuts (x,y) to h_{x,y} that are far from P Use efficient tester TI for P, plus short protocol to evaluate h_{x,y} to solve UDISJ

Lemma For
$$A, B \subseteq [n]$$
, let $h_{A,B} : \{0, 1\}^n \to \mathbb{Z}$ by
 $h_{A,B}(x) = a [x[+(-1)^{|x \cap A|} + (-1)^{|x \cap B|}$
Then (i) If $A \cap B = \phi \longrightarrow h_{A,B}$ is monotone
(ii) If $|A \cap B| = 1 \longrightarrow h_{A,B}$ is Σ -far from monotone

Lemma For
$$A, B \subseteq [n]$$
, let $h_{A,B} : [0,1]^n \to \mathbb{Z}$ by
 $h_{A,B}(x) = \partial [x] + (-1)^{|xAA|} + (-1)^{|xAB|}$
Then (i) If $AAB = \phi \longrightarrow h_{AB}$ is monotone
(ii) If $|AAB| = 1 \longrightarrow h_{AB}$ is Σ -for from monotone

Assuming Lemmer, Let Q be a monotonicity tester (E= '8) given input (A,B) to UDISJ Alice (B6b Simulate Q on h_{A,B}: Let x = [n] be Next query Q cesks (h_{A,B}(x)?) Alice sends (-1)^{1xnAl} Bob sends (-1)^{1xnBl}

Cost per query = 2. ... monotonicty testing (z='z) requires M(n) queries

Lemma For
$$A, B \subseteq [n]$$
, let $h_{AB} : [0,1]^n \to \mathbb{Z}$ by
 $h_{AB}(x) = a[x] + (-1)^{|xAA|} + (-1)^{|xAB|}$
Then (i) If $AAB = \phi \longrightarrow h_{AB}$ is monotone
(ii) If $|AAB| = 1 \longrightarrow h_{AB}$ is ϵ -far from monotone

Proot

(i) Want to show: A,B disjoint
$$\Rightarrow \forall s, i \in S \quad h_{AB}(s \cup i) - h_{AB}(s) = 0$$

Since A, B disjoint, either $i \in A$ or $i \in B$. Assume whole $i \in A$. Then
 $h_{AB}(s \cup i) - h_{AB}(s) = 2 + (0) + (-1)^{|S \cap B| + 1} - (-1)^{|S \cap B|} = 3 + 0 - 2$
 $\Rightarrow 0$

Or L

Lenume For
$$A, B \in [n]$$
, let $h_{AB} : [0, 1]^n \to \mathbb{Z}$ by
 $h_{AB}(x) = a[x[+(-1)^{|x \wedge A|} + (-1)^{|x \wedge B|}$
Then (i) If $A \wedge B = \phi \longrightarrow h_{AB}$ is monotone
(ii) If $|A \wedge B| = 1 \longrightarrow h_{AB}$ is Σ -far from monotone
Proof let $A \wedge B = i$
 $C \text{ laim: } Pr [(s \wedge A| \text{ is even}) and (|S \wedge B| \text{ is even})] = \frac{1}{4}$
When $|S \wedge A|$ and $|S \wedge B|$ are both even
 $h_{AB}(S \vee i) - h_{AB}(S) = a|s|+2 - 2|s| + (-1) - (1) + (-1) - (1) = -2$
so for at least $\frac{1}{4} 2^{n-1} = \frac{1}{8} 2^{n}$ choices of S, $h_{AB}(S \vee i) < h_{AB}(S)$
so h_{AD} is $\frac{1}{6} - \frac{1}{6}$ are monotone.

The lower bound is $\Lambda(n)$ as long as $|R| \ge n$. This can be improved to snow same Lis $\Lambda(n)$ for $|R| \ge n$. More generally can prove $\Lambda(|R|^2)$ LZ. OPEN

For testing monotonicity of Boolean functions best 43 is Tr(n's), where as best UB is O(m) APPLICATIONS

· Streaming

· TIME/SPACE TUring Machine LBS

- · Circuit complexity
- · Proot complexity
- · Extension Complexity
- Data structures

GAME THEORY: PURE NASH EQUILIBRIUM

NASH :

A <u>pure</u> Nach <u>equilibrium</u> is a pair (i^*, j^*) st it strategy is optimal if Bdb plays j^* + Similarly j^* is optimal if Alice plays it Lemma computing whether a pure Nach equilibrium exists requires $\Omega(n^2)$ cc PURE NASH EQUILIBRIUM

NASH :

Extra rows/cols guarantee that only a cell (it, j*) where both X_t, and Y_i, =1 is a pure Nash equilibrium. (then a players best reply always has a value {1 so a pure equilibrim requires a cell where both modifies had value 1.)

.: Cost o(n2) solution to Nash =) cost o(n2) protocol for DISD. #

$$\frac{2 - Player}{2} = Nash is Hard}{2 players. Each has an N \times N} payoff matrix
A = 13 6 5
Players. Each has an N \times N payoff matrix
A = 13 6 5
Players. Each has an N × N payoff matrix
B = 12 5 9
12 9 1
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9 0
1 9$$

Finding E-Nash Equilibrium is Hard

Theorem [göös-Rubistein '18]
The randomized
communication
complexity of finding
an E-Nash equilibrium
is
$$\ge N^{2-o(1)}$$

is $\ge N^{2-o(1)}$
is $\ge N^{2-o(1)}$

APPLICATIONS

- · Streaming
- · Property Testing
- · game theory
- · TIME/SPACE TUring Machine LBS
- · Circuit complexity
- · Proot complexity
- · Extension Complexity
- Data structures

TM TIME / SPACE LOWER BOUNDS

Multitape TMs: Read only input tape
plus O(i) Read/Write tape
Let
$$f: so_{i}i^{n} + so_{i}i^{n} \rightarrow so_{i}i^{n}$$

We say that M recognises/computes f if
 $\forall (x,y) \in so_{i}i^{2n}$ $f(xy)=1 \implies M(xo^{n}y) = 1$
 $f(x,y)=0 \implies M(xo^{n}y) = 0$
Theorem Let M compute f .
Then $P^{cc}(f) \leq O(Time(M,n) - Space(M,n))$

ie. if
$$P^{cc}(t) = \Omega(n)$$
 then any M computing f
requires Time \cdot space = $\Omega(n^2)$

Proof

Let \mathcal{M} be a T \mathcal{M} that computes f in Time T(n), space S(n)then we will construct a CC protocol for f of $cost \leq T(n) \cdot S(n)$ Alice has x, BGb γ .

Then Alice sends entire content of Hw tape and head locations to Bob

Bob continues simulation with y on green part until input head moves to pink

Comm. complexity:

$$\# \text{ of Rounds} = \frac{T(n)}{n}$$
 (since they have to spend
 $n \text{ steps going thrue middle zone}$)

$$\therefore cc(f) = O\left(\frac{T(n) \cdot s(n)}{n}\right)$$