APPLICATIONS

- Streaming
- Property Testing
- game theory
- TIME/SPACE TURing Machine LBS
- Circuit complexity
- Proof complexity
- Extension complexity
- clique/ Codique, Graph Theory, Learning Partial Functions

Main Cc Lower Bounds
UDISJ: disjointness with promise that either
Theorem

$$
\begin{aligned}
& \operatorname{BPP}^{C l}(\text { DIST })=\Omega(n) \\
& \text { BAP }^{c c}(\text { UDISJ })=\Omega(n) \\
& \text { CONPCC (UDISJ) }=\Omega(n)
\end{aligned}
$$

Theorem
The $k$-player NOF randomized $<c$ of DISJ, UDIS is $\Omega\left(\frac{n}{2^{k}}\right)$

We will prove these in a couple of weeks

APPLICATIONS

- Streaming
- Property Testing
- game theory
- TIME/sPACE Turing Machine LBs
- Circuit complexity
- Proof complexity
- Extension Complexity
- clique/ Codique, Graph Theory, Learning Partial Functions

STREAMING LOWER BOUNDS
$S \in[n]^{m}$ is a length $m$ stream
computing frequency moments of $S$ :
Let $M_{i}=\left|\left\{j \in[m] \mid S_{j}=i\right\}\right|$
The $K^{\mu r}$ frequency moment of $S, F_{k}=\sum_{i=1}^{n} M_{i}{ }^{k}$
$F_{0}=\|$ distinct elements in stream
$F_{1}=$ length of stream
$F_{\infty}^{\prime}=\#$ occurrences $q$ most frequent it em

STREAMING LOWER BOUNDS
$S \in[n]^{m}$ is a length $m$ stream
computing frequency moments of $S$ :
Let $\mu_{1}=\left|\left\{j \in[m] \mid S_{j}=i\right\}\right|$
The $k^{+m}$ frequency moment of $S, F_{k}=\sum_{i=1}^{n} M_{i}{ }^{k}$
$F_{0}=\#$ distinct elements in stream
$F_{1}=$ length of stream
$F_{\infty}=\#$ occurrences $q$ most frequent it em
Theorem $F_{0}, F_{2}$ can be approx'd to within a ( $1 \pm \varepsilon$ ) factor ( $w_{p} \geqslant 1-\delta$ ) in space $O\left(\frac{(\log n+\log n) \log \frac{1}{\delta}}{\varepsilon^{2}}\right)$

STREAMINg LOWER BOUNDS
$S \in[n]^{m}$ is a length $m$ stream
computing frequency moments of $S$ :
Let $\mu_{i}=\left\{\left\{j \in[m] \mid S_{j}=i\right\} \mid\right.$
$\square$
$2|10| 14|1| 1|3| 3|10| 7|5| \cdots$,

The $K^{\mu r}$ frequency moment of $S, F_{k}=\sum_{i=1}^{n} M_{i}{ }^{k}$
$F_{0}=\#$ distinct elements in stream
$F_{1}=$ length of stream
$F_{\infty}=\#$ occurrences 9 most frequent it em
Theorem computing $F_{\infty}$ requires $\Omega(\min \{m, n\})$ space
stronger: any randomized alg for $F_{\infty}$ to within $(1 \pm .2)$ factor $w p \geq 2 / 3$ requires space $\Omega(\min \{m, n\})$.

Theorem computing $F_{\infty}$ requires $\Omega(n)$ space/memory ( $m=n$ )
PE Reduction from DISJ $\rightarrow$ low -space streaming alg for $F_{\infty}$ Let $A$ be space $C$ streaming alg

Alice: $x \longrightarrow$ stream $a_{x}=\left\{i \mid x_{i}=1\right\} \quad 011011 \longrightarrow 2,3,5,6$
BOb: $y \longrightarrow$ stream $b_{x}=\left\{j \mid y_{j}=1\right\} \quad 100100 \longrightarrow 1,4$

Fact

$$
\begin{aligned}
& \operatorname{DISJ}(x, y)=1 \Rightarrow F_{\infty}\left(a_{x} b_{x}\right)=2 \\
& \operatorname{DiSI}(x, y)=0 \Rightarrow F_{\infty}\left(a_{x} b_{x}\right)=1
\end{aligned}
$$

Theorem computing $F_{\infty}$ requires $\Omega(n)$ space/memory
PE Reduction from DISJ $\rightarrow$ low -space streaming alg for $F_{\infty}$ Let $A$ be space $C$ streaming alg
Alice: $x \longrightarrow$ stream $a_{x}=\left\{i \mid x_{i}=1\right\} \quad 011011 \longrightarrow 2,3,5,6$
BOb: $y \longrightarrow$ stream $b_{x}=\left\{j \mid y_{j}=1\right\} \quad 100100 \longrightarrow 1,4$
$\left.\begin{array}{rl}\text { Fact } & \operatorname{DisJ}(x, y)=1\end{array} \quad \Rightarrow F_{\infty}\left(a_{x} b_{x}\right)=2 d\right] ~\left(F_{\infty}\right)$
Simulation Alice simulates $A$ on $a_{x}$ o sends content $q$ mernory (c bits) to Bob; then Bor simulates rest of computation on by

MORE STREAMING LOWER BOUNDS
Previous LB actually showed something stronger:
Thu Any randomized streaming alg that for any steam $s$ of length $m$ computes $F_{D}$ to within $(1 \pm .2)$ factor ( $w$, th prob $>\frac{2}{3}$ ) requires space $\Omega(\min \{m, n\})$.

Thu For $K \neq 1$ every randomized streaming alg for computing $F_{k}$ exactly requires space $\Omega(\min \{m, n\})$

中
In our reduction $F_{\infty}$ is 1 vs 2
So a factor of 2 difference.
For $k \neq 1$ the correct value mill still be different in the 2 cases

MORE STREAMING LOWER BOUNDS
In contrast, we have very low space approx alps for $F_{0}$ and $F_{z}$

Thy $F_{0}, F_{2}$ can be approx' of to whin ( $1 \pm \varepsilon$ ) factor with prob $\geqslant(1-\delta)$ using
space $O\left(\varepsilon^{-2}(\log n+\log m) \log \frac{1}{\delta}\right)$

APPLICATIONS

- Streaming
- Property Testing
- game theory
- TIME/SPACE TUring Machine LBS
- Circuit complexity
- Proof complexity
- Extension Complexity
- Data structures

PROPERTY TESTING
Let $D=$ domain (usually $D=\{0,1\}^{n}$ )

$$
R=\text { range }
$$

A property $P$ is a set of functions from $D \rightarrow R$
Examples
(1) Linearity.

$$
\begin{aligned}
& D=\mathbb{F}^{n} \quad \mathbb{T}_{2} \\
& R=\mathbb{F} \\
& P=\text { set of all linear functions }
\end{aligned}
$$

(2) Monotonicity

$$
\begin{aligned}
& D=\{0,1\}^{n}, R=\{0,1\} \\
& P=\text { set of all monotone functions } f:\{0,1\}^{n} \rightarrow\{0,1\}
\end{aligned}
$$

(3) graph testing $D=\{0,1\}^{\left(\frac{n}{2}\right)} \quad R=\{0,1\}$ $P=$ all graphs that have a $k$-clique, etc...
goal of popery testing: given a very large input (Lice a graph or Boolean function on $n$ inputs) want to look at few places in input to decide If it is close to un input with property $P$ or far from all inputs in $P$

View function (input) as a vector indexed $b_{y} D$
Defn $f$ is $\varepsilon$-far from $P$ if $\forall g \in P$, $f$ and $g$ differ in $\geq \varepsilon|D|$ entries.
ie. changing $f$ to some $g \in P$ requires changing at least an $\varepsilon$ fraction of its values

Given popery $P$ defined wot $D, R$ on input $f: D \rightarrow R$, determine if
(1) $f \in P$ or
(2) $f$ is $\varepsilon$-far from $p$

A testen for $P$ queries input $f$ (a decissontree) Query complexity of $P=$
min. decision tree depth our all testers for $P$
En
$\frac{1}{0}$


- fris in $p$
- f's far from $P$
- f's close to $p$

Example 1: Linearity Testing (over $\mathbb{F}_{2}$ )
Input $f:\{0,1\}^{n} \rightarrow\{0,1\} \quad\left(f\right.$ as a vector of length $2^{n}$ )
Is $f$-close to a parity function?

$$
\text { Parity fans }=\text { Linin fans } \equiv f(x \oplus y)=f(x) \oplus f(y) \quad \forall x, y \in(0,1)^{n}
$$

BLR Test:
Repeat $\theta\left(\frac{1}{\varepsilon}\right)$ times

$$
\left[\begin{array}{l}
\text { - Pick } x, y \sim\{0,1\}^{n} \text { unit. at random } \\
\text { - If } f(x \oplus y) \neq f(x) \oplus f(y) \text { halt o reject }
\end{array}\right.
$$

If havent yet rejected then ACCEPT
Theorem
With constant probability, every function $\varepsilon$-far from linear is rejected

Example 2: Monotone Graph Properties
Boolean case: $f:\{0,1\}^{n} \rightarrow\{0,1\}$.
Picture $f$ as choosing a subset of vertices of $n$-dim boolean hypercube
Let $\left(b, x_{-i}\right)$ be an assignment where $i^{\text {th }}$ bit is $b$, remaining $n-1$ bits are $x_{-i}$
Then $f$ is monotone if $\forall i \in[n] \quad \forall x_{-i} \quad f\left(0, x_{-i}\right) \leqslant f\left(1, x_{-i}\right)$
Monotonicity Test
Repeat $O\left(\frac{n}{\varepsilon}\right)$ times:
Pick $i, x_{-i}$ at random.
If $f\left(0, x_{-i}\right)>f\left(1, x_{-i}\right)$ hat + reject
If havent rejected yet, ACCEPT
Thy with prob $>2 / 3$ every function $\varepsilon$-far from monotone is rejected

Example 2: Monotone Graph Properties


LRS: many excellent LIs by chen, servedio, Tan, waingarten, Hie

MONOTONICITY TESTING LOWER BOUNDS
General Template:

- Map 1-inputs ( $x, y$ ) of a hard cc problem (uDisJ) to functions $h_{x, y} \in P$
- Map 0-inputs $(x, y)$ to $h_{x, y}$ that are far from $p$
- Use efficient tester $\Pi$ for $P$, plus short protocol to evaluate $h_{x, y}$ to solve UDISJ

MONOTONICITY TESTING LOWER BOUNDS

Lemma For $A, B \leq[n]$, Let $h_{A, B}:\{0,1\}^{n} \rightarrow \mathbb{Z}$ by

$$
h_{A, B}(x)=2|x|+(-1)^{|x \cap A|}+(-1)^{|x \cap B|}
$$

Then (i) If $A \cap B=\phi \rightarrow h_{A, B}$ is monotone
(ii) If $|A \cap B|=1 \rightarrow h_{A, B}$ is $\varepsilon$-far from monotone

MONOTONICITY TESTING LOWER BOUNDS
Lemma For $A, B \leq[n]$, Let $h_{A, B}:\{0,1\}^{n} \rightarrow \mathbb{Z}$ by

$$
h_{A, B}(x)=2|x|+(-1)^{|x \cap A|}+(-1)^{|x \cap B|}
$$

Then (i) If $A \cap B=\phi \rightarrow h_{A, B}$ is monotone
(ii) If $|A \cap B|=1 \longrightarrow h_{A, B}$ is $\varepsilon$-far from monotone

Assuming Lemmas, Let $Q$ be a monotonicity tester $(\varepsilon=1 / 8)$ given input $(A, B)$ to UDisJ Alice $\left(B 6 b\right.$ simulate $Q$ on $h_{A, B}$ :

Let $x \leq[n]$ be Next query $Q$ asks $\left(h_{A, B}(x)\right.$ ?)
Alice sends $(-1)^{|\times \cap A|}$
Bob sends $(-1)^{(\times \cap 13)}$
Cost per query $=2$.
$\therefore$ monotonicity testing $\left(\varepsilon=\frac{1}{8}\right)$ requires $\Omega(n)$ queries

MONOTONICITY TESTING LOWER BOUNDS
Lemma For $A, B \leq[n]$, Let $h_{A, B}:\{0,1\}^{n} \rightarrow \mathbb{Z}$ by

$$
h_{A B}(x)=2|x|+\underbrace{(-1)^{|x \cap A|}}+(-1)^{|x \cap B|}
$$

Then (i) If $A \cap B=\phi \rightarrow h_{A, B}$ is monotone
(ii) If $|A \cap B|=1 \longrightarrow h_{A, B}$ is $\varepsilon$-far from monotone

Proof
(1) Want to show: $A, B$ disjoint $\Rightarrow \forall S$, iAs $h_{A B}(s \cup i)-h_{A B}(s) \geq 0$ Since $A, B$ disjoint, either iA or iA AB. Assume wog iA $A$. Then

$$
\begin{aligned}
h_{A B}(\text { sui })-h_{A B}(s) & =2+[0)+(-1)^{|S \cap B|+1}-(-1)^{\mid \text {sn| }} \\
& \geq 2+0-2 \\
& \geq 0
\end{aligned}
$$



MONOTONICITY TESTING LOWER BOUNDS
Lemma for $A, B \leq[n]$, Let $h_{A, B}:\{0,1\}^{n} \rightarrow \mathbb{Z}$ by

$$
h_{A, B}(x)=2|x|+(-1)^{|x \cap A|}+(-1)^{|x \cap B|}
$$

Then (i) If $A \cap B=\phi \rightarrow h_{A, B}$ is monotone
(ii) If $|A \cap B|=1 \longrightarrow h_{A, B}$ is $\varepsilon$-far from monotone

Proof Let $A \cap B=i$


Claim: $\operatorname{Pr}[(S \cap A \mid$ is even $)$ and $(|S \cap B|$ is even $)] \geq \frac{1}{4}$
When $|S \cap A|$ and $|S \cap B|$ are both even

$$
h_{A B}(s \cup i)-h_{A B}(s)=2|s|+2-2|s|+(-1)-(1)+(-1)-(1)=-2
$$

so for at least $\frac{1}{4} 2^{n-1}=\frac{1}{8} 2^{n}$ choices of $S, h_{A B}(s \cup i)<h_{A B}(s)$ so $h_{A B}$ is $\frac{1}{8}$-for from monotone.

MONOTONICITY TESTING LOWER BOUNDS
The lower bound is $\Omega(n)$ as long as $|R| \geq n$.
This can be improved to snow same $L B \Omega(n)$ for $|R| \geq \sqrt{n}$ More generally can prove $\Omega\left(|\mathbb{R}|^{2}\right) L B$.

OPEN
For testing monotonicity of Boded functions best $L B$ is $\tilde{\Omega}\left(n^{1 / 3}\right)$, whereas best $U B$ is $O(\sqrt{n})$

APPLICATIONS

- Streaming
- Property Testing
- game theory (Pure. Approximate Nash)
- TIME/SPACE TUring Machine LBS
- Circuit complexity
- Proof complexity
- Extension Complexity
- Data structures
gAME THEORY: PURE NASH EQUILIBRIUM
NASH:
Two players I, II have payoff matrices (zero sum)


II

|  |  |  |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

A pure Nash equelibrium is a pair $\left(L^{*}, J^{*}\right)$ st i strategy is optimal if BC play] $j^{*}$. similarly $j^{*}$ is optimal if Alice prays $i^{*}$

Lemma computing whether a pure Nash equilibrium exists requires $\Omega\left(n^{2}\right) c c$

PURE NASH EQUILIBRIUM
NASH:
Two players I, II hare payoff matrices (zero sum)

I


II


A pure Nash equellbrium is a pair $\left(L^{*}, j^{*}\right)$ st $i^{*}$ strategy is optirial if Bbb ploys $j^{*}$. similarly $j^{*}$ is optimal if Alice plays $L^{2}$
Lemma computing whether a pure Nash equilbruin exists requires $\Omega\left(n^{2}\right)$ cc
Poof Alice $x$, Bob y $|x|=|y|=N=n^{2}$



Lemma computing whether a pure Nash equilibrivin exists requires $\Omega\left(n^{2}\right)$ cc
Prob Alice $x$, Bob $y \quad|x|=|y|=N=n^{2}$


Extra rows/cols guarantee that only a cell $\left(i^{*}, J^{*}\right)$ where both $X_{i j^{s}}$ and $Y_{E_{j}}=1$ is a pure Nash equilibnum. (then a players best reply always has a value i, 1 so a pure equilitrim regumes a cell where both matrices hal value 1.)
$\therefore$ Cost $o\left(n^{2}\right)$ solution to Nash $\Rightarrow$ cost o $\left(n^{2}\right)$ protocol for Dis. \#

2-Player $\varepsilon$-Nash is Hard
2 players. Each has an $N \times N$ payoff matrix


2-Player $\varepsilon$-Nash is Hard
2 players. Each has an $N \times N$ payoff matrix

$(\hat{x}, \hat{y})$ is an $\varepsilon$-Nash Equilibrium if:

$$
\begin{array}{ll}
\hat{x}^{\top} A \hat{y} \geqslant x^{\top} A \hat{y}-\varepsilon & \forall x \\
\hat{x}^{\top} B \hat{y} \geqslant \hat{x}^{\top} B y-\varepsilon & \forall y
\end{array}
$$

Finding $\varepsilon$-Nash Equilibrium is Hard

Theorem [gäos-Rubmsteen '18]
The randomized communication complexity of finding an $\varepsilon$-Nash equilibrium is $\geqslant N^{2-0(1)}$


APPLICATIONS

- Streaming
- Property Testing
- game theory
- TIME/sPACE Turing Machine LBs
- Circuit complexity
- Proof complexity
- Extension Complexity
- Data structures

TM TIME/SPACE LOWER BOUNDS

Multitape TM: Read only input tape plus $O(1)$ Read/Wrive types
Let $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$
We say that $M$ recognizes/completes $f$ if


$$
\begin{array}{ll}
\forall(x, y) \in\{0,1\}^{2 n} & f(x, y)=1
\end{array} \quad \Rightarrow M\left(x 0^{n} y\right)=1
$$

Theorem Let $\mu$ compute $f$.
Then $P^{c c}(f) \leq O\left(\frac{\operatorname{Time}(M, n)-\operatorname{Space}(M, n)}{n}\right)$
i. if $P^{c c}(t)=\Omega(n)$ then any $M$ computing $f$

$$
\text { requires Time. space }=\Omega\left(n^{2}\right)
$$

Proof
Let $M$ be a $T M$ that computes $f$ in Time $T(n)$, space $s(n)$
Then we will construct a $C c$ protocol for $f$ of cost $\leqslant T(n) \cdot S(n)$
Alice has $x$, BCD $y$.
Alice simulates $M$ on $\times 0^{n}$ until input head moves to green part


Then Alice sends entire content of A $(\omega$ tape and head lotions to BOb


Bob continues simulation with $y$ on green part until input head moves to pink

comm. complexity:
\# of Rounds $=\frac{T(n)}{n}$
(since they have to spend $n$ steps going thru middle zone)

Cost per pound $\leqslant O(S(n))$

$$
\therefore c c(f)=0\left(\frac{T(n) \cdot s(n)}{n}\right)
$$

Note $O^{n}$ in middle is $k$ ind of eating
If we instead gave input the cost of protocol would be $O(\#$-of-Reversals * $S(n))$

