Presentations

See pdf file "Course Presentation Topics" to view suggested cist of topics with links to papers/talks.

* You must submit your topic presentation by FEB Z1 by email (tonipitassi egmail.com)
- List 2 topics (1st and second choice) including papers you will present
- List partner - you can work alone or with
a partner
- You may select up to z dates that are bad for you

Presentations cont' d

- Come to office hrs or make on apt if you want to discuss possible topics before Feb 21

Your presentation should include

- Presentation in class ~ 45 mind (60 if 2)
- Lecture notes
- Questions for discussion, o pen problems
- I am available to meet moth you before your presentation date to go over your presentation - email me.

Last class

- $p^{c c}(f) \leq N P^{c c}(f) \cdot \operatorname{compc}(f) \quad$ (Partition number)

Last class

- $\quad p^{c c}(f) \leq N p^{c c}(f) \cdot \operatorname{com} p^{c c}(f)$
- Log Rank conjecture

TODAY:

- Randomized CC
- Relationship between Randosnized + Distributional
- Lower bounds via Discrepancy

RANDOMIZED CC
Recall: for $0<\varepsilon<\frac{1}{2}$
a z-sided cc protocol for f is a protocol Π such that:

$$
\begin{gathered}
\forall(x, y) \operatorname{Pr}[\pi(x, y)=f(x, y)] \geqslant 1-\varepsilon \\
\operatorname{BPP}_{\varepsilon}^{C C}(t)=\min _{\substack{\text { protocols } \pi \\
\text { with error } \varepsilon}} \max _{\substack{(x, y) \\
|x|=|y|=n}} \quad[\text { Hits sent by } \pi \text { on }(x, y)]
\end{gathered}
$$

(public coin)

DLTRIBUTIONAL COMPLEXITY
Let μ be a probability distribution over $x \times y$, $x, y=\{0,1\}^{n}$.
A deterministic protocol π computes $f: x \times y \rightarrow\{0,1\}$ with error $\leqslant \varepsilon$ writ μ if: $\operatorname{Pr}_{(x, y) \sim \mu}[\pi(x, y)=f(x, y)] \geqslant 1-\varepsilon$
The (μ, ε)-distributional cc of $f, D_{\varepsilon}^{\mu}(f)$, is the minimum cost our all deterministic protocols that compute f over μ with error $\leqslant \varepsilon$

DLTRIBUTIONAL COMPLEXITY
Let μ be a probability distribution over $x \times y$, $x, y=\{0,1\}^{n}$.
A deterministic protocol π computes $f: x \times y \rightarrow\{0,1\}$ with error $\leqslant \varepsilon$ writ μ if: $\operatorname{Pr}_{(x, y) \sim \mu}[\pi(x, y)=f(x, y)] \geq 1-\varepsilon$
The (μ, ε)-distributional cc of $f, D_{\varepsilon}^{\mu}(f)$, is the minimum cost our all deterministic protocols that compute f over μ with error $\leqslant \varepsilon$
Theorem $\operatorname{BPP}_{\varepsilon}^{c c}(t)=\max _{\mu} D_{\varepsilon}^{\mu}(\epsilon)$

Theorem $\operatorname{BPP}_{\varepsilon}^{c c}(t)=\max _{\mu} D_{\varepsilon}^{\mu}(t)$
Proof
(1) $B P P_{\varepsilon}(f) \geqslant \max _{\mu} D_{\tau}^{\mu}(f):$

Let π be a $B P P_{\varepsilon}^{c}$ protocol for f of cost c.

$$
\therefore \quad \operatorname{Pr}[\pi(x, y, r)=f(x, y)] \Rightarrow 1-\varepsilon
$$

\therefore by averaging, there exists some r^{*} st

$$
\begin{aligned}
& \text { eraging, there exists some } r^{*} \text { st } \\
& \operatorname{Pr} \quad\left[\pi\left(x, y, r^{*}\right)=f(x, y)\right] \geqslant 1-\varepsilon \\
& (x, y) \sim \mu
\end{aligned}
$$

Mini max Theorem

- A 2-player zens sum game:

Player I has a finite set $A=\left\{a_{1} \ldots a_{m}\right\}$ of (pure) strategies player I ". " $B=\left\{b_{12} \ldots, b_{n}\right\}$

- Each player has a utility $U_{I}\left(a_{i}, b_{j}\right), U_{I I}\left(a_{i}, b_{j}\right)$
for each pair $\left(a_{i}, b_{j}\right)$ of strategies
- Zero sum: $\forall(i, j) U_{I}\left(a_{i} b_{j}\right)+U_{I I}\left(a_{i} b_{j}\right)=0$

Example: $\forall\left(a_{i}, b_{s}\right)$ one player wins (Utility $=+1$) and the other player loses (utility $=-1$)

Example

$U_{\text {II }}:$| | b_{1} | | | | | b_{2} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| a_{1} | b_{1} | b_{2} | b_{4} | b_{5} | | |
| a_{2} | 1 | 1 | 1 | 1 | 1 | |
| a_{2} | 1 | -1 | -1 | -1 | 1 | |a_{3}

Mixed strategies (p, q)
Player I: p is a probability distribution over $\left\{a_{1}, \ldots, a_{m}\right\}$

$$
P_{i}=\operatorname{Prob}\left(a_{i}\right)
$$

Ploper II: q is a probability distrib over $\left\{b_{1}, \ldots, b_{n}\right\}$
Payoff for player d
I on $(p, q)$$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i} u_{I}\left(a_{i} b_{j}\right) q_{j}$

Example

					b_{1}
b_{2}	b_{2}	b_{4}	b_{5}		
a_{1}	-1	-1	-1	-1	-1
a_{2}	-1	1	1	1	-1
a_{3}	-1	1	1	1	-1
a_{4}	-1	-1	1	1	-1
a_{5}	-1	-1	1	1	-1

Mixed strategies (p, q)
Player I: p is a probability distabuition over $\left\{a_{1}, \ldots, a_{m}\right\}$

$$
P_{i}=\operatorname{Prob}\left(a_{i}\right)
$$

Ploper II: qus a probability distrib over $\left\{b_{1}, \ldots, b_{n}\right\} \quad M(p, q)$
Payoff for player d
I on $(p, q)$$\sum_{i=1}^{m} \sum_{j=1}^{n} p_{i} u_{I}\left(a_{i} b_{j}\right) q_{j}$
Player I wants to find mixed strategy p to maximize min $M(p, q)$
player wants to find strategy q to minimise $\max _{p} M(p, q)$

MINIMAX THEOREM (LInear Programming Duality)
For every 2 -person zero-sum game, there exists an equilibrium strategy
That is, 习 value V such that

$$
v=\max _{p} \min _{q} M(p, q)=\min _{q} \max _{p} M(p, q)
$$

Theorem $\operatorname{BPP}_{\varepsilon}^{\mathrm{ce}}(t)=\max _{\mu} D_{\varepsilon}^{\mu}(f)$
Proof
(2) $B P P_{\varepsilon}(f) \leqslant \max _{\mu} D_{t}^{\mu}(f) \quad$ (minimax argement)

Plazer I (protocol designea)
pure strategics: all c-bit deterministic protocals
mixed stratgien: distit over all c-bit determimstic protocdls
Plaper II (adersary)
Pure strafegies: all inputs (x, y)
mixed stralgies: all distributions oen $x \times y$

Payoff M (for player I)

Assume: $\forall \mu$ over $x \times y$ a a deterministic protocol (ot cost c) such that

$$
\begin{aligned}
& \operatorname{Pr}[\pi(x, y)=f(x, y)] \geqslant 1-\varepsilon \\
\therefore & \min _{\mu} \mu_{a x_{\pi}} \mu(\mu, \pi) \geqslant 1-\varepsilon
\end{aligned}
$$

\therefore By Minimax theorem, $\operatorname{Max}_{\pi} \mu_{\text {in }} \mu(\mu, \pi) \geqslant 1-\varepsilon$
\therefore I randomized protocol sit -for all fixed (x, y), payoff is $\geq 1-\varepsilon$

Randomized CC Lower Bounds via Discrepancy
By minimax, to prove Lover bounds for $\mathrm{BPP}_{\varepsilon}^{c c}$ prodocils for f it suffices to find a disonbution μ sit. $D_{\varepsilon}^{\mu}(6)$ is Large. we will prove LBS who μ via the discrepancy measure.

Discrepancy of M_{f} wrest a distribution μ over $X \times Y$
Let R be a subrectangle of M_{f}
Def $\operatorname{Disc}_{\mu}(R)=\mid \mu\left(R \cap f^{-1}(1)\right)-\mu\left(R \cap f^{-1}(0) \mid\right.$ small dicrefany
Defn $D_{i s c_{\mu}}(f)=\max _{R \leq M_{f}} \operatorname{Dis}_{\mu}(\mathbb{R})$ large rectangles balanced

Def $\operatorname{Disc}_{\mu}(R)=\mid \mu\left(R \cap f^{-1}(1)\right)-\mu\left(R \cap f^{-1}(0) \mid\right.$
Defn $\operatorname{Disc}_{\mu}(f)=\max _{R \leq M_{f}} \operatorname{Dis}_{c_{\mu}}(R)$
says 10 w discrepancy implies high
Claim for every $\mu, D_{\varepsilon}^{\mu}(f) \geqslant \log \left(\frac{1}{3 D i s c_{\mu}(f)}\right)$ co wot μ
$\operatorname{Defn}^{\operatorname{Disc}_{\mu}^{(f)}(R)}(R)=\mid \mu\left(R \cap f^{-1}(1)\right)-\mu\left(R \cap f^{-1}(0) \mid\right.$
Defy $D_{i s c_{\mu}}(f)=\max _{R \leqslant M_{f}} \operatorname{Dis}_{\mu}(\mathbb{R})$ says low discrepancy implies high cc wot pe

Intuition behind claim for $\mu=$ uniform distribution (same intuition for any μ)

- Low discrepancy says that all large $R \leqslant M_{f}$ are nearly balanced
- A con cost deterministic protocol $I I$ for f partitions M_{f} into few subrectangles, so most of them are large.
- Since all Large R 's are nearly balanced, 11 must macle a cot (too many) errors.

Claim If $D_{1 / 3}^{\mu}(f) \leqslant c$ then $\operatorname{Disc}_{\mu}(f) \geqslant \frac{1}{2} c$
Pf Let π be a c-cost deterministic protocol. So π partitions M_{f} into disjoint subrectangles $M_{1}, M_{2}, \ldots, M_{2^{c}}$ We can assume wog that $\forall i \in\left[2^{c}\right], \pi$ returns most common answer, call it a_{i}, in M_{i} (most common writ μ)

| M_{1} | M_{2} | 0 0 1 0
 0 0 1 1
 0 0 0 0
 1 1 0 0
 0 0 1 0
 0 0 0 0
 10 0

 | for $M_{3} \quad a_{3}=0$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Claim If $D_{1 / 3}^{\mu}(f) \leqslant c$ then $\operatorname{Disc}_{\mu}(f) \leqslant z^{1 / c}$

Pf Let π be a c-cost deterministic protocd. So π partitions M_{f} into disjoint subrectangles $M_{1}, M_{2}, \ldots, M_{2^{c}}$
We can assume wog that $\forall i \in\left[2^{c}\right], \pi$ returns most common answer, call it a_{i}, in M_{i} (most common writ μ) since π has error $\leqslant \frac{1}{3}$ wot μ :

$$
\begin{aligned}
2^{c} \operatorname{Disc}_{\mu}(f) \geqslant & \sum_{i=1}^{c} \operatorname{Disc}_{\mu}\left(M_{i}\right)=\sum_{i=0}^{c^{c}}\left|\mu\left(M_{i} \cap f^{-1}\left(a_{2}\right)\right)-\mu\left(M_{i} \cap f^{-1}\left(1-a_{i}\right)\right)\right| \\
& \geq \sum_{i=1}^{2^{c}} \mu\left(M_{i} \cap f^{-1}\left(a_{i}\right)\right)-\sum_{i=1}^{c^{2}} \mu\left(M_{i} \cap f^{-1}\left(1-a_{i}\right)\right) \\
& \geqslant \frac{1}{3}
\end{aligned} \begin{aligned}
& \therefore C \geqslant \log \left(\frac{1}{3 \operatorname{Disc}_{\mu}(t)}\right)
\end{aligned}
$$

Relating Discrepancy to $\lambda_{\text {max }}$
Lemma (Eigenvalue Bound) Let f be symmetric, wi range $\{-1,1\}$
all eigenvalues small \Rightarrow Pseudoranders so large rectangles are pretty balanced

Then $\operatorname{Disc}(f, A \times B) \leqslant 2^{-2 n} \lambda_{\text {max }} \sqrt{|A| \times|B|}$
($\lambda_{\text {max }}$ is largest eigenvalue of M_{f})

Lemma (Eigenvalue Bound) Let f be symmetric, $\mu=$ unit distrib. Then $\operatorname{Dis}_{\mu}(f, A \times B) \leq 2^{-2 n} \lambda_{\text {max }} \sqrt{(A|\times|B|}$
Proof since M_{1} symmetric, eigenvectors v_{i} of M_{f} form orthonormal basis for $\mathbb{R}^{N}\left(N=z^{n}\right)$. Let λ_{i} be corresponding eigenvalue.
So $M_{i} v_{i}=\lambda_{i} v_{L}$
write $1_{A}, 1_{B}$ in this basis:

$$
1_{A}=\sum_{i} \alpha_{i} v_{i} \quad 1_{B}=\sum \beta_{i} v_{i}
$$

Note: entries of M_{f} in $\{-1,1\}$

Lemma (Eigenvalue Bound) Let f be symmetric. Then $\operatorname{Disc}(f, A \times B) \leq 2^{-2 n} \lambda_{\text {max }} \sqrt{|A| \times|B|}$
sums up all It entries in $A \times B$
Pf $\mathcal{Z}^{2 n} \operatorname{Disc}(f, A \times R] \equiv\left|1_{A} M_{f} 1_{B}\right|$

$$
\begin{aligned}
& =\left\lvert\,\left(\left.\sum_{\left.\alpha_{i} v_{i}\right)^{\top}}\left(\sum \beta_{i} \lambda_{i} v_{i}\right)\right|_{Q}{ }_{Q} \begin{array}{l}
v_{1} v_{2} \ldots \text { an } \\
\text { orthonormal }
\end{array}\right.\right. \\
& =\left|\sum \alpha_{1} \beta_{i} \lambda_{i}\right| \\
& \text { orthonormal basis } \\
& \leqslant \lambda_{\text {max }}\left|\sum \alpha_{i} \beta_{i}\right| \\
& \leq \lambda_{\text {max }} \sqrt{\sum \alpha_{i}^{2}} \sqrt{\sum \beta_{i}^{2}} \\
& =\lambda_{\text {max }} \sqrt{|A| \cdot|\theta|} \\
& 2 \text { cauchy-Swardz } \\
& \text { ¿Parsecal identity } \\
& \Sigma \alpha^{2}=\left\|1_{A}\right\|^{2}=|A|
\end{aligned}
$$

sum of squares qfourian coefos

$$
\theta f=f^{20}
$$

Randomized Lower Bound for IP (Inner product)

$$
\operatorname{IP}(x, y)=\sum_{i=1}^{n} x_{i} y_{i} \quad(\bmod 2)
$$

$M_{\text {Ip }}$ is the Hadamard matrix $(t 1 \approx 0,-1 \approx 1)$:
$H_{0}=\square$

$$
H_{n}=\begin{array}{|l|l|}
\hline H_{n-1} & H_{n-1} \\
\hline H_{n-1} & -H_{n-1} \\
\hline
\end{array}
$$

$$
H_{3}:
$$

1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	-1	-1	1	1
1	-1	-1	1	-1	1	1	-1

Randomized Lower Bound for IP (Inner product)

$$
\begin{aligned}
& H_{0}=\square \\
& H_{n}=\begin{array}{|l|l|}
\hline H_{n-1} & H_{n-1} \\
\hline H_{n-1} & -H_{n-1} \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& H_{0} \text { : } \square \\
& \text { H: 果 } \\
& H_{2}: \begin{array}{|l|l|l|}
\hline y & 1 & 1 \\
\hline 1 & -1 & 1 \\
\hline 1 & -1 & -1 \\
\hline 1 & -1 & -1 \\
\hline
\end{array}
\end{aligned}
$$

$$
H_{3}:
$$

Facts about H_{n} :
(1) every pair of rows is orthogonal

$$
\therefore H_{n}^{2}=N \cdot I \quad\left(N=2^{n}\right)
$$

(2) Rows correspond to all z^{n} parity functions
(3) Matrix is symmetric
(4) $H_{n}^{2}=H_{n} H_{n}^{\top}=Z^{n} I_{N}$ (proof by induction)
(5) By (4), $\forall v \vee H_{n} H_{n}^{\top}=z^{n} v$
$\therefore Z^{n}$ is the only eigenvalue of $H H^{\top}$
\therefore the eigenvalues $f H$ are $\pm 2^{N / 2}$

$$
\therefore \lambda_{\max }\left(H_{n}\right)=2^{n / 2}
$$

\therefore By eigenvalue bound ($\mu=$ unit distrib)

$$
2^{2 n} \operatorname{Disc}\left(I P_{n}, A \times B\right) \leq \lambda_{\max } \sqrt{|A||B|}=\sqrt{z^{n}|A| \cdot|B|}
$$

Let $A=X, B=Y$
Then $\operatorname{DisC}\left(J P_{n}, A \times B\right) \leq \sqrt{z^{n} z^{n} z^{n}} \cdot z^{-2 n}$

$$
\begin{gathered}
=\alpha^{-\frac{n}{2}} \\
\left.\therefore B P P_{\frac{1}{3}}^{c c} C I P_{n}\right) \geqslant \log \left(\frac{1}{\left.3 D_{1 S C}\left(J P_{n}\right)\right)}=\Omega(n)\right.
\end{gathered}
$$

\int Set Disjointness: KS Razborov

$$
\begin{aligned}
\operatorname{DISJ}(x, y)=1 & \text { iff }|x \cap y| \neq \phi \\
& \text { (ie } \left.\exists i \quad x_{i}=y_{i}=1\right)
\end{aligned}
$$

DISS easy for $N P^{c c}$
Theorem $\exists \mu$ such that $D_{\varepsilon}^{\mu}\left(D i s_{j}\right)=\Omega(n)$

$$
\therefore B P P_{\varepsilon}\left(D i s_{j}\right)=\Omega(n)
$$

Can cores all s^{\prime} of DASS by n 1-mono.

$$
R_{i}=\{(x, y) \mid x=y ; i 1\}^{s i}
$$

A related $\frac{\text { cc-lice }}{\text { meabure }}$ (related to disorpany)
Information complexity of f
Giea a distubution μ or M_{f}, gien a protocol II we define

$$
\begin{aligned}
& \operatorname{EC}_{A}(y \mid x, \pi) \\
& \text { atanulp } \operatorname{IC}\left(\frac{x}{x} \times, y / \pi\right)
\end{aligned}
$$

Another related method to lower Bound randomized CC via discrepancy (that generalises to NOF)
Called "BNS" method after seminal paper by Babai, Nisan, Szeged introducing NOF $c c$ and this method
Theorem [BNS bound]
Let $f: x \times y \rightarrow\{-1,1\}$, μ a distribution over $X \times y$. Then

$$
\operatorname{Disc}_{\mu}(f)^{2} \leq|y| \cdot \sum_{x, x^{\prime} \in X}\left|\sum_{y \in y} \mu(x, y) \mu\left(x^{\prime}, y\right) f(x, y) f\left(x^{\prime}, y\right)\right|
$$

Replacing sums by expectations can also write as:

$$
\frac{\operatorname{Disc}_{\mu}(f)^{2}}{|x|^{2} x|y|^{2}} \leqslant \underset{x, x^{\prime}}{\mathbb{E}}\left|\underset{y}{\mathbb{E}} \mu(x, y) \mu(x \mid, y) f(x, y) f\left(x^{\prime} y\right)\right|
$$

Theorem [BNS bound]
Replacing sums by expectations can also write as:

$$
\frac{\operatorname{Dsc}_{\mu}(f)^{2}}{|x|^{2} x|y|^{2}} \leq \underset{x, x^{\prime}}{\mathbb{E}}\left|\underset{y}{\mathbb{E}} \mu(x, y) \mu(x, y) f(x, y) f\left(x^{\prime} y\right)\right|
$$

Prof ($\mu=$ unit. distrib)

$$
\operatorname{disc}\left(f, A_{x} B\right)=\left|E_{x, y} 1_{A}(x) 1_{B}(x) f(x, y)\right|
$$

so $\operatorname{disc}\left(f, A_{x} \mid B\right)^{2}=\left(\underset{y}{\mathbb{E}} 1_{B}(y) \underset{x}{\mathbb{E}} 1_{A}(x) f(x, y)\right)^{2} \quad$ Cauchy Swart z

$$
\begin{aligned}
& \leq \underset{y}{\mathbb{E}}\left(\underset{x}{\mathbb{E}} 1_{A}(x) f(x, y)\right)^{z} \\
& \left.={\underset{y}{y}}_{\mathbb{E}}^{\left(\underset{x}{x} x^{\prime}\right.} 1_{A}(x) 1_{A}\left(x^{\prime}\right) f(x, y) f\left(x^{\prime} y\right)\right) \\
& ={\underset{x}{x, x^{\prime}}}_{\mathbb{E}} 1_{A}(x) 1_{A}\left(x^{\prime}\right)\left(\underset{y}{\mathbb{E}} f(x, y) f\left(x^{\prime}, y\right)\right) \\
& \leqslant{\underset{x, x^{\prime}}{ }}^{E}\left|\underset{y}{\mathbb{E}} f(x, y) f\left(x^{\prime}, y\right)\right|
\end{aligned}
$$

Theorem [BNS bound]
Let $f: x \times y \rightarrow\{-1,1\}, \mu$ a distribution over $x \times y$. Then

$$
\operatorname{Dis}_{\mu}(f)^{2} \leq|y| \cdot \sum_{x, x^{\prime} \in X}\left|\sum_{y \in y} \mu(x, y) \mu\left(x^{\prime}, y\right) f(x, y) f\left(x^{\prime}, y\right)\right|
$$

Prof, (μ aratrany distri!b). Let $R=A \times B$
Let $\alpha_{x}=1 \quad \forall x \in A, \beta_{y}=1 \quad \forall y \in B$, and for all other x, y
Let α_{x}, β_{y} be independent ru.'s uniformly distributed over $\{-1,1\}$,
Then $\operatorname{Disc}_{\mu}(R)=\left|\sum_{(x, y) \in R} \mu(x, y) f(x, y)\right|$

$$
\begin{aligned}
& =\left|\sum_{(x, y \in R} \mathbb{E}\left[\alpha_{x} \beta_{y}\right] \mu(x, y) f(x, y)+\sum_{(x, y) \in R} \mathbb{E}\left[\alpha_{x} \beta_{y}\right] \mu(x, y) f(x, y)\right| \\
& =\mid \mathbb{E}\left[\sum_{(x, y)} \alpha_{x} \beta_{y} \mu(x, y) f(x, y) \mid\right.
\end{aligned}
$$

So there is a fixed assignment $\alpha_{x}, \beta_{y} \in\{-1,1\}$ for all x, y such that

$$
\operatorname{Disc}_{\mu}(f) \leqslant\left|\sum_{(x, y)} \alpha_{x} \beta_{y} \mu(x, y) f(x, y)^{\sigma}\right|
$$

Theorem [BNS bound]
Let $f: x \times y \rightarrow\{-1,1\}, \mu$ a distribution over $x * y$. Then

$$
\operatorname{Dis}_{\mu}(f)^{2} \leqslant|y| \cdot \sum_{x, x^{\prime} \in X}\left|\sum_{y \in y} \mu(x, y) \mu\left(x^{\prime}, y\right) f(x, y) f\left(x^{\prime}, y\right)\right|
$$

Proof cont'd
So there is a fired assignment $\alpha_{x}, \beta_{y} \in\{-1,1\}$ for all x, y such that

$$
\begin{aligned}
\operatorname{Disc}_{\mu}(f) & \leq\left|\sum_{(x, y)} \alpha_{x} \beta_{y} \mu(x, y) f(x, y)\right| \\
\therefore \quad \operatorname{Disc}_{\mu}(F)^{2} & \leqslant|y| \sum_{y}\left(\beta_{y} \sum_{x} \alpha_{x} \mu(x, y) f(x, y)\right)^{2} \\
& =|y| \sum_{x, x^{\prime}} \alpha_{x} \alpha_{x^{\prime}} \sum_{y} \mu(x, y) \mu(x, y) f(x, y) f\left(x^{\prime}, y\right) \\
& \leq|y| \sum_{x, x^{\prime}}\left|\sum_{y} \mu(x, y) \mu\left(x^{\prime} y\right) f(x, y) f\left(x^{\prime} y\right)\right|
\end{aligned}
$$

