CS 6998:
COMMUNICATION COMPLEXITY ε_{1} APPLICATIONS

CS 6998:
COMMUNICATION COMPLEXITY ε_{1} APPLICATIONS

Toniainn Pitassi tonipitassiegmail.com

Course Werpage:
www.cs.toronto. edu/~toni/courses/commcomplexityzoz2/
cc2022. htme
(or go to www.cs.foronto. edy ~toni and follow teaching link)

Lectures: wed $\mathrm{z}: 10-4$
Office hrs: TBA or by appointment

All course materials provided on webpage
Optrorial Textbooks:
Nisan-Kushilente communication Complexity
Rav-yenudayoff comm comp + Applications
Lee-Shraikman Lower Bounds in comm complexity
Course outline/Evaluation: see webpage

- 2-3 assigments
- Snort Presentations

Lecture Notes (see webpage)

Please email me (tonipitassi@ gmail.com) using heading "c c2022"

I would like your opinions on what
applications you are most interested in !
(see Lecture 1 + papers on website for list of possibilities)
please email!

COMMUNICATION COMPLEXITY

$$
x=10110
$$

Alice

$$
x y=00011
$$

Alice o Bob have private information
Alice has boolean vector x, Bob y
Typically $|x|=|y|=n$
They want to compute some joint function (or search problem) $f(x, y)$

COMMUNICATION COMPLEXITY

$$
x=10110
$$

Alice

Example 1 Parity $(x, y)=$ parity of number of $I^{\prime} s$ in combined string $x y$

2 bit protocol:
Alice sends parity of \#1's of x
Then BOl sends parity of x, plus bit sent by Alice so panty is early

Note that if $|x|=|y|=n$
then any ${ }^{\text {Boolean }} f(x, y)$ can be computed u sing $n+1$ bits

Alice (or BOB) can just send their whole input to other player

+ then other player corguty $f(x, y)$
+ sends back answer
So all functions car be computed using $O(n)$ bits so an efficient protocol wall k one of complexity $(\log n)^{o(1)}$

COMMUNICATION COMPLEXITY

Examplez $E Q(x, y)=1$ iff $x=y$

Randomized
COMMUNICATION COMPLEXITY (public coin)

Example z $E Q(x, y)=1$ ff $x=y$
We say π computes $f(x, y)$ with suction $1-\varepsilon$ if

$$
\operatorname{Pr}_{r}[\pi(x, y, r)=f(x, y)] \geqslant 1-\varepsilon
$$

Randomized $E Q$ protocol ($\varepsilon=1 / 2$)
View $1^{s t} n$ bits of r as selecting a subset of $1 \ldots n$.
Alice sends parity of $x /$,
Bob sends part 7 of y / r
Accept (output 1) Eff parties are the sase

COMMUNICATION COMPLEXITY

$$
x=10110
$$

Example $\frac{\text { DIS }}{T}(x, y)=1$ iff $\exists i \quad x_{L}=y_{L}=1$
communcation comple xity andey of $\int_{N P \text { ronglete }}^{\text {SATISFIABILITY problem }}$

DISJ requres $\quad\{(n)$ CC, (det + randomized) But easy Nondefermistically

Nondeterminstic $C C$

Arice
x

BOb
y

$$
|x|=|y|=n
$$

They shave random string $r,|r|=o(\log n)$
π computes f Nondeterminisnically if
(1) $f(x, y)=0$ then $\forall r \pi(x, y, r)=0$
(2) $f(x, y)=1$ then ヨr $\pi(x, y, r)=1$

$$
\text { conplexiti of } \left.\pi=\max _{\substack{x, y, r \\|x|=|y|=n}}^{\text {Fbits exchanged by } \pi(x, y, r)+} \text { |r| }\right]
$$

Nondet protcocol for DISJ:

Alice/B6b view $r,|r|=\log n$ as some $i \in C n]$
Alice seads 1 iff the $r^{\text {th }}$ bit $q x \quad\left(X_{r}\right)=1$
BOb serds 1 iff r^{*} " $y=1$ accept iff both send 1 's

Formal Defn of a Deterministic Protocol
Let $f: \underbrace{\{0,1\}^{n}}_{x} \times \underbrace{\{0,1\}^{n}}_{y} \rightarrow\{0,1\}$
The comm matrix M_{f} associated with f :

$$
M_{i j}=f(c, j)
$$

$$
\begin{aligned}
& M_{E Q}=I \\
& {\left[\begin{array}{llll}
1 & & & \\
& 1 & & 0 \\
& 1 & & \\
0 & & 1 & \\
& & & 1
\end{array}\right]}
\end{aligned}
$$

A protocol π is a binary tree
Every ronleaf vertex of tree is labelled by either a (Alice) or b (Bob)
also each vertex v is labelled by a
function $a_{v}: \underbrace{\{0,1}_{\{0,1\}^{n}} \rightarrow\{0,1\}$
or $b_{v}: \underbrace{\{0,1\}^{n}}_{y} \rightarrow\{0,1\}$
each leaf entex is is labelled by either 0 or 1

max depth of twee corresponding to π

$$
=c c o f \pi
$$

Matrix View of Protocol π for $f(x, y)$

Say Alice sends s $^{\text {st }}$ bit

Observation any deterministic protocol $I 1$ for $E Q$ must have at least 2^{n} leaves θ all i's (t therefore has depth $\Omega(n)$)

$$
\therefore \text { get } C \text { GS EQ }=\Omega(n)
$$

$$
\text { in } M_{\epsilon \alpha}
$$

have to end up at distinct leaves

What happens to partition of matrix in a wondeterministic protocol?
Say $|r|=R$
For born rand. + nondet protuols, we have 2^{B} protocol thees one for each choice of r
Sap π is a nondet protow where $I H=\log n$ for $f(x, y)$
This means can descale π by n protocol trees

$$
|r|=3
$$

If $f(x, y)=0$ then x, y goes to a 0 -mono rect. in all thees If S(fyy), then $x_{i j}$ goes to at least are 1 -mono rect (in smetree)

So π induces a covering of the $1^{\prime} s$ in M_{f} by 1 -mono. rectangles

doterminsic protocal.

nondet profocul ${ }^{6}$ oss at most $2^{b} \cdot 2^{R}$ 1-mono. subrectangle

Applications
\rightarrow VLSI / Bisection width of retuoncs
\rightarrow Date stractures
\rightarrow Boolean circurt conplexity
\rightarrow Quantum conplexith
\rightarrow Extended formulations
\rightarrow streamin alg
\rightarrow game treory
\rightarrow Priacy
\rightarrow learnin theory)
\rightarrow Proof conplexit,]
\rightarrow graph theyy, addinive comb. o theny

