COMS 6998 Communication Complexity Assignment Due: April 27, 2022

- 1. MED(x, y) is defined to be the median of the multiset $x \cup y$. Using binary search, one can show that $D(MED) = O(\log^2 n)$. Give an $O(\log n)$ -bit protocol for MED.
- 2. In class we proved one direction of the KW theorem, showing that for any function f, the minimum circuit depth of f is at least as large as the deterministic communication complexity of KW_f . Prove the other direction, showing that the deterministic communication complexity of KW_f is at least the minimum circuit depth of f.
- 3. (Exercise from RY Book.) Let $g : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ be a 2-party function that requires c bits of communication. Prove that computing $\wedge_{i=1}^k g(x_i, y_i)$ and $\vee_{i=1}^k g(x_i, y_i)$ requires $k(\sqrt{c/2} \log n 1)$ bits of communication. (Hint: Find a small 1-cover using the protocol for the OR of the g's, and a small 0-cover using the protocol for the AND of the g's.)
- 4. For randomized communication complexity, we showed that public and private coins are nearly equivalent. In the easy direction, any randomized protocol with private randomness can be converted into a protocol with public randomness, and Newman's theorem showed the reverse direction, that any cost c public coin protocol can be converted into a private coin protocol of communication complexity $c + O(\log n)$. This question asks about private versus public coins for internal information complexity.
 - (a) (Newman's Theorem for Information Complexity) Show that for any public coin protocol Π with internal information cost c, Π can be converted into a private coin protocol with information cost O(c).
 - (b) What about the easy direction (converting private to public coin) for information complexity? Give an example of a randomized protocol that has linear information complexity with respect to public coins, but O(1) information complexity with respect to private coins. Note that you do not have to exhibit a function witnessing a separation between public versus private coin information complexity. Instead I am just asking for a simple protocol where the information complexity is vastly different if the randomness is public versus private.
- 5. Recall the inner product function $IP(x, y) = \langle x, y \rangle \mod 2$. Let M_{IP} be the 2^n -by- 2^n communication matrix for IP.
 - (a) Prove that the rank of M_{IP} over F_2 equals n.
 - (b) Prove that the rank of M_{IP} over the reals is 2^{n-1} . Conclude that the deterministic communication complexity of IP is $\Omega(n)$.
 - (c) Prove that the co-nondeterministic communication complexity of IP is $\theta(n)$.