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1 The Log Rank Conjecture

The famous logrank conjecture states that the deterministic communication complexity of any
function f is polynomially related to the log of the rank of Mf . More formally, let f : X × Y →
{0, 1}, and let Mf be the Boolean communication matrix associated with f . Then

Pcc(f) = logO(1) rank(Mf )

where the rank is taken over the reals.
One direction is quite easy to see: if f has a cost c deterministic protocol, then Mf can be

partitioned into at most 2c monochromatic subrectangles and therefore rank(Mf ) ≤ 2c,so the log
of the rank is at most c.

The other direction is still wide open. The best that is known is the following upper bound due
to Lovett.

Pcc(f) ≤ O(
√
rank(f) · log rank(f)).

Nisan and Wigderson studied the following weaker version of the Log Rank Conjecture.
For a communication problem f with associated communication matrix Mf , let mono(Mf )

equal the maximum size of a monochromatic subrectangle of Mf . That is, mono(Mf ) = maxR
|R|
|Mf |

where the max is taken over all monochromatic subrectangles R of Mf . Since a deterministic
protocol Π for f of cost c partitions Mf into monochromatic subrectangles, the average size of

the monochromatic subrectangles in the partition is
|Mf |
2c , and therefore there must exist at least

one monochromatic subrectangle, R of Mf such that |R|
|Mf | ≥

1
2c . Therefore, Pcc(f) ≥ log 1

mono(Mf )
.

Nisan and Wigderson made the following conjecture:

log
1

mono(Mf )
≤ logO(1) rank(Mf ).

The following theorem (also due to Nisan and Wigderson) proves that the above conjecture is
actually equivalent to the Log Rank Conjecture.

Theorem 1 Let r = rank(Mf ). For any nondecreasing function δ of r, if mono(Mf ) ≥ δ(r) then
Pcc(f) ≤ O(log2 r + log r · log 1

δ(r)).

If the Nisan-Wigderson conjecture is true, δ(r) is equal to 2−O(logk r) for some constant k > 0,
so by the above Theorem, Pcc(f) ≤ O(logk+1(r)), and thus the Log Rank Conjecture is true.
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Proof Let Mf be a matrix of rank r and assume that Mf has a monochromatic subrectangle R

of size at least δ(r)
|Mf | . Rearranging rows and columns, we will write Mf as (RA | BC) where R the

upper left corner of Mf , A is upper right, B is lower left and C is lower right.
Now since R is 1-monochromatic, the rank of RA is at most rank(A) plus 1, and similarly,

the Then by subadditivity of rank (rank(A + B) ≤ rank(A) + rank(B)) we have: r = rank(Mf ) =
rank((RA | 00) + (00 | BC)) ≤ rank(RA) + rank(BC) ≤ rank(A)

Assume without loss of generality that rank(A) ≤ rank(B) and therefore rank(A) ≤ r/2 + 1.
Thus rank(RA) ≤ r/2 + 2.

The protocol is as follows. The row player will communicate one bit to say if their input is
in the top half RA or in the bottom half, BC, and then the players will recurse on this half. (If
rank(B) was greater than rank(A), then the column player would have communicated one bit to
say if their input is in the left half or the right half of Mf .)

Let L(m, r) denote the number of leaves of the above protocol where |Mf | = m and r =
rank(Mf ). Then we get the following recurrence relation:

L(m, r) ≤ L(m,
r

2
+ 2) + L(m(1− δ(r)), r),

since if the row players input x is in the top half, then we can recurse on matrix of rank at most
r/2, and otherwise when x is in the bottom half, then the rank may still be large but the size of
the matrix drops to m(1− δ(r)).

Expanding the second term we get:

L(m, r) ≤ L(m,
r

2
+ 2) + L(m(1− δ(r)), r

2
+ 2) + L(m(1− δ(r))2, r

2
+ 2)

Continuing to expand on the second term until every term has rank below approximately r/2,
using the fact that (1− 1/x)x is approximately 1/2, after logm

δ(r) expansions, m drops to a constant.

Using the fact that δ(r) is nondecreasing as r increases (so we can replace δ(r′) by δ(r) for r′ < r),
and since L(1, r) = O(1) we get

L(m, r) ≤ O(
logm

δ(r)
· L(m,

r

2
+ 2).

Now continuing log r times until r drops to a constant, and since L(m, 1) = O(1), altogether we
have L(m, r) ≤ ( logmδ(r) )log r. Now since protocols can always be balanced, this implies that there is

a protocol of cost log(L(m, r)). Thus:

Pcc(f) ≤ O(log r[logm+ log(
1

δ(r)
)]) ≤ O(log2 r + log r · log(

1

δ(r)
),

where the last inequality holds since m ≤ 2r.

1.1 Log Rank Conjecture and Zero Communication Protocols

Building on the above Nisan-Wigderson results, Gavinsky and Lovett showed that a seemingly
much weaker conjecture actually is equivalent to the LRC. In order to explain this conjecture, we
need to define another type of communication complexity measure, called PostBPP.
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Definition (PostBPPcc) Consider a randomized protocol Π for f that can output either 0 or
1 or a third value, ⊥, that stands for “don’t know” or “abort”. Let 1

2k
be the probability that

Π does not output abort. The PostBPP correctness condition requires that conditioned on not
outputting abort, we have Pr[Π(x, y) 6= f(x, y)] ≤ 1/3. The cost of such a protocol is k+ c, where
c is (worst-case) the protocol depth.

It is not hard to see that PostBPP protocols can be efficiently amplified, so we can replace the
1/3 with any other constant ε. That is, PostBPPcc

ε (f) ≤ O(PostBPPcc
1/3(f) · log(1ε ).

An alternative and equivalent definition of the PostBPP communication complexity of f is the
restriction of the above definition but where the players essentially do not communicate at all.
More formally, let R = {(R, b)} be a set of labelled rectangles (so each R is a subrectangle, and
b ∈ {0, 1} is the label). Given R, on input (x, y), the players randomly sample (R, b) from R.
Then Alice (the row player who holds x) sends 1 iff x ∈ rows(R) and similarly Bob sends 1 iff
y ∈ cols(R). If Alice and Bob both send 1’s then the protocol outputs b and otherwise the protocol
aborts.

Gavinsky and Lovett proved the following theorem.

Theorem 2
Pcc(f) ≤ O(PostBPPcc(f) · log2 rank(Mf )).

This implies the following corollary, stating that if the cost of PostBPPcc protocols (which are
much more powerful then deterministic protocols) is bounded by a polynomial in the log of the
rank of Mf , then the LRC is true.

Corollary 3 If for every f , PostBPPcc(f) ≤ logO(1) rank(Mf ), then the Log Rank Conjecture is
true.

To prove the above theorem, by Nisan-Wigderson, it suffices to prove that any PostBPP protocol
with sufficiently small error has a large monochromatic rectangle:

Lemma 4 Let r = rank(Mf ) and let PostBPPcc
ε (f) = c where ε = 1

8r . Then there exists a
monochromatic rectangle R such that |R| ≥ 1

162−c|Mr|.

Given the above Lemma, the proof of the above theorem follows by setting δ(r) = 1
162−c and

applying Nisan-Wigderson’s theorem. It follows that

Pcc(f) ≤ O(log2 r + log r · c)

≤ O(log2 r + log r(PostBPPcc(f) · log(
1

ε
)))

≤ O(log2 r + log2 r · PostBPPcc(f))

It is left to prove the above Lemma. First we will argue (using the alternative definition of
PostBPP protocols) that there exists a large rectangle R′ that is nearly monochromatic. Then we
will prove that since Mf has rank at most r, that R′ must contain a large, fully monochromatic
subrectangle R. For the first step, using the alternative definition of PostBPP, there exists a
collection R of labelled rectangles such that: (1) conditioned on (x, y) lying within at least one of
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rectangles of R, the probability that the protocol errs is at most ε. and (2) the probability that
(x, y) lies within one of the rectangles of R is at least 2−c. Thus by averaging, there must exist
some labelled rectangle (R′, b) in R that is large and nearly b-monochomatic. That is, there must
exist (R′, b) ∈ R satisfying: (1) the size of R′ is at least 1

2 ·2
−c|Mf | and (2) the fraction of elements

(x, y) ∈ R′ such that f(x, y) 6= b is at most 1
2ε .

Now it is left to prove the second step, that R′ must contain a large b-monochromatic sub-
rectangle. To find the monochromatic subrectangle of R′ we will first remove from R′ any rows
that make significantly more errors than average. Let rows(R′) be the rows of R′. Call a row
x ∈ rows(R′) bad if number of inputs (x, y), y ∈ cols(R′) that are not b-monochromatic is greater
than 2 times the expected value. By Markov, The probability that x is bad is at most 1

2 . Now let A
be the set of all x ∈ rows(R′) that are not bad; from the above we know that |A| ≥ |rows(R′)|/2.

Now consider the submatrix, Q, of R′ restricted to the rows A: Q = A×cols(R′). Since Mr has
rank at most r, Q also has rank at most r. Let x1, . . . , xr be a basis for Q – that is, the xi’s are in
A and span Q. For each basis element xi, we define the following set of bad inputs corresponding
to xi:

Bi = {y ∈ cols(R′) | f(xi, y) 6= b}.

Since all xi’s are good, |Bi| ≤ 4ε|cols(R′)| for all i = 1, . . . , r. Define B = cols(R′)−∪ri=1Bi. Thus
(using the fact that ε = 1

8r ),

|B| ≥ |cols(R′)|(1− 4εr) = |cols(R′)|/2.

Therefore, we have shown that every row of the matrix A × B is either 0-monochromatic or
1-monochromatic. Pick b ∈ {0, 1} to be the more popular monochromatic value, and let R be the
set of all rows of A×B that are b-monochromatic. Thus R is a monochromatic subrectangle of R′

of size at least

1

2
|A| × |B| ≥ 1

2
(
1

2
· |rows(R′)|) · (1

2
· |cols(R′)|) =

1

8
|R′| ≥ 1

16
2−c|Mf |.

Thus to prove the LRC it suffices to prove the much weaker statement that any Mf of low rank
has a small PostBPP protocol. Note that PostBPP protocols are quite powerful as we have:

Pcc(f) ≥ BPPcc(f) ≥ PostBPPcc(f).

If on the other hand the LRC conjecture is false, then there are low rank matrices that require
high communication cost even in an extremely strong model of computation, which would be highly
interesting and would show that rank is a very unstable measure, not always correlated with other
reasonable properties of random versus structured matrices/functions.
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