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Communication Complexity

Lecturer: Alexander Lindenbaum and Yunya Zhao

1 Review and Preliminaries

� Entropy of a random variable X

H(X) =
∑
x

p(x) · log
1

p(x)
= E

p(x)

[
log

1

p(x)

]

� Conditional Entropy

H(Y |X) = E
p(xy)

[
log

1

p(y|x)

]
= E

p(x)
[H(Y |X = x)]

� Chain Rule of Entropy
H(XY ) = H(X) + H(Y |X)

� Mutual Information
I(A;B) = H(A)− H(A|B)

� Conditional Mutual Information

I(A;B|C) = H(A|C)− H(A|BC)

� Chain Rule of Mutual Information

I(AB;C) = I(A;C) + I(B;C|A)

� Chain Rule of Conditional Mutual Information

I(AB;C|D) = I(A;C|D) + I(B;C|AD)

2 Information Complexity

Analogous to Communication Cost and Communication Complexity: Information Cost is re-
lated to the amount of information gained through the execution of a communication protocol π,
Information Complexity is related to a function f (a problem) over all protocols that computes
it.

Definition 1 (Transcript of a protocol). Given a protocol π, the transcript π(X,Y) is the con-
catenation of the public randomness with all the messages that are sent during the execution of π
on input X,Y
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Definition 2 (Internal information cost). Internal information cost ICiµ(π) is how much each party
learns about the other party’s input during the execution of π

ICiµ(π) = I(X;π(X,Y )|Y ) + I(Y ;π(X,Y )|X)

Definition 3 (External information cost). External information cost ICextµ (π) is how much in-
formation an outside observer learns about both parties’ input just by looking at Alice and Bob
chat

ICextµ (π) = I(XY ;π(X,Y ))

For any protocol, the internal information cost is no larger than the external information cost:

Theorem 1. For protocol π and distribution µ, we have

ICiµ(π) ≤ ICextµ (π)

Proof. Let ω be any fixed prefix of the transcript of length i − 1. An observer always learns
something new at each round, and that amount is

I(XY ;π(X,Y )i|π(X,Y )≤i−1 = ω)

= I(X;π(X,Y )i|π(X,Y )≤i−1 = ω) + I(Y ;π(X,Y )i|Xπ(X,Y )≤i−1 = ω)

≥ I(X;π(X,Y )i|Y π(X,Y )≤i−1 = ω) + I(Y ;π(X,Y )i|Xπ(X,Y )≤i−1 = ω)

NOTE: if µ is a product distribution, ICiµ(π) = ICextµ (π)

3 Preliminaries

Given a function f(x, y) and a distribution µ on inputs to f

� The communication complexity Dµ
ρ (f), maximum number of bits communicated by a protocol

that computes f with error ρ

� Dµ,n
ρ (f), the communication involved in the best protocol that computes f on n independent

pairs of input (x, y) drawn from µ, and getting the answer correct except an error ρ on each
coordinate.

� Note that the above is different from Dµn
ρ (fn), and

Dµ,n
ρ (f) ≤ Dµn

ρ (fn)

4 Direct Sum

The direct sum question is about the complexity of solving several copies of a given problem.
In communication complexity, it can be phrased as follows: given function

f : {0, 1}m × {0, 1}m −→ {0, 1}
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define
fn : ({0, 1}m)n × ({0, 1}m)n −→ {0, 1}n

to be
fn((x1, ..., xn), (y1, ..., yn)) = (f(x1, y1), ..., f(xn, yn))

What is the relationship between the communication costs of f and fn.

The direct sum problem is important: direct sum theorems, together with a lower bound on
the (easier-to-reason-about) “primitive” problem, yield a lower bound on the composite problem
in a “black-box” fashion (a method also known as hardness amplification) [6]

� Ex. Karchmer-Raz-Wigderson: P 6= NC1 if circuit depth has strong direct sum (there are
inherently sequential problems)

However, direct sum theorems are very sensitive to models, and that is why we don’t much about
direct sum problems for many models.

Trivially, the communication complexity for fn is most n times the communication complexity
of f .

D(fn) ≤ n ·D(f)

Strong Direct Sum Conjecture “the naive is the optimal”

Dµn

ρ (fn)
?
= Ω(n) ·Dµ

ρ (f)

One direction is trivial, need to prove the other direction

Direct Sum Theorem for Simultaneous Communication (the equality function) [3]
The equality problem of n-bit string have SM complexity Θ(

√
n)

D(EQmn ) = Ω(m
√
n)

5 Why use information theoretic tools

� [3] used information theoretic tools to arrive at direct sum because:

� Information Complexity has a nice direct sum property

ICn(f) ≥ n · IC(f)

� The above property bridges together direct sum of communication:

Dn(f) ≥ ICn(f) ≥ n · IC(f) ??? n ·D(f)
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6 Information Equals Amortized Communication [2]

The internal information cost (namely the information revealed to the parties) involved in comput-
ing any relation or function using a two party interactive protocol is exactly equal to the amortized
communication complexity of computing independent copies of the same relation or function. If a
function’s information cost is smaller than its communication complexity, then multiple copies of
the function can be computed more efficiently in parallel than sequentially.

� The amortized communication complexity

lim
n→∞

Dµ,n
ρ (f)

n

� Information (internal) equals amortized communication complexity:

lim
n→∞

Dµ,n
ρ (f)

n
= ICµ(f)

7 Information Complexity Direct Sum Theorem [1]

Theorem 2. For every µ, f , n, let π be a protocol realizing Dµ,n
ρ (f). Then there exists a protocol

τ computing f with error ρ on inputs drawn from µ such that CC(τ) = CC(π), and ICiµ(τ) ≤
ICiµn (π)

n ≤ Dµ,nρ (f)
n (≤ Dµ

n

ρ (fn)
n )

Proof. First let us assume that π only uses private randomness (can easily extend to cover public
randomness case). The new protocol τ(x, y) is defined as follows:

� the parties publicly sample J uniformly at random from [n].
J is understood as an index.

� The parties publicly sample X1, ..., XJ−1 and YJ+1, ..., Yn.

� The first party privately samples XJ+1, ..., Xn conditioned on the corresponding Y ’s; The
second party does similar.

� The parties run the old protocol π on X1, ..., Xn, Y1, ..., Yn and output the result computed
for the J ’th coordinate. (i.e. viewing XJ = x, YJ = y)

Analyze the protocol: observe CC and bounded error: CC(π) = CC(τ), and error is bounded by
ρ. It remains to bound ICiµ(τ) = I(X; τ |Y ) + I(Y ; τ |X). NOTE: X,Y are r.v. for τ ’s inputs
(sampled according to µ).

Let’s bound the first term:

I(X : τ |Y ) ≤ I(X : τY1 · · ·Yn|Y )

= I(X; JX1 · · ·XJ−1Y1 · · ·Ynπ|Y )

= I(X; JX1 · · ·XJ−1Y1 · · ·Yn|Y ) + I(XJ ;π|JX1 · · ·XJ−1Y1 · · ·Yn)

= I(XJ ;π|JX1 · · ·XJ−1Y1 · · ·Yn)
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Expanding the expectation according to J , apply Chain Rule:

I(X; τ |Y ) ≤ (1/n)

n∑
j=1

I(Xj ;π|X1 · · ·Xj−1Y1 · · ·Yn)

= I(X1 · · ·Xn;π|Y1 · · ·Yn)/n

Similarly we can bound I(Y ; τ |X) ≤ I(Y1 · · ·Yn;π|X1 · · ·Xn)/n, and thus ICiµ(τ) ≤ ICiµn(π)/n ≤
CC(π)/n.

Now we have a way of taking a protocol π for n copies of f and constructing a protocol τ for a
single copy. But the communication complexity of τ is equal to that of π, even though we are only
computing one copy of f . This motivates a method to compress protocols with high communication
but low (internal) information complexity.

Theorem 3. For every distribution µ, every protocol π, and every ε > 0, there exists func-
tions πx, πy, and a protocol τ such that |πx(X, τ(X,Y )) − π(X,Y )| < ε, Pr[πx(X, τ(X,Y )) 6=
πy(Y, τ(X,Y ))] < ε and

CC(τ) ≤ O

(√
CC(π) · ICiµ(π)

log(CC(π)/ε

ε

)
.

Proof. In τ , Alice and Bob will independently guess π’s transcript. Since both parties will likely
be incorrect (Alice does not know y, Bob does not know x), they will communicate with as few
bits as possible to correct their guesses. More specifically, let M = m1m2 · · ·mCC(π) denote the
random variable for π’s transcript (wlog we assume that π communicates CC(π) bits). Let m<i

denote the first i− 1) bits sent of M . Define

γ(m<i) = Pr[Mi = 1|X = x, Y = y,M<i = m<i].

This defines a distribution over M . One can sample from this distribution in the following way:

- Obtain ρ1, . . . , ρCC(π) ∼ [0, 1] uniformly and identically by reading random bits from a public
source.

- Set m1 = 1 if ρ1 < γ(m<1) = Pr[M1 = 1|X = x, Y = y). Otherwise m1 = 0.

- Set mi = 1 if ρi < γ(m<i) for i = 2, . . . , CC(π) in that order.

Indeed if Alice and Bob could sample from this distribution, then they would each have an exact
copy M which is distributed exactly as π’s transcript. Then they could simply run the protocol
π internally and output π(x, y). The problem remains that Alice does not know y, Bob does not
know x.

Instead, Alice samples from the distribution

γA(m<i) = Pr[Mi = 1|X = x,M<i = m<i].

Likewise Bob samples from

γB(m<i) = Pr[Mi = 1|Y = y,M<i = m<i].
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Generally, these distribution are not equal to the true distribution. But say Alice has guessed
m<i which is distributed according to π, and it is Alice’s turn to speak on the ith bit. Then
γA(m<i) = γ(m<i). This is because Alice has all the information that she would have in π right
before sending the ith bit: the correctly sampled transcript up to i and x. Likewise if it is Bob’s
turn to speak and he has m<i then γB(m<i) = γ(m<i).

So the protocol τ is as follows:

- Alice and Bob produce mA
1 · · ·mA

CC(π) and mB
1 · · ·mB

CC(π), respectively according to γA, γB.

- Using binary search and hashing, Alice and Bob communicate to find the first index i where
mA
i 6= mB

i .

- If it is Alice’s turn to speak on the ith bit (in π), then Bob flips mB
i and recomputes from

i+ 1 to CC(π). Otherwise Alice recomputes.

- Repeat until mA = mB. Then Alice or Bob compute π(x, y) from the transcript and output.

It takes O(log(CC(π)/ε)) bits of communication find the first i where mA
i 6= mB

i , with error
ε/2. Now we bound the total number of mistakes to correct, in probability.

A mistake occurs at the ith bit if ρi falls in between γA(m<i) and γB(m<i). Suppose Alice is
sending the ith bit in π. Then the probability of a mistake occuring at i, given m<i, is

E
[∣∣γA(m<i)− γB(m<i)

∣∣]
≤E
[∣∣Pr[Mi = 1|X = x,M<i = m<i]− Pr[Mi = 1|Y = y,M<i = m<i]

∣∣]
≤
√
I(Mi : X|YM<i) =

√
I(X : Mi|YM<i)

By the fact that Eb[|p(a|b) − p(a)|] ≤
√
I(A : B) (follows from Pinsker’s inequality). Similarly if

Bob sends the ith bit then the probability of a mistake at i is bounded by
√
I(Y : Mi|XM<i).

Then a crude upper bound on the expected number of mistakes made is

CC(π)∑
i=1

√
I(X : Mi|YM<i) + I(Y : Mi|XM<i)

≤
√
CC(π) ·

√√√√ C∑
i=1

I(X : Mi|YM<i) + I(Y : Mi|XM<i)

by Cauchy-Shwarz;

=
√
CC(π) ·

√
I(X : M |Y ) + I(Y : M |X) =

√
ICiµ(π)CC(π).

Finally by a simple application of Markov’s inequality, the probability that the total number of

bits communicated is greater than 2/ε ·O(
√
ICiµ(π)CC(π) · log(CC(π)/ε)) is at most ε/2.
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Now we have enough to prove a direct sum theorem.

Theorem 4. For every ε > 0,

Dρ(f
n) · log(Dρ(f

n)/ε) ≥ Ω(Rρ+ε(f) · ε
√
n.

Proof. Let π be any protocol computing fn with inputs drawn from µn with error probability ≤ ρ.
By Theorem 2, we have a protocol τ computing f with error ρ such that CC(τ) = CC(π) and
ICiµ(τ) ≤ ICiµ(π)/n. Using Theorem 3, we compress τ to get τ ′, a protocol computing f with error
ρ+ ε and communication

CC(τ ′) ≤ O

(
CC(π) log(CC(π)/ε)

ε
√
n

)
.

We have that CC(τ ′) ≥ Rρ+ε(f), so for all π computing fn,

CC(π) log(CC(π)/ε) ≥ Ω(Rρ+ε(f) · ε
√
n.

Corollary: CC(Tn) = Ω̃(
√
n · CC(T )).

Proof. By applying Yao’s min-max principle.

8 Tight Direct Sum Bounds and Separations

The question remains: can we show that CC(Tn) = Θ(n · CC(T ))? The answer, unfortunately,
is no. This is because we know of classes of problems (and corresponding input distributions)
with communication complexity of order exponential the information complexity. If IC(T ) = k
and CC(T ) = 2Ω(k), then the amortized complexity tells us that we can never have CC(Tn) =
Ω(n · CC(T )).

� In 2014, Ganor, Kol, and Raz [4] showed that the bursting noise game, with fixed distribution,
has information complexity k and communication complexity 2Ω(k).

� In 2018, Rao and Sinha [5] give a simpler problem, the k-ary pointer jumping problem, which
also has an exponential difference in information complexity and communication complexity.
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