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Communication Complexity and Applications

Lecturer: Toniann Pitassi

1 Deterministic Communication and Combinatorial Rectangles

The success in proving good lower bounds on the communication complexity comes from the
combinatorial view of protocols. The idea is to view protocols as a way to partition the space of
all possible input pairs, X × Y , into special sets called combinatorial rectangles.

We can view a deterministic protocol P as a binary tree, where each vertex in the tree is labelled
by one of Alice or Bob (the player who owns this vertex). For each internal vertex v in the protocol
tree, there is a function Πv that maps each input α ∈ {0, 1}n to either 0 or 1. Vertex v has two
outedges, one edge is labelled by 0 and the other labelled by 1. Each input (x, y) induces a unique
path from the root of the protocol tree to a leaf.

For a node v of the protocol tree, we denote by Rv is the set of inputs (x, y) that reach node
v. It is easy to see by induction that for every node v, the set Rv is a combinatorial rectangle.
Furthermore, if L is the set of leaf vertices of the protocol P , then the set {Rl}l∈L gives a partition
of X×Y into disjoint combinatorial rectangles. This discussion leads to the following fundamental
element in the combinatorics of protocols.

Definition 1 (Rectangle). A rectangle in X × Y is a subset R ⊆ X × Y such that R = A×B for
some A ⊆ B and B ⊆ Y .

The connection between rectangles and protocols is implicit in the following proposition.

Proposition 1. For all l ∈ L, the set Rl is a rectangle.

Proof. By induction on the depth of the protocol tree.

Definition 2 (f-monochromatic). A subset R ⊆ X × Y is f -monochromatic if f is fixed1 on R.

The following two statement are immediate from the above definitions.

Fact 2. Any protocol P for f induces a partition of X × Y into f -monochromatic rectangles. The
number of (f -monochromatic) rectangles equals the number of leaves of P .

Fact 3. If any partition of X × Y into f -monochromatic rectangles requires at least t rectangles,
then D(f) ≥ log2 t.

1There exists z ∈ {0, 1} such that for all (x, y) ∈ R, f(x, y) = z.
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1.1 Balancing Protocols

As mentioned earlier, we can view a deterministic protocol as a binary tree, and we measured
the complexity of the communication protocol by the height of the binary tree. Another natural
measure of complexity is the size of the tree, or the number of leaves. It is clear that if Π is a
protocol tree of height d, then the size of Π is at most 2d. It turns out that the converse is also true.
The following lemma shows that deterministic protocols can always be balanced and therefore the
minimal size of a protocol is always expponential in the minimum protocol depth.

Lemma 4. If Π is a protocol for a two-party function F with l leaves, then there is a protocol for
F of depth at most O(log l).

Proof. The proof is a simple inductive application of the one-third/two-thirds lemma which states
that in any binary tree with l > 1 leaves, there exists a vertex v such that the subtree rooted at
v contains r leaves for l

3 ≤ r < 2l
3 . Given a protocol Π with l leaves, the players first determine

(without communication) a vertex v such that the subtree rooted at v contains between a 1/3
and 2/3 fraction of leaves. Then the players communicate at one bit each in order to determine
whether or not their input (x, y) is contained in Rv. If (x, y) ∈ Rv then the proceed inductively on
the subtree rooted at Rv and otherwise they delete the vertex v and its subtree and continue the
simulation on the pruned tree. At each step the number of leaves is reduced by a factor of at least
2/3, so the total number if iterations is at most log3/2 l and each iteration requires 2 bits.

1.2 Partitions versus Protocols

The partition number of a two-player function f is the minimum C such that Mf can be partitioned
into C monochromatic subrectangles. We argued above that every protocol of cost c implies a
partition of the underlying matrix into 2c monochromatic subrectangles. Thus the log of the
partition number is at most the deterministic communication complexity of f . What about the
converse? Can we characterize the communication complexity of f by the partition number of f?
A clever argument due to Yannakakis shows that this is true, albeit with a quadratic blowup.

Lemma 5. Let P be a partition of Mf into C = 2c monochromatic rectangles. Then there is a
deterministic protocol for f of cost O(c2).

We will defer the proof of this result until later when we discuss nondeterministic protocols.
For a long while it was open whether or not this quadratic simulation was optimal. We will see

in future lectures that it is in fact tight. The lower bound will be one of many applications of the
method of lifting in communication complexity.

2 Deterministic Lower Bounds

2.1 The Fooling Set Argument

Consider the following 2n × 2n matrix associated with equality function EQ(x, y), |x| = |y| = n.
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MEQ :=


1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1


Each “1” has to be in its own 1-monochromatic rectangle. Thus the number of monochromatic

rectangles is greater than 2n. This observation motivates the following definition of a “fooling set”.

Definition 3. Let f : X × Y → {0, 1}. A subset S ⊆ X × Y is a fooling set for f if there exists
z ∈ {0, 1} such that

(i) ∀ (x, y) ∈ S, f(x, y) = z;

(ii) for any two distinct (x1, y1), (x2, y2) ∈ S, either f(x1, y2) 6= z or f(x2, y1) 6= z.

Lemma 6. If f has a fooling set S of size t, then D(f) ≥ log2 t.

2.2 The Rank Lower Bound Method

Given any boolean function f : {0, 1}n × {0, 1}n → {0, 1} we can associate a 2n × 2n matrix
Mf , where Mf (x, y) = f(x, y). In words, Mf specifies the values of the function f on any input
(x, y) ∈ X × Y . The rank lower bound method is an algebraic method to give lower bounds on
D(f) by computing the rank of Mf .

Definition 4. For any function f , rank(f) is the linear rank of Mf over R.

The following lemma gives a lower bound on the deterministic communication complexity of f
through the rank of Mf .

Lemma 7. Let a function f . Then Pcc(f) ≥ log2 rank(f).

Proof. Let L1 be the set of leaves of any protocol tree that gives output 1. For each l ∈ L1, let Ml

be a 2n × 2n matrix which is 1 on all (x, y) ∈ Rl and 0 otherwise. It is clear that

Mf =
∑
l∈L1

Ml.

Fact : The rank function is a sub-additive function, i.e., rank(A+ B) ≤ rank(A) + rank(B) for
any matrix A,B. Therefore,

rank(Mf ) ≤
∑
l∈L1

rank(Ml).

Notice that rank(Ml) = 1 for any l ∈ L1 since Ml can be expressed as an outer-product of two
vectors2. Therefore rank(Mf ) ≤ |L1| ≤ |L|, which implies that

Pcc(f) ≥ log2 rank(Mf ).

2These vectors are the characteristic vectors for the rectangle that reaches l.
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The above fact shows that communication complexity lower bounds can be proven from rank
lower bounds. The Log Rank Conjecture (LRC) asserts that there is a polynomial relationsip
between the log of rank(Mf ) and the deterministic commmunication complexity of f . We will
discuss the LRC in the next lecture.

3 Other Communication Models and Norms

3.1 Zero-error Communication and α-Discrepancy

Define zero-error model (see gavinsky and lovett paper) show zero−cc ≤ infocomplex ≤ randomized ≤
det. So zero-error is the weakest of them all. And we know that if low rank implies low zero-error
then logrank conjecture is true!
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