
Communication Complexity and Applications Lecture #5: Spring, 2022

Communication Complexity and Applications

Lecturer: Toniann Pitassi

Scribe Notes by: Yuval Efron

1 Applications

In the coming lectures lecture, we go over several applications of communication complexity in other
areas of theoretical computer science such as streaming, property testing, game theory, time/space
trade-offs, circuit complexity, proof complexity, extension complexity, graph theory.

Throughout the lecture, we frequently make use of the following results.

BPPCC(DISJn) = Ω(n)

BPPCC(UDISJn) = Ω(n)

coNPCC(UDISJn) = Ω(n)

Theorem 1. The k-player Number on Forehead(NOF) communication complexity of DISJn, UDISJn
is Ω(n

2k
).

We will see the proofs of these result in future lectures.

1.1 Streaming

The material in this section is based on the lecture notes of Tim Roughgarden [10]. In the streaming
model of computation, we make a single pass over a given input while maintaining some local
memory M of size s, the goal is to compute some property of the input while minimizing s.
Specifically, we focus on computing frequency moments. A bit more formally, in the frequency
moments problem we have the following.

� The stream consists of a string S ∈ [n]m, which we observe one element at a time.

� Let Mi = | {j ∈ [m] | Sj = i} |. The k-th frequency moment is defined to be Fk = (
n∑
i=1

Mk
i)1/k.

For example F0 is the number of distinct elements in the stream. F1 = m, i.e. the length of
the stream. F∞ is the number of occurrences of the most frequent element.

� The goal: Approximate Fk for various values of k.

For some values of k, Fk can be efficiently approximated in the streaming setting. Specifically,
the following by Alon, Matias and Szegedy [1] holds.

Theorem 2. There is a streaming protocol A that on a given stream S computes w.p. at least 1−δ
a multiplicative (1 + ε)- approximation of F0, F2 using a memory of size s = O(

(logn+logm) log 1
δ

ε2
).

1

Communication Complexity and Applications Lecture #5: Spring, 2022

Alas, in this course we are mainly interested in lower bounds, and we state the above result
mainly to emphasize that proving lower bounds for computing frequency moments is not a trivial
task. Specifically, we show that any streaming algorithm approximating F∞ with ε = 0.99 and
δ = 1

3 must have space s = Ω(min {n,m}). Note that such a lower bound is essentially tight due to
the following naive algorithms that compute moments exactly: Use m memory to store the entire
stream and compute F∞, or maintain a histogram of occurrences of size O(n logm) and compute
deduce the most frequent elements and its number of occurrences. For simplicity, we assume that
m = n.

Theorem 3. Approximating F∞ within a factor of 1.99 w.p. at least 2
3 requires s = Ω(n).

Proof. We prove the theorem by reduction from DISJ. Let A be some streaming algorithm approx-
imating F∞ of a given stream S ∈ [n]m with space s. Given A, consider the following protocol for
solving DISJn with Alice and Bob receiving inputs x, y respectively.

From x, Alice constructs the following set ax = {i | ai = 1}, and similarly Bob constructs by.
Then Alice simulates A on ax by inserting into the stream the elements of ax in some arbitrary
order. Denote by M the memory state of A after Alice inserted the last element of ax, per the
assumption, it consists of s bits, which Alice then sends to Bob. From there, Bob continues the
simulation of A by inserting the elements of by in an arbitrary order. Finally, if A’s output is < 2,
Bob outputs x, y are disjoint, otherwise Bob outputs that x, y intersect.

Note now that if x ∩ y 6= ∅, and let i be a coordinate s.t. i ∈ x ∩ y, then i ∈ ax ∩ by and in
particular the number of occurrences of the most frequent element is at least 2, thus w.p. at least
2/3 Bob outputs that x, y intersect as A answer will be strictly larger than 2 with that probability.
If x, y dont intersect however, then ax, by dont intersect as well, and thus the F∞ value of the
stream can be at most 1, which means that A answer is w.p. at least 2/3 strictly smaller than 2,
thus Bob outputs that x, y don’t intersect with the same probability.

This protocol allows Alice and Bob to randomly solve DISJn with error probability at most 1/3
while communicating O(s) bits, thus s = Ω(n).

Remark 1. It is possible to generalize the above result to show that for every k 6= 1, computing Fk
exactly requires Ω(n) space in the streaming model.

1.2 Property Testing

Next, we turn to applications in property testing. In property testing problems we are given a
usually combinatorial object f from some predetermined domain D and some property P ⊆ D,
the goal is to decide whether f ∈ P or whether f is far from P , for an appropriate definition of
distance between objects in D. Specifically, we will focus on functions D → R for some domain D
and range R. Concrete examples include the following.

� Linearity. D = Fn, R = F, P is the set of linear functions. I.e. all functions D → R that
satisfy f(x+ y) = f(x) + f(y) for all x, y ∈ Fn.

� Monotone functions. D = {0, 1}n, R = {0, 1}, P is the set of all monotone functions, i.e.
functions f such that f(x) ≤ f(x′) whenever x ≤ x′.

� Graph properties. D = {0, 1}(
n
2), R = {0, 1}. P is any graph property, e.g. contains a

k-clique.

2

Communication Complexity and Applications Lecture #5: Spring, 2022

The goal in property testing is to design an algorithm that queries a function f on a very small
set of inputs, and from that data deduces with high confidence whether f ∈ P or is far from P .

Definition 1. Let D,R be some domain and range, and let f, g ∈ RD, we say that f, g are ε-far
if d(f, g) ≥ ε|D|, where d(·, ·) is the hamming distance, i.e. number of entries on which f and g
disagree.

Linearity testing. As a first example, we consider linearity testing. We get query access to a
function f : {0, 1}n → {0, 1}, and are tasked with deciding whether f is linear, or ε-far from linear.
I.e., on inputs which are not linear or ε-far from linear, the algorithm is allowed to answer arbitrarily.
A seminal result by Blum, Ruby, Rubinfeld [4], shows that the following simple algorithm solves
the problem with one-sided constant error probability.

� Repeat the following O(1/ε) times:

1. Sample x, y ∈ {0, 1}n uniformly at random.

2. If f(x)⊕ f(y) 6= f(x⊕ y), reject

� Accept.

Note that the query complexity of the algorithm is O(1/ε), completely independent of n.

Monotone functions. As our next example, we consider the family of monotone functions,
denoted by P , this is the set of functions f : {0, 1}n → R, for some well-ordered range R s.t.
f(x) ≤ f(x′) whenever x ≤ x′. The first result we discuss is the following upper bound by [6]
for testing monotonicity in the Boolean case, i.e. R = {0, 1}. We denote by (b, x−i) the vector in
which the i-th entry is b and the rest of the vector agrees with x ∈ {0, 1}n.

� Repeat the following O(n/ε) times:

1. Sample i, x−i uniformly at random.

2. If f(0, xi−1) > f(1, x−i), reject.

� Accept.

Notice that unlike linearity testing, here the query complexity has linear dependency on n.
Furthermore, clearly monotone functions are accepted by the above algorithm, and one can prove
that any function which is ε-far form being monotone is rejected with constant probability.

[6] also shows that one can generalize the above algorithm to work any well-ordered range R by
repeating the internal sample test O(n|R|/ε) times instead of O(n/ε). Another work [5] presented
an algorithm that exponentially improves the dependence on |R| in the sample complexity, i.e.
O(nε log |R|).

One can now ask whether this dependence on n is necessary. We address this question by
presenting a lower bound proved of [3] that scales with the size of the range of the considered
functions. Specifically, the following is shown in [3].

Theorem 4. Any property testing algorithm for monotonicity with range R = O(
√
n) requires

Ω(|R|2) queries. Otherwise, the lower bound is Ω(n).

3

Communication Complexity and Applications Lecture #5: Spring, 2022

We prove a slightly weaker version of the theorem, namely that if |R| = Ω(n), then Ω(n) queries
are required. this theorem is proved via a reduction from UDISJn. The general template for the
reduction is as follows.

� Map 1-inputs (x, y) to a function hx,y ∈ P .

� Map 0 inputs to functions hx,y far from P

� Employ a tester Π for P and a short protocol to solve UDISJn.

For the proof, we make use of the following Lemma.

Lemma 5. For A,B ⊆ [n], let hA,B : {0, 1}n → Z defined by hA,B(x) = 2|x|+(−1)|A∩x|+(−1)|B∩x|.
It holds that:

� A ∩B = ∅ implies that hA,B is monotone.

� |A ∩B| = 1 implies that hA,B is ε-far from monotone for some constant epsilon.

From this lemma the reduction protocol is straight forward, if we assume Π is a monotonicity
tester making q queries, and let A,B be inputs to UDISJ, we note that every query to hA,B made
by Π can be simulated with 2 bits of communication, by exchanging (−1)|A∩x|, (−1)|B∩x|. When
Π outputs an answer, we can solve UDISJ by answering according to the lemma.

All that is left is to prove the lemma.

Proof. Let A,B be disjoint and let S be some vector and i s.t. i 6∈ S, then we want to show that
hA,B(S ∪ i) − hA,B(S) ≥ 0. Since A,B are disjoint, either i 6∈ A or i 6∈ B, assume w.l.o.g that
i 6∈ A, then we have that

hA,B(S ∪ i)− hA,B(S) = 2 + (−1)|S∩A| + (−1)|(S∪i)∩B| − (−1)|S∩A| − (−1)|S∩B| ≥ 2− 1− 1 = 0.

Thus hA,B is monotone.
Now assume A,B intersect at some entry i, we making the following observation, whose proof

we leave as an exercise.

Observation 6. If A ∩B 6= ∅, then Pr[|S ∩A| is even and |S ∩B| is even] ≥ 1
4 .

With this observation in mind, we can check that for sets S for which this holds we have that
hA,B(S ∪ i) − hA,B(S) = −2. Thus hA,B is not monotone at S for at least a quarter fraction of
the S’s, which is at least a 1

8 fraction of the inputs. Thus assuming that |R| = Ω(n), hA,B is well
defined and we can deduce from the communication lower bound on UDISJn that if Π tests whether
a function is monotone or ε-far form monotone for ε < 1/8, that Π makes Ω(n) queries.

The above can be generalized to show a lower bound of Ω(n) whenever |R| = Ω(
√
n), and

Ω(|R|2) otherwise.
We remark that if one restricts the discussion to Boolean functions, the best lower bound stands

at Ω̃(n1/3)[2], and the best upper bound is O(
√
n)[8].

4

Communication Complexity and Applications Lecture #5: Spring, 2022

1.3 Game Theory

Next we turn to applications in game theory, specifically the communication complexity of deciding
whether Nash Equilibrium exists for 2 given payoff matrices A,B of size n× n. Given such payoff
matrices to players Alice and Bob, we call a pair (i, j) a Nash Equilibrium if i is the optimal Alice
strategy given that Bob plays j, and vice versa.

Similarly to the previous section, we show by a reduction from DISJn2 that deciding whether a
Nash Equilibrium exists requires Ω(n2) communication given inputs of size n× n.

The reduction. Let Π be a protocol that decides whether a Nash Equilibrium exists for any 2
given matrices A,B of size n×n using T (n) bits of communication. Let A,B be inputs of size n2 for
DISJ, which we view as n×n matrices. The reduction will pad the matrices with 2 additional rows
and columns as follows: From A, we construct A′ as follows: A′[i, j] = A[i, j] for all 1 ≤ i, j ≤ n,
A′[n + 1, j] = 1 for j ∈ [n + 1], A′[n + 1, n + 2] = 0, A′[n + 2, j] = 1 for j = n + 2 or j ∈ [n], and
A′[n+ 2, n+ 1] = 0. Finally, for the columns, A′[i, n+ 1] = A′[i, n+ 2] = 0 for all i ∈ [n]. For B we
pad it in the same manner with transposing the added rows and columns, i.e. the n+ 1’th row of
A appears as the n+ 1’th column of B, and vice versa with the columns, and similarly for n+ 2.

For a visual representation of the reduction, refer to the lecture slides on the course website.
One can check that now in A′, B′, which are matrices of size (n+ 2)× (n+ 2), there is a Nash

Equilibrium iff there exists i, j ∈ [n] such that A[i, j] = B[i, j] = 1, i.e. A,B intersect. Similarly to
the previous results, from this we obtain a lower bound of Ω(n2) on T (n).

Approximate Nash Equilibrium. One can generalize the above setting to consider Approxi-
mate Nash Equilibrium, in which we call a pair of vectors (x, y) an ε-Approximate Nash Equilibrium
if given any xTAy ≥ x′TAy − ε for all x′, and xTBy ≥ xTBy′ − ε for all y′. A recent result by
Mika Goos and Aviad Rubinstein [7] showed that that randomized communication complexity of
ε-approximate Nash Equilibrium is n2−o(1) on inputs of size n× n.

1.4 Time-Space Lower Bounds

As our last application for this lecture, we consider time-space trade-offs for Turing machines.
concretely, we have a single read-only tape, and O(1) read/write tapes. Given f : {0, 1}n×{0, 1}n →
{0, 1}, we say that such a Turing machine M computes f if f(x, y) = M(x0ny) for all input pairs.
Our goal is to prove the following. The proof can also be found in [9].

Theorem 7. Let f be as above and let M compute f . Then

PCC(f) ≤ T (M,n) · S(M,n)

n

Where T (M,n), S(M,n) are running time and space bounds respectively on M on inputs of
length n.

In particular, if PCC(f) = Ω(n) then T (M,n) · S(M,n) = Ω(n2).

Proof. The proof idea is to simulate M(x0ny) using a communication protocol. We start with
Alice simulating M on (x0ny) as long as the input read only tape is on x0n, when(and if) the tape
moves to y, Alice stops the simulation, and sends Bob the entire content of the read/write tapes,

5

Communication Complexity and Applications Lecture #5: Spring, 2022

and Bob continues the simulation as long as the input tape is on 0ny, and similarly, if the tape
moves back to x, Bob sends the entire content of the work tapes to Alice.

All in all, since 0n has length n, at least n steps of computation are executed after every
exchange of the contents of the work tapes, thus the total number of rounds of communication is
T (M,n)

n . Each round contains at most S(M,n) bits as this is the bound on the size of the work

tapes. Thus in total Alice and Bob can simulate the computation of M on x0ny using T (M,n)·S(M,n)
n

bits, thus establishing the theorem.

References

[1] N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the fre-
quency moments, J. Comput. Syst. Sci., 58 (1999), pp. 137–147. 1

[2] A. Belovs and E. Blais, A polynomial lower bound for testing monotonicity, SIAM J.
Comput., 50 (2021). 4

[3] E. Blais, J. Brody, and K. Matulef, Property testing lower bounds via communication
complexity, Comput. Complex., 21 (2012), pp. 311–358. 3

[4] M. Blum, M. Luby, and R. Rubinfeld, Self-testing/correcting with applications to numer-
ical problems, in Proceedings of the 22nd Annual ACM Symposium on Theory of Computing,
May 13-17, 1990, Baltimore, Maryland, USA, H. Ortiz, ed., ACM, 1990, pp. 73–83. 3

[5] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, D. Ron, and A. Samorod-
nitsky, Improved testing algorithms for monotonicity, in Randomization, Approximation,
and Combinatorial Algorithms and Techniques, Third International Workshop on Random-
ization and Approximation Techniques in Computer Science, and Second International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems RANDOM-
APPROX’99, Berkeley, CA, USA, August 8-11, 1999, Proceedings, D. S. Hochbaum,
K. Jansen, J. D. P. Rolim, and A. Sinclair, eds., vol. 1671 of Lecture Notes in Computer
Science, Springer, 1999, pp. 97–108. 3

[6] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky, Testing
monotonicity, Comb., 20 (2000), pp. 301–337. 3

[7] M. Göös and A. Rubinstein, Near-optimal communication lower bounds for approximate
nash equilibria, in 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2018, Paris, France, October 7-9, 2018, M. Thorup, ed., IEEE Computer Society, 2018,
pp. 397–403. 5

[8] S. Khot, D. Minzer, and M. Safra, On monotonicity testing and boolean isoperimetric-
type theorems, SIAM J. Comput., 47 (2018), pp. 2238–2276. 4

[9] E. Kushilevitz and N. Nisan, Communication complexity, Cambridge University Press,
1997. 5

[10] T. Roughgarden, Communication complexity (for algorithm designers), Found. Trends
Theor. Comput. Sci., 11 (2016), pp. 217–404. 1

6

	Applications
	Streaming
	Property Testing
	Game Theory
	Time-Space Lower Bounds

