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Abstract

The communication complexity of a function f(x, y) measures the num-
ber of bits that two players, one who knows x and the other who knows
y, must exchange to determine the value f(x, y). Communication com-
plexity is a fundamental measure of complexity of functions. Lower
bounds on this measure lead to lower bounds on many other measures
of computational complexity. This monograph survey lower bounds in
the �eld of communication complexity. Our focus is on lower bounds
that work by �rst representing the communication complexity measure
in Euclidean space. That is to say, the �rst step in these lower bound
techniques is to �nd a geometric complexity measure, such as rank or
trace norm, that serves as a lower bound to the underlying communica-
tion complexity measure. Lower bounds on this geometric complexity
measure are then found using algebraic and geometric tools.
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Introduction

Communication complexity studies how much communication is needed
in order to evaluate a function whose output depends on information
distributed amongst two or more parties. Yao [Yao79] introduced an
elegant mathematical framework for the study of communication com-
plexity, applicable in numerous situations, from an email conversation
between two people, to processors communicating on a chip. Indeed,
the applicability of communication complexity to other areas, includ-
ing circuit and formula complexity, VLSI design, proof complexity, and
streaming algorithms, is one reason why it has attracted so much study.
See the excellent book of Kushilevitz and Nisan [KN97] for more details
on these applications and communication complexity in general.

Another reason why communication complexity is a popular model
for study is simply that it is an interesting mathematical model. More-
over, it has that rare combination in complexity theory of a model
for which we can actually hope to show tight lower bounds, yet these
bounds often require the development of nontrivial techniques and
sometimes are only obtained after several years of sustained e�ort.

In the basic setting of communication complexity, two players Alice
and Bob wish to compute a function f : X × Y → {T, F} where X,Y
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2 Introduction

are arbitrary �nite sets. Alice holds an input x ∈ X, Bob y ∈ Y , and
they wish to evaluate f(x, y) while minimizing the number of bits com-
municated. We let Alice and Bob have arbitrary computational power
as we are really interested in how much information must be exchanged
in order to compute the function, not issues of running time or space
complexity.

Formally, a communication protocol is a binary tree where each
internal node v is labeled either by a function av : X → {0, 1} or a
function bv : Y → {0, 1}. Intuitively each node corresponds to a turn
of either Alice or Bob to speak. The function av indicates, for every
possible input x, how Alice will speak if the communication arrives at
that node, and similarly for bv. The leaves are labeled by an element
from {T, F}. On input x, y the computation traces a path through the
tree as indicated by the functions av, bv. The computation proceeds to
the left child of a node v if av(x) = 0 and the right child if av(x) = 1,
and similarly when the node is labeled by bv. The protocol correctly
computes f if for every input x, y, the computation arrives at a leaf `
labeled by f(x, y).

The cost of a protocol is the height of the protocol tree. The de-
terministic communication complexity of a function f , denoted D(f),
is the minimum cost of a protocol correctly computing f . Notice that,
as we have de�ned things, the transcript of the communication de�nes
the output, thus both parties �know� the answer at the end of the pro-
tocol. One could alternatively de�ne a correct protocol where only one
party needs to know the answer at the end, but this would only make
a di�erence of one bit in the communication complexity.

If we let n = min{dlog |X|e , dlog |Y |e} then clearly D(f) ≤ n + 1
as either Alice or Bob can simply send their entire input to the other,
who can then compute the function and send the answer back. We refer
to this as the trivial protocol. Thus the communication complexity of
f will be a natural number between 1 and n + 1, and our goal is to
determine this number. This can be done by showing a lower bound on
how much communication is needed, and giving a protocol of matching
complexity.

The main focus of this survey is on showing lower bounds on the
communication complexity of explicit functions. We treat di�erent vari-
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ants of communication complexity, including randomized, quantum,
and multiparty models. Many tools have been developed for this pur-
pose from a diverse set of �elds including linear algebra, Fourier anal-
ysis, and information theory. As is often the case in complexity theory,
demonstrating a lower bound is usually the more di�cult task.

One of the most important lower bound techniques in communica-
tion complexity is based on matrix rank. In fact, it is not too much of
an exaggeration to say that a large part of communication complexity
is the study of di�erent variants of matrix rank. To explain the rank
bound, we must �rst introduce the communication matrix, a very useful
and common way of representing a function f : X × Y → {T, F}. We
will consider both a Boolean and a sign version of the communication
matrix, the di�erence being in the particular integer representation of
{T, F}. A Boolean matrix has all entries from {0, 1}, whereas a sign ma-
trix has entries from {−1,+1}. The Boolean communication matrix for
f , denoted Bf , is a |X|-by-|Y | matrix where Bf [x, y] = 1 if f(x, y) = T

and Bf [x, y] = 0 if f(x, y) = F . The sign communication matrix for
f , denoted Af , is a {−1,+1}-valued matrix where Af [x, y] = −1 if
f(x, y) = T and Af [x, y] = +1 if f(x, y) = F . Depending on the
particular situation, it can be more convenient to reason about one
representation or the other, and we will use both versions throughout
this survey. Fortunately, this choice is usually simply a matter of con-
venience and not of great consequence�it can be seen that they are
related as Bf = (J − Af )/2, where J is the all-ones matrix. Thus the
matrix rank of the two versions, for example, will di�er by at most one.

Throughout this survey we identify a function f : X × Y → {T, F}
with its corresponding (sign or Boolean) communication matrix. The
representation of a function as a matrix immediately puts tools from
linear algebra at our disposal. Indeed, Mehlhorn and Schmidt [MS82]
showed how matrix rank can be used to lower bound deterministic com-
munication complexity. This lower bound follows quite simply from the
properties of a deterministic protocol, but we delay a proof until Chap-
ter 2.

Theorem 1.1 (Mehlhorn and Schmidt [MS82]). For every sign
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matrix A,
log rank(A) ≤ D(A).

The rank bound has nearly everything one could hope for in a lower
bound technique. From a complexity point of view it can be e�ciently
computed, i.e. computed in time polynomial in the size of the matrix.
Furthermore, it frees us from thinking about communication protocols
and lets us just consider the properties of A as a linear operator be-
tween Euclidean spaces, with all the attendant tools of linear algebra
to help in doing this. Finally, it is even conjectured that one can al-
ways show polynomially tight bounds via the rank method. This log
rank conjecture is one of the greatest open problems in communication
complexity.

Conjecture 1.1 (Lovász and Saks [LS88]). There is a constant c
such that for every sign matrix A

D(A) ≤ (log rank(A))c + 2.

The additive term is needed because a rank-one sign matrix can require
two bits of communication. Thus far the largest known separation be-
tween log rank and deterministic communication, due to Nisan and
Wigderson [NW95], shows that in Conjecture 1.1 the constant c must
be at least 1.63 . . .

The problems begin, however, when we start to study other models
of communication complexity such as randomized, quantum, or mul-
tiparty variants. Here one can still give a lower bound in terms of an
appropriate variation of rank, but the bounds now can become very
di�cult to evaluate. In the case of multiparty complexity, for example,
the communication matrix becomes a communication tensor, and one
must study tensor rank. Unlike matrix rank, the problem of comput-
ing tensor rank is NP-hard [Hås90], and even basic questions like the
largest possible rank of an n-by-n-by-n real tensor remain open.

For randomized or quantum variants of communication complexity,
as shown by Krause [Kra96] and Buhrman and de Wolf [BW01] respec-
tively, the relevant rank bound turns out to be approximate rank.
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De�nition 1.1. Let A be a sign matrix. The approximate rank of A
with approximation factor α, denoted rankα(A), is

rankα(A) = min
B:1≤A[i,j]B[i,j]≤α

rank(B).

As we shall see in Chapter 4 and Chapter 5, the logarithm of approx-
imate rank is a lower bound on randomized and quantum communica-
tion complexity, where the approximation factor α relates to the success
probability of the protocol. In analogy with the log rank conjecture, it
is also reasonable to conjecture here that this bound is polynomially
tight.

Approximate rank, however, can be quite di�cult to compute. While
we do not know if it is NP-hard, similar rank minimization problems
subject to linear constraints are NP-hard, see for example section 7.3
of [VB96]. Part of this di�culty stems from the fact that approximate
rank is an optimization problem over a nonconvex function.

This brings us to the main theme of our survey. We focus on lower
bound techniques which are real-valued functions and ideally possess
some �nice� properties, such as being convex. The development and
application of these techniques follows a three-step approach which we
now describe. This approach can be applied in much the same way for
di�erent models, be they randomized, quantum, or multiparty.

Say that we are interested in a complexity measure CC, a mapping
from functions to the natural numbers, which could represent any one
of the above models.

(1) Embed the problem in Rm×n. That is, �nd a function G :
Rm×n → R such that

G(A) ≤ CC(A),

for every sign matrix A. As is the case with rank and ap-
proximate rank, often G will itself be naturally phrased as a
minimization problem.

(2) Find an equivalent formulation of G in terms of a maximiza-
tion problem. This will of course not always be possible, as
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in the case of approximate rank. This can be done, however,
for rank and for a broad class of optimization problems over
convex functions.

(3) Prove lower bounds on G by exhibiting an element of the
feasible set for which the objective function is large. We call
such an element a witness as it witnesses that G is at least as
large as a certain value.

We will delay most of the technical details of this approach to the main
body of the survey, in particular to Chapter 6 where we discuss the use
of duality to perform the key step 2 to go from a �min� formulation to a
�max� formulation. Here we limit ourselves to more general comments,
providing some intuition as to why and in what circumstances this
approach is useful.

Step 1 We are all familiar with the idea that it can be easier to
�nd the extrema of a smooth real-valued function than a discrete val-
ued function. For example, for smooth functions the powerful tools of
calculus are available. To illustrate, think of integer programming vs.
linear programming. The latter problem can be solved in polynomial
time, while even simple instances of integer programming are known to
be NP-hard.

The intuition behind the �rst step is the same. The complexity of a
protocol is a discrete valued function, so in determining communication
complexity we are faced with an optimization problem over a discrete
valued function. By working instead with a real valued lower bound
G we will have more tools at our disposal to evaluate G. Moreover, if
G is �nice��for example being an optimization problem over a convex
function�then the set of tools available to us is particularly rich. For
instance, we can use duality to enact step 2.

We do potentially pay a price in performing Step 1 and working with
a �nicer� function G. It could be the case that G(A) is much smaller than
CC(A) for some sign matrices A. Just as in approximation algorithms,
we seek a bound that is not only easier to compute but also approxi-
mates CC(A) well. We will say that a representation G(A) is faithful if
there is some constant k such that CC(A) ≤ G(A)k for all sign matrices
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A.

Step 2 A communication complexity measure CC(A) is naturally
phrased as a minimization problem�looking for a protocol of mini-
mum cost. Often times, as with the case of approximate rank, our lower
bound G is also naturally phrased as a minimization problem.

The di�culty, of course, is that to lower bound a minimization prob-
lem one has to deal with the universal quanti�er ∀�we have to show
that every possible protocol requires a certain amount of communica-
tion.

When our complexity measure G is of a nice form, however, such
as a minimization problem of a convex function, we can hope to �nd
an equivalent formulation of G in terms of a maximization problem. A
maximization problem is much easier to lower bound since we simply
have to demonstrate a particular feasible instance for which the target
function is large. In some sense this can be thought of as an �algorithmic
approach� to lower bounds. In Chapter 6 we will show how this can be
done for a large class of complexity measures known as approximate

norms.
This is an instance of a more general phenomena: showing a state-

ment about existence is often easier than proving a statement about
nonexistence. The former can be certi�ed by a witness, which we do
not always expect for the latter. Take the example of graph planarity,
i.e. the question of whether a graph can be drawn in the plane in such
a way that its edges intersect only at their endpoints. While it can be
tricky to �nd such a drawing, at least we know what form the answer
will take. To show that a graph is nonplanar, however, seems like a much
more daunting task unless one has heard of Kuratowski's Theorem or
Wagner's Theorem. These theorems reduce the problem of nonexistence
to that of existence: for example, Wagner's theorem states that a graph
is nonplanar if and only if it containsK5, the complete graph on �ve ver-
tices, or K3,3 the complete three-by-three bipartite graph, as a minor.
Not surprisingly, theorems of this �avor are key in e�cient algorithmic
solutions to planarity and nonplanarity testing.
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Step 3 Now that we have our complexity measure G phrased in terms
of a maximization problem, we are in much better shape. Any element
from the feasible set can be used to show a lower bound, albeit not
necessarily a good one. As a simple example, going back to the rank
lower bound, observe that a natural way to prove a lower bound on
rank is to �nd a large set of columns (or rows) that are independent.

Finding a good witness to prove a lower bound for a certain com-
plexity measure G can still be a very di�cult task. This is the subject
we take up in Chapter 7. There are still only a few situations where we
know how to choose a good witness, but this topic has recently seen a lot
of exciting progress and more is certainly still waiting to be discovered.

Approximate norms The main example of the three-step approach
we study in this survey is for approximate norms. We now give a more
technical description of this case; the reader can skip this section at
�rst reading, or simply take it as an �impression� of what is to come.

Let Φ be any norm on Rm×n, and let α ≥ 1 be a real number. The
α-approximate norm of an m× n sign matrix A is

Φα(A) = min
B:1≤A[i,j]B[i,j]≤α

Φ(B).

The limit as α→∞ motivates the de�nition

Φ∞(A) = min
B:1≤A[i,j]B[i,j]

Φ(B).

In Step 1 of the framework described above we will usually take
G(A) = Φα(A) for an appropriate norm Φ. We will see that the familiar
matrix trace norm is very useful for showing communication complexity
lower bounds, and develop some more exotic norms as well. We discuss
this step in each of the model speci�c chapters, showing which norms
can be used to give lower bounds on deterministic (Chapter 2), nonde-
terministic (Chapter 3), randomized (Chapter 4), quantum (Chapter 5),
and multiparty (Chapter 8) models.

The nice thing about taking G to be an approximate norm is that we
can implement Step 2 of this framework in a general way. As described
in Chapter 6, duality can be applied to yield an equivalent formulation
for any approximate norm Φα in terms of a maximization. Namely, for
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a sign matrix A

Φα(A) = max
W

(1 + α)〈A,W 〉+ (1− α)‖W‖1
2Φ∗(W )

(1.1)

Here Φ∗ is the dual norm:

Φ∗(W ) = max
X

〈W,X〉
Φ(X)

We have progressed to Step 3. We need to �nd a witness matrix
W that makes the bound from Equation 1.1 large. As any matrix W
at all gives a lower bound, we can start with an educated guess and
modify it according to the di�culties that arise. This is similar to the
case discussed earlier of trying to prove that a graph is planar�one can
simply start drawing and see how it goes. The �rst choice of a witness
that comes to mind is the target matrix A itself. This gives the lower
bound

Φα(A) ≥ (1 + α)〈A,A〉+ (1− α)‖A‖1
2Φ∗(A)

=
mn

Φ∗(A)
. (1.2)

This is actually not such a bad guess; for many interesting norms this
lower bound is tight with high probability for a random matrix. But it
is not always a good witness, and there can be a very large gap between
the two sides of the inequality (1.2). One reason that the matrix Amight
be a bad witness, for example, is that it contains a large submatrix S
for which Φ∗(S) is relatively large.

A way to �x this de�ciency is to take instead of A any matrix P ◦A,
where P is a real matrix with nonnegative entries that sum up to 1.
Here ◦ denotes the entry-wise product. This yields a better lower bound

Φα(A) ≥ max
P :P≥0
‖P‖1=1

1
Φ∗(P ◦A)

. (1.3)

Now, by a clever choice of P , we can for example give more weight to a
good submatrix of A and less or zero weight to submatrices that attain
large values on the dual norm. Although this new lower bound is indeed
better, it is still possible to exhibit an exponential gap between the two
sides of (1.3). This is nicely explained by the following characterization
given in Chapter 7.
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Theorem 1.2. For every sign matrix A

Φ∞(A) = max
P :P≥0
‖P‖1=1

1
Φ∗(P ◦A)

.

The best value a witness matrix W which has the same sign as A in
each entry can provide, therefore, is equal to Φ∞(A). It can be expected
that there are matrices A for which Φ∞(A) is signi�cantly smaller than
Φα(A) for say α = 2 1. This is indeed the case for some interesting com-
munication complexity problems such as the SET INTERSECTION
problem where f(x, y) =

∨
i(xi ∧ yi), which will be a running example

throughout the survey.
When Φ∞(A) is not a good lower bound on Φα(A) for bounded

α, there are only a few situations where we know how to choose a
good witness. One case is where A is the sign matrix of a so-called
block composed function, that is, a function of the form (f • gn)(x, y) =
f(g(x1, y1), . . . , g(xn, yn)) where x = (x1, . . . , xn) and y = (y1, . . . , yn).
This case has recently seen exciting progress [She09, She08c, SZ09b].
These works showed a lower bound on the complexity of a block com-
posed function in terms of the approximate degree of f , subject to the
inner function g satisfying some technical conditions. The strength of
this approach is that the approximate degree of f : {0, 1}n → {−1,+1}
is often easier to understand than its communication complexity. In
particular, in the case where f is symmetric, i.e. only depends on the
Hamming weight of the input, the approximate polynomial degree has
been completely characterized [Pat92]. These results are described in
detail in Chapter 7.2.

Historical context The �three-step approach� to proving commu-
nication complexity lower bounds has already been used in the �rst
papers studying communication complexity. In 1983, Yao [Yao83] gave
an equivalent �max� formulation of randomized communication com-
plexity using von Neumann's minimax theorem. He showed that the

1Notice that Φα(A) is a decreasing function of α.
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1/3-error randomized communication complexity is equal to the max-
imum over all probability distributions P , of the minimum cost of a
deterministic protocol which errs with probability at most 1/3 with
respect to P . Thus one can show lower bounds on randomized com-
munication complexity by exhibiting a probability distribution which
is hard for deterministic protocols. This principle is the starting point
for many lower bound results on randomized complexity.

A second notable result using the �three-step approach� is a charac-
terization by Karchmer, Kushilevitz, and Nisan [KKN95] of nondeter-
ministic communication complexity. Using results from approximation
theory, they show that a certain linear program characterizes nondeter-
ministic communication complexity, up to small factors. By then look-
ing at the dual of this program, they obtain a �max� quantity which
can always show near optimal lower bounds on nondeterministic com-
munication complexity.

The study of quantum communication complexity has greatly con-
tributed to our understanding of the role of convexity in communi-
cation complexity lower bounds, and these more recent developments
occupy a large portion of this survey. The above two examples are
remarkable in that they implement the �three-step approach� with a
(near) exact representation of the communication model. For quan-
tum communication complexity, however, we do not yet have such a
characterization which is convenient for showing lower bounds. The
search for good representations to approximate quantum communica-
tion complexity led in particular to the development of approximate
norms [Kla01, Raz03, LS09c]. Klauck (Lemma 3.1) introduced what we
refer to in this survey as the µα approximate norm, also known as the
generalized discrepancy method. While implicit in Klauck and Razborov,
the use of Steps 2 and 3 of the three-step approach becomes explicit in
later works [LS09c, She08c, SZ09b].

What is not covered In the thirty years since its inception, com-
munication complexity has become a vital area of theoretical computer
science, and there are many topics which we will not have the oppor-
tunity to address in this survey. We mention some of these here.
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Much work has been done on protocols of a restricted form, for
example one-way communication complexity where information only
�ows from Alice to Bob, or simultaneous message passing where Alice
and Bob send a message to a referee who then outputs the function
value. A nice introduction to some of these results can be found in
[KN97]. In this survey we focus only on general protocols.

For the most part, we stick to lower bound methods that �t into
the general framework described earlier. As we shall see, these methods
do encompass many techniques proposed in the literature, but not all.
In particular, a very nice approach which we do not discuss are lower
bounds based on information theory. These methods, for example, can
give an elegant proof of the optimal Ω(n) lower bound on the SET
INTERSECTION problem. We refer the reader to [BYJKS04] for more
details.

We also restrict ourselves to the case where Alice and Bob want to
compute a Boolean function. The study of the communication complex-
ity of relations is very interesting and has nice connections to circuit
depth and formula size lower bounds. More details on this topic can be
found in Kushilevitz and Nisan [KN97].

Finally, there are some models of communication complexity which
we do not discuss. Perhaps the most notable of these is the model
of unbounded-error communication complexity. This is a randomized
model where Alice and Bob only have to succeed on every input with
probability strictly greater than 1/2. We refer the reader to [For02,
She08d, RS08] for interesting recent developments on this model.
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Deterministic communication complexity

In this chapter, we look at the simplest variant of communication com-
plexity, where the two parties act deterministically and are not allowed
to err. As we shall see, many of the lower bound techniques we develop
for this model can be fairly naturally extended to more powerful models
later on.

Say that Alice and Bob wish to arrange a meeting, and want to
know if there is a common free slot in their busy schedules. How much
might Alice and Bob have to communicate to �gure this out? We will
shortly see that, in the worst case, Alice may have to send her entire
agenda to Bob.

We can describe this scenario as a function f : {0, 1}n × {0, 1}n →
{T, F} where the ones in Alice and Bob's input represent the free time
slots. This function is one of the recurrent examples of our survey,
the SET INTERSECTION function. In general, the two binary inputs
x, y ∈ {0, 1}n are thought of as characteristic vectors of subsets of
[n] = {1 . . . n}. Alice and Bob wish to decide whether these subsets
intersect.

We informally described a deterministic protocol in the introduction;
let us now make this formal.

13
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De�nition 2.1. A deterministic protocol for a function f : X × Y →
{T, F} is a binary tree T with internal nodes labeled either by a function
av : X → {0, 1} or bv : Y → {0, 1}, and leaves labeled by elements from
{T, F}. An input (x, y) de�nes a path in T from the root to a leaf as
follows: beginning at the root, at an internal node v move to the left
child of v if av(x) = 0 or bv(y) = 0 and otherwise move to the right child
of v, until arriving at a leaf. A protocol correctly computes a function f
if for every input (x, y) the path de�ned by (x, y) in T arrives at a leaf
labeled by f(x, y). The cost of a protocol is the number of edges in a
longest path from the root to a leaf. The deterministic communication
complexity of a function f , denoted D(f) is the minimum cost of a
protocol which correctly computes f .

One of the most fundamental concepts in deterministic communi-
cation complexity is that of a combinatorial rectangle. This is a subset
C ⊆ X × Y which can be written in the form C = X ′ × Y ′ for some
X ′ ⊆ X and Y ′ ⊆ Y . There is a bijection between combinatorial rectan-
gles and Boolean rank-one |X|-by-|Y | matrices�namely, we associate
to a rectangle C the Boolean matrix R where R[x, y] = 1 if (x, y) ∈ C
and R[x, y] = 0 otherwise. We identify a combinatorial rectangle with
its Boolean matrix representation. We say that a combinatorial rect-
angle C is monochromatic with respect to f if f(x, y) = f(x′, y′) for all
pairs (x, y), (x′, y′) ∈ C.

A basic and very useful fact is that a correct deterministic commu-
nication protocol for a function f partitions the set of inputs X × Y
into combinatorial rectangles which are monochromatic with respect to
f .

De�nition 2.2 (partition number). Let X,Y be two �nite sets and
f : X×Y → {T, F}. De�ne the partition number, CD(f) as the minimal
size of a partition of X × Y into combinatorial rectangles which are
monochromatic with respect to f .
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Theorem 2.1 (partition bound). Let f : X × Y → {T, F}. Then

D(f) ≥ logCD(f).

Proof. Let T be a protocol of cost c which correctly computes f . Recall
from the de�nition of a protocol that we describe T as a binary tree of
height c. As the height of this tree is c, it has at most 2c many leaves `.
For each leaf `, de�ne the set C` = {(x, y) : (x, y) ∈ X×Y, T (x, y)→ `}.
By the notation T (x, y) → ` we mean that the path de�ned by (x, y)
arrives at leaf `.

We have now de�ned at most 2c many sets {C`} for each leaf of
the protocol. Since the protocol is correct, it is clear that each set
C` is monochromatic with respect to f , and because the functions
av(x), bv(y) are deterministic, the sets {C`} form a partition of X × Y .
It remains to show that each C` is a combinatorial rectangle.

Suppose that (x, y′), (x′, y) ∈ C`. This means that the paths de-
scribed by (x, y′), (x′, y) in T coincide. We will show by induction that
(x, y) follows this same path and so (x, y) ∈ C` as well. This is clearly
true after 0 steps as all paths begin at the root. Suppose that after k
steps the path described by (x, y), (x, y′), (x′, y) have all arrived at a
node v. If this is an Alice node then both (x, y) and (x, y′) will move
to the child of v indicated by av(x); if this is a Bob node, then both
(x, y) and (x′, y) will move to the child of v indicated by bv(y). In either
case, the paths described by (x, y), (x, y′), (x′, y) still agree after k + 1
steps, �nishing the proof. The reader can verify that a set for which
(x, y′), (x′, y) ∈ C` implies (x, y) ∈ C`, is a combinatorial rectangle.

The partition bound is a relaxation of deterministic communication
complexity. A correct deterministic protocol leads to a �tree-like� par-
tition of f into monochromatic combinatorial rectangles, whereas the
partition bound allows an arbitrary partition. This relaxation, however,
remains relatively tight.

Theorem 2.2 (Aho, Ullman, Yannakakis [AUY83]). Let f : X×
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Y → {T, F} be a function, then

D(f) ≤ (log(CD(f)) + 1)2.

We will see a proof of a stronger version of this theorem in Chap-
ter 3. Kushilevitz et al. [KLO96] exhibited a function for which D(f) ≥
2 logCD(f), currently the largest such gap known.

The partition bound is a relaxation of communication complexity
which is guaranteed to give relatively tight bounds. On the negative
side, the partition bound is hard to compute. Counting the number of
1-rectangles in a smallest monochromatic partition is equivalent to the
biclique partition problem, which is NP-hard [JR93]. While this says
nothing about the ability of humans to compute the partition bound
for communication problems of interest, experience demonstrates the
partition bound is also di�cult to compute in practice.

We now look at further easier-to-compute relaxations of the parti-
tion bound coming from linear algebra. Consider the Boolean commu-
nication matrix corresponding to f : X × Y → {T, F}, denoted Bf .
This is a |X|-by-|Y | matrix where Bf [x, y] = 1 if f(x, y) = T and
Af [x, y] = 0 if f(x, y) = F . Denote by B̄f the communication matrix
corresponding to the negation of f .

The partition bound leads us immediately to one of the most impor-
tant lower bound techniques in deterministic communication complex-
ity, the log rank bound, originally developed by Mehlhorn and Schmidt
[MS82].

Theorem 2.3 (log rank bound). Let f : X×Y → {T, F} be a func-
tion and Bf the Boolean communication matrix for f . Then

D(f) ≥ log(rank(Bf ) + rank(B̄f )).

Proof. By Theorem 2.1, if D(f) = c, then there exists a partition of
|X| × |Y | into at most 2c many combinatorial rectangles which are
monochromatic with respect to f . Consider such an optimal partition
P .
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A monochromatic rectangle of f either has all entries equal to zero
or all entries equal to one� say that there are Z all zero rectangles and
O all-one rectangles in the partition P . We clearly have O + Z ≤ 2c.

With each all-one rectangle Ri in P we associate a rank-one Boolean
matrix uivti . Naturally

Bf =
O∑
i=1

uiv
t
i ,

where we sum over the all-one rectangles in P . By subadditivity of rank,
we �nd that rank(Bf ) ≤ O. A similar argument shows that rank(B̄f ) ≤
Z, giving the theorem.

Remark 2.1. We can also consider the sign matrix Af corresponding
to the function f , where Af [x, y] = −1 if f(x, y) = T and Af [x, y] = 1
if f(x, y) = F . By a very similar argument one can show that D(f) ≥
log rank(Af ).

Recall that the trivial protocol for a function f : {0, 1}n×{0, 1}n →
{T, F} requires n + 1 many bits. Whereas the log rank bound with a
sign matrix can show bounds of size at most n, the Boolean form of the
log rank bound can sometimes give bounds of size n + 1, satisfyingly
showing that the trivial protocol is absolutely optimal.

We see that the log rank bound relaxes the bound from Theorem 2.1
in two ways. First, rank is the smallest k such that A =

∑k
i=1 xiy

t
i ,

where xi, yi are allowed to be arbitrary real vectors, not Boolean vectors
as is required in the partition bound; second, the rank one matrices
xiy

t
i , xjy

t
j are allowed to overlap, whereas the partition bound looks at

the size of a smallest partition. What we give up in strength of the
bound, we gain in ease of application as matrix rank can be computed
in time polynomial in the size of the matrix.

Let us see an example of the log rank bound in action. We return
to the problem of Alice and Bob arranging a meeting, the SET IN-
TERSECTION problem. It will actually be more convenient to study
the complement of this problem, the DISJOINTNESS function. It is
clear that in the deterministic case, a problem and its complement have
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the same complexity. The Boolean communication matrix for the DIS-
JOINTNESS function on one bit is

DISJ1 =
(

1 1
1 0

)
.

The columns and rows of DISJ1 are labeled by the two possible in-
puts 0, 1 in that order. Now consider the communication matrix for the
problem on two bits

DISJ2 =


1 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0

 .

We see that DISJ2 = DISJ1 ⊗ DISJ1 is the tensor product of DISJ1

with itself. This is because taking the tensor product of two Boolean
matrices evaluates the AND of their respective inputs. We can easily
check that the matrix DISJ1 has full rank. Thus the rank of the disjoint-
ness function on k bits, DISJk = DISJ⊗k1 is 2k as rank is multiplicative
under tensor product. Now applying Theorem 2.3, we �nd that the de-
terministic communication complexity of the disjointness problem on k
inputs is at least k + 1. This shows that the trivial protocol is optimal
in the case of SET INTERSECTION.

2.1 Log rank conjecture

One of the most notorious open problems in communication complexity
is the log rank conjecture. This conjecture asserts that the log rank
bound is faithful, i.e. that it is polynomially related to deterministic
communication complexity.

Conjecture 2.1 (Lovász and Saks [LS88]). There exists a con-
stant c such that for any function f

D(f) ≤ (log rank(Af ))c + 2.

The log rank conjecture actually has its origins in graph theory. Let
G = (V,E) be a graph, the chromatic number χ(G) of G is the size of a
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smallest partition of the vertices of G into �color� classes such that there
is no edge between vertices in the same class. The adjacency matrix AG
of G is a |V |-by-|V | Boolean matrix where AG[v, w] = 1 if (v, w) ∈ E
and AG[v, w] = 0 otherwise.

It was conjectured that the rank of the adjacency matrix of a simple
graph is an upper bound on its chromatic number, that is χ(G) ≤
rank(AG). This conjecture was made independently by van Nu�elen
[Nuf76] and by the conjecture generating computer program Gra�ti
[Faj88]. This conjecture was disproved by Alon and Seymour [AS89],
who gave an example of a graph on 64 vertices with chromatic number
32 and rank 29.

Lovász and Saks [LS88] made the log rank conjecture in the
above form, and showed that it is equivalent to the statement that
(log rank(AG))c is an upper bound on logχ(G), for some constant c.

Several examples that separate communication complexity and log
rank have been given. Raz and Spieker [RS95] gave an example with
a super-linear separation between communication complexity and log
rank, and Nisan and Wigderson [NW95] showed the largest separation
currently known: a function f where D(f) ≥ (log rank(Af ))1.63 (this
constant was obtained via a slight improvement due to Kushilevitz, see
[NW95]).

On the positive side, we know that D(f) ≤ rank(Af ), but this is
exponentially far from the goal of the conjecture. In fact, we can also
upper bound communication complexity by the rank over GF (2). This
is sometimes tight, e.g. for the inner product function.

Theorem 2.4. Let B be a Boolean matrix and rank2(B) be the rank
of B over GF (2). Then

D(f) ≤ rank2(Bf ) + 1

Proof. Let r = rank2(Bf ). We can factor Bf = XtY where X,Y are
Boolean valued matrices with r many rows. On input i, Alice can simply
send Xi, the column of X labeled by i, to Bob with r many bits. Bob
can then take the inner product of Xi with Yj�the column labeled by
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his input j�to determine Bf [i, j]. With one more bit Bob sends the
value of Bf [i, j] to Alice.

2.2 Nonnegative rank

Yannakakis [Yan91] introduced to communication complexity the no-
tion of nonnegative rank.

De�nition 2.3. LetM be a nonnegative matrix. The nonnegative rank

of M , denoted rank+(A) is the least r such that

M =
r∑
i=1

xiy
t
i

for nonnegative vectors xi, yi.

We clearly have rank(M) ≤ rank+(M) for a nonnegative matrix M .
For a Boolean matrix B, notice that the rank-one decomposition of B
induced by a successful protocol as in Theorem 2.3 only uses nonneg-
ative (in fact Boolean) matrices, and so log rank+(Bf ) ≤ D(f). While
nonnegative rank gives stronger lower bounds, it is also NP-hard to
compute [Vav07] and we are not aware of any lower bounds which ac-
tually use nonnegative rank in practice.

Lovász shows that max{log rank+(Bf ), log rank+(J−Bf )}, where J
is the all-ones matrix, faithfully represents deterministic communication
complexity. In fact, he gives the following stronger bound.

Theorem 2.5 (Lovász [Lov90], Corollary 3.7).

D(f) ≤ (log(rank+(Bf )) + 1)(log(rank(J −Bf )) + 1).

We will see the proof of this theorem in Section 3.2 in the chapter on
nondeterministic communication complexity.

Theorem 2.5 suggests the following equivalent formulation of the log
rank conjecture as a purely mathematical question:
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Theorem 2.6. The log rank conjecture holds if and only if there is a
constant c such that for all Boolean matrices B

log rank+(B) ≤ (log rank(B))c.

2.3 Norm based methods

We have seen the partition bound which is a lower bound on deter-
ministic communication complexity, and the rank lower bound which
in turn relaxes the partition bound. We now survey another family of
lower bound methods based on (matrix and vector) norms.

Although sometimes requiring nontrivial arguments, it turns out
that all the norm based methods discussed in this section in fact lower
bound matrix rank. This prompts the question: why study these norm
based techniques if the rank method gives a better lower bound and
is, at least from a theoretical perspective, easy to compute? The real
advantage of these norm based methods will only be seen later on in the
study of randomized and multiparty models. While the rank method can
also be appropriately extended to these models, it becomes much more
di�cult to compute; the convexity properties of norm based methods
make their extensions to these models more tractable. We go ahead
and introduce the norm based methods in the context of deterministic
communication complexity where the situation is simpler, and later
discuss how they can be adapted to more powerful models.

We repeatedly use the `1, `2 and `∞ norms, hence we recall their
de�nition here: for a vector v ∈ Rn and a real number p ≥ 1 the `p norm
of v, denoted ‖v‖p, is de�ned as ‖v‖p = (

∑n
i=1 |v[i]|p)1/p. We see then

that ‖v‖1 =
∑

i |v[i]|, and ‖v‖2 = (
∑

i |v[i]|2)1/2. The limiting case is
‖v‖∞ = maxi |v[i]|. The reader should keep in mind that matrices and
functions to R can be naturally viewed as vectors, whence taking their
`p norms is likewise natural.

2.3.1 Trace norm

We begin with a simple lower bound on the rank. Let A be a m-by-
n real matrix. The matrix AAt is positive semide�nite, hence it has
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nonnegative real eigenvalues. We denote these eigenvalues by λ1(AAt) ≥
· · · ≥ λm(AAt). The ith singular value of A, denoted σi(A), is de�ned
by σi(A) =

√
λi(AAt). In many ways, singular values can be seen as a

generalization of eigenvalues to non-square matrices. If A is symmetric,
then its singular values are just the absolute values of its eigenvalues.
While not every matrix can be diagonalized, every matrix A can be
factored as A = UΣV where U is a m-by-m unitary matrix, V is a
n-by-n matrix and Σ is a diagonal matrix with the singular values of A
on its diagonal. This shows in particular that the rank of A is equal to
the number of nonzero singular values.

De�nition 2.4 (trace norm). Let A be a m-by-n matrix, and let
σ = (σ1, . . . , σrank(A)) be the vector of nonzero singular values of A.
The trace norm of A, denoted ‖A‖tr is

‖A‖tr = ‖σ‖1

We also make use of the Frobenius norm.

De�nition 2.5 (Frobenius norm). Let A be a m-by-n matrix, and
let σ = (σ1, . . . , σrank(A)) be the vector of nonzero singular values of A.
The Frobenius norm of A, denoted ‖A‖F is

‖A‖F = ‖σ‖2.

As the number of nonzero singular values is equal to the rank of A, the
Cauchy-Schwarz inequality gives

‖A‖tr =
rank(A)∑
i=1

σi(A) ≤
√

rank(A)
√∑

i=1

σ2
i (A).

Rearranging, this gives us the following lower bound on the rank.

rank(A) ≥ ‖A‖
2
tr

‖A‖2F
.

In this section, it is convenient to consider the sign version of the
communication matrix. The reason is that, for a sign matrix A, the
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Frobenius norm simpli�es very nicely. Notice that as the trace of a sym-
metric matrix is the sum of its eigenvalues, we have ‖A‖2F = Tr(AAt).
By explicitly writing the diagonal elements of AAt, we also see that
Tr(AAt) =

∑
i,j |A[i, j]|2 = ‖A‖22. Hence for a m-by-n sign matrix A,

we have ‖A‖2F = mn. This gives the following lower bound, which we
call the trace norm method.

Theorem 2.7 (trace norm method). Let A be a m-by-n sign ma-
trix. Then

D(A) ≥ log rank(A) ≥ log
‖A‖2tr
mn

As an example, let us compute the trace norm bound for the IN-
NER PRODUCT function. Recall that in this case Alice and Bob wish
to evaluate the parity of the number of positions for which xi = yi = 1.
The sign matrix of this function turns out to be the familiar Sylvester
construction of Hadamard matrices 1. If we look at the INNER PROD-
UCT function on just one bit we have the matrix

H1 =
(

1 1
1 −1

)
Since taking the tensor product of sign matrices corresponds to taking
the parity of their inputs, the communication matrix of the INNER
PRODUCT function on k bits is Hk = H⊗k1 . It is not hard to prove
that the matrix Hk is orthogonal, i.e. satis�es HkH

t
k = 2kIk, where

Ik is the 2k-by-2k identity matrix. One can simply verify that H1 is
orthogonal, and that the tensor product of two orthogonal matrices is
also orthogonal. It follows then that Hk has 2k singular values, all equal
to 2k/2, and so its trace norm is 23k/2. Thus, applying the trace norm
method, we obtain a bound of k, implying that the trivial protocol is
essentially optimal for the INNER PRODUCT function.2

1A Hadamard matrix is an orthogonal sign matrix. That is, a sign matrix whose rows are
pairwise orthogonal.

2For this example it is even easier to argue about the rank as HkH
t
k = 2kIk means that Hk

is full rank. The advantage of the trace norm argument is that it can be easily extended
to the randomized case, see Example 7.1.
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2.3.2 γ2 norm

As a complexity measure, the trace norm method su�ers from one draw-
back: it is not monotone with respect to function restriction. In other
words, it sometimes gives a worse bound on a restriction of a function
than on the function itself. An example of this is the matrix(

Hk Jk
Jk Jk

)
,

where Jk is the 2k-by-2k matrix whose entries are all equal to one. The
trace norm of this matrix is at most 23k/2+3·2k. Since in the trace norm
method we normalize by the matrix size, in this case 22k+2, this method
gives a smaller bound on the above matrix than on the submatrix Hk.

To remedy this, we seek a way to focus on the �di�cult� part of the
matrix. We do this by putting weights on the entries of the matrix in
the form of a rank-one matrix uvt. The weighted matrix is then the
entrywise product of A with uvt, denoted A ◦ uvt. It is easy to check
that rank(A ◦ uvt) ≤ rank(A), and so

rank(A) ≥ max
u,v

‖A ◦ uvt‖2tr
‖A ◦ uvt‖2F

(2.1)

for any u, v. This new bound is monotone with respect to function
restriction. If A is a sign matrix, then it is particularly nice to choose
u, v to be unit vectors, for then ‖A ◦ uvt‖F = ‖u‖2‖v‖2 = 1. This
motivates the following de�nition

De�nition 2.6 (γ2 norm). For a matrix A we de�ne

γ2(A) = max
u,v:‖u‖2=‖v‖2=1

‖A ◦ uvt‖tr

The connection of γ2 to communication complexity is given by the
following theorem which follows from Equation 2.1.

Theorem 2.8. Let A be a sign matrix. Then

rank(A) ≥ γ2(A)2.



2.3. Norm based methods 25

While the γ2 norm has been introduced relatively recently to com-
plexity theory [LMSS07, LS09c], it has been around in matrix analysis
for a while. Tracing its heritage is somewhat di�cult because of its many
di�erent names: in the matrix analysis community it has been called
by various combinations of �Hadamard/Schur operator/trace norm.�
Schur in 1911 [Sch11] showed that if a matrix A is positive semidef-
inite, then γ2(A) = maxiA[i, i]. It should be noted that unlike the
trace norm, γ2 is not a matrix norm as it is not true in general that
γ2(AB) ≤ γ2(A)γ2(B).

That γ2 is a norm, namely that it satis�es γ2(A + B) ≤ γ2(A) +
γ2(B), can be seen most easily by the following equivalent formulation
as a minimization problem. A proof of the equivalence of this de�nition
with the one given above can be found in [LS�08].

Theorem 2.9. For any real m-by-n matrix M

γ2(M) = min
X,Y :XY t=M

r(X)r(Y ) (2.2)

where r(X) is the largest `2 norm of a row of X.

Let us see that the optimization problem of Theorem 2.9 can be
written as a semide�nite program as follows.

γ2(M) = min c

cI � Z ◦ I

Z ◦
(

0 Jm,n
Jn,m 0

)
=
(

0 M

M t 0

)
Z � 0.

Here Jm,n indicates the m-by-n all-ones matrix, and I the (m+ n)-by-
(m+ n) identity matrix.

Let X,Y be an optimal solution to Equation 2.2. Notice that by
multiplying X by a suitable constant and dividing Y by the same con-
stant, we may assume that r(X) = r(Y ). Now let

Z =
(
X

Y

)(
X

Y

)t
.
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By construction this matrix is positive semide�nite, and is equal to M
on the o� diagonal blocks as M = XY t. Furthermore, the diagonal
entries of Z are at most max{r(X)2, r(Y )2} ≤ γ2(M).

For the other direction, given an optimal solution Z to the above
semide�nite program, we can factor Z as

Z =
(
X

Y

)(
X

Y

)t
,

for some m-by-k matrix X and n-by-k matrix Y . Then the con-
straints of the semide�nite program give that XY t = M and that
max{r(X)2, r(Y )2} ≤ c, the value of the program.

Finally, from this semide�nite programming formulation of γ2, it is
easy to verify that γ2(M1 + M2) ≤ γ2(M1) + γ2(M2). Let X1 and X2

be semide�nite matrices attaining the optimal value in this program
for the matrices M1 and M2 respectively. Recall that the sum of two
semide�nite matrices is also a semide�nite matrix. It is easy to see
that X1 +X2 is a feasible instance of the above program for M1 +M2,
achieving the value γ2(M1) + γ2(M2). The semide�nite programming
formulation also shows that γ2(M) can be computed up to error ε in
time polynomial in the size of the matrix and log(1/ε).

2.3.3 µ norm

In this section we introduce another norm useful for communication
complexity, which we denote by µ. While the motivation for this norm
is somewhat di�erent from that of γ2, it surprisingly turns out that µ
and γ2 are equal up to a small multiplicative constant.

Recall the �partition bound� (Theorem 2.3) and the �log rank lower
bound� (Theorem 2.1). A basic property we used is that a sign matrix
A can be written as

A =
2D(A)∑
i=1

αiRi

where each αi ∈ {−1, 1} and each Ri is a rank-one Boolean matrix,
which we also call a combinatorial rectangle. As each αi ∈ {−1, 1} we
of course have

∑
i |αi| = 2D(A).
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The log rank lower bound is a relaxation of the partition bound
where we express A as the sum of arbitrary real rank-one matrices
instead of just Boolean matrices. The following de�nition considers a
di�erent relaxation of the partition bound, where we still consider a
decomposition in terms of Boolean matrices, but count their �weight�
instead of their number.

De�nition 2.7 (µ norm). Let M be a real matrix.

µ(M) = min
αi∈R
{
∑
i

|αi| : M =
∑
i

αiRi},

where each Ri is a combinatorial rectangle.

It is not hard to check that µ is a norm. Notice that µ(M) ≥ γ2(M) as
any combinatorial rectangle Ri satis�es γ2(Ri) ≤ 1.

Applying similar reasoning as for the log rank bound, we get

Theorem 2.10. Let A be a sign matrix, then

D(A) ≥ logµ(A).

2.3.4 The nuclear norm

It is sometimes useful to consider a slight variant of the norm µ where
instead of rank-one Boolean matrices we consider rank-one sign matri-
ces.

De�nition 2.8 (ν norm). Let M be a real matrix,

ν(M) = min
αi∈R
{
∑
i

|αi| : M =
∑
i

αixiy
t
i , for xi, yi sign vectors}

For readers with some background on norms, the norm ν is a nuclear

norm [Jam87]. Nuclear norms are dual to operator norms which we also
encounter later on. The norms µ and ν are closely related.
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Theorem 2.11. For every real matrix M ,

ν(M) ≤ µ(M) ≤ 4ν(M).

Proof. Since both µ and ν are norms, it is enough to show that

(1) ν(srt) ≤ 1 for every pair of Boolean vectors s and r.
(2) µ(xyt) ≤ 4 for every pair of sign vectors x and y.

For the �rst inequality we consider the following correspondence
between sign vectors and Boolean vectors. Given a Boolean vector s we
denote s̄ = 2s − 1 (Here 1 is a vector of ones). Note that s̄ is a sign
vector.

Now, s = 1
2(s̄+ 1), and therefore

ν(srt) =
1
4
ν((s̄+ 1)(r̄ + 1)t) ≤ 1.

To prove the second inequality simply split the sign vector x to
two Boolean vectors depending on whether xi is equal to 1 or −1, and
similarly for y. The rank-one sign matrix xyt can be written this way as
the linear combination of 4 combinatorial rectangles with coe�cients 1
and −1.

2.3.5 Dual norms

We have now introduced three norms γ2, µ, ν and seen that they give
lower bounds on deterministic communication complexity. For actually
proving lower bounds via these methods, a key role is played by their
dual norms. We go ahead and de�ne these dual norms here to collect
all the de�nitions in one place and as this is also the easiest way to see
that γ2 and ν are related by a constant factor. As we have already seen
that µ and ν are equivalent up to a factor of 4, this means that all three
norms are related by a constant factor.

For any arbitrary norm Φ, the dual norm, denoted Φ∗, is de�ned as

Φ∗(M) = max
Z:Φ(Z)≤1

〈M,Z〉.
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Let us �rst consider ν∗, the dual norm of ν. If a matrix Z satis�es
ν(Z) ≤ 1, then it can be written as Z = α1Z1 + . . .+ αpZp where each
Zi is a rank-one sign matrix and

∑
|αi| ≤ 1. Thus

ν∗(M) = max
{αi}∑
i |αi|≤1

∑
i

αi〈M,Zi〉.

The maximum will be achieved by placing weight 1 on the rank-one
sign matrix Zi which maximizes 〈M,Zi〉. Thus we have

ν∗(M) = max
x∈{−1,+1}m
y∈{−1,+1}n

∑
i,j

M [i, j] x[i] · y[j]. (2.3)

The dual norm ν∗(M) is also known as the in�nity-to-one norm
‖M‖∞→1. This is because one can argue that

ν∗(M) = max
x:‖x‖∞≤1
y:‖y‖∞≤1

∑
i,j

M [i, j] x[i] · y[j] = max
y:‖y‖∞≤1

‖My‖1.

In words, the �rst equality says that the optimal x, y will have each
entry in {−1,+1}.

A similar argument can be used to see that

µ∗(M) = max
x∈{0,1}m
y∈{0,1}n

∑
i,j

M [i, j] x[i] · y[j]. (2.4)

This norm is also known as the cut norm [FK99, AN06], as xtMy rep-
resents the weight of edges between the sets with characteristic vectors
given by x and y.

Both the ν∗ and µ∗ norms are NP-hard to compute [AN06]. The
dual norm γ∗2 of γ2 can be viewed as a natural semide�nite relaxation
of these norms. In fact, γ∗2 is exactly the quantity studied by Alon and
Naor [AN06] to give an e�cient approximation algorithm to the cut
norm, and is also closely related to the semide�nite relaxation of MAX
CUT considered by Goemans and Williamson [GW95].

We can derive a convenient expression for γ∗2 as we did with ν∗. If
a matrix Z satis�es γ2(Z) = 1, then we can write Zi[k, `] = 〈xk, y`〉 for
a collection of unit vectors {xk}, {y`}. Thus

γ∗2(M) = max
{xi},‖xi‖2≤1
{yi},‖yi‖2≤1

∑
i,j

M [i, j]〈xi, yj〉. (2.5)
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It is clear that γ∗2(M) ≥ ν∗(M) as the maximization is taken over
a larger set. Grothendieck's famous inequality says that γ∗2 cannot be
too much larger.

Theorem 2.12 (Grothendieck's Inequality). There is a constant
KG such that for any matrix M

γ∗2(M) ≤ KG ν
∗(M).

The current best bounds on KG show that 1.67 . . . ≤ KG ≤ 1.78 . . .
[Ree91, Kri79].

It is not hard to check that two norms are equivalent up to a constant
factor if and only if the corresponding dual norms are. Thus summariz-
ing, we have the following relationship between γ2, ν, µ:

Corollary 2.1 ([LS09b]). For any matrix M

γ2(M) ≤ ν(M) ≤ µ(M) ≤ 4KGγ2(M).

One consequence of this relationship is that rank(A) = Ω(µ(A)2) for a
sign matrix A, a fact which is not obvious from the de�nition of µ.

We will discuss all these norms in more detail in Chapter 4 on ran-
domized communication complexity.

2.4 Summary

Complexity measures Let A be a sign matrix, and denote by M a
real matrix.

• rank(M) - the rank of a the matrix M over the real �eld.
• rank2(A) - the rank of the matrix A over GF (2).
• rank+(M) - the nonnegative rank of M .
• D(A) - the deterministic communication complexity of A
(equivalently, the communication complexity of the corre-
sponding function).
• ‖M‖p = (

∑
i,j |M [i, j]|p)1/p - the `p norm.
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• ‖M‖tr - the trace norm of M .
• ‖M‖F - the Frobenius norm of M .
• γ2(M) = maxu,v:‖u‖2=‖v‖2=1 ‖A ◦ uvt‖tr - the γ2 norm.
• µ(M) - the dual norm to the cut norm.
• ν(M) - the nuclear norm of M .

Relations For every m× n sign matrix A and a real matrix M

• rank2(A) ≤ rank(A) ≤ rank+(A).
• log rank+(A) ≤ D(A) ≤ rank2(A).
• D(A) ≤ log rank(A) log rank+(A).
• rank(A) ≥ γ2(M)2 ≥ ‖A‖

2
tr

mn .
• ‖M‖F = ‖M‖2.
• γ2(M) ≤ ν(M) ≤ µ(M) ≤ 4KGγ2(M).
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Nondeterministic communication complexity

As with standard complexity classes, we can also consider a nondeter-
ministic version of communication complexity. It turns out that non-
deterministic communication complexity has a very nice combinatorial
characterization and in some ways is better understood than determinis-
tic communication complexity. In particular, nondeterministic commu-
nication complexity provides a prime example of the implementation of
the �three-step approach� outlined in the introduction.

We now formally de�ne nondeterministic communication complex-
ity. Let f : X × Y → {T, F} be a function, and let L = {(x, y) :
f(x, y) = T}. A successful nondeterministic protocol for f consists of
functions A : X × {0, 1}k → {0, 1} and B : Y × {0, 1}k → {0, 1} such
that

(1) For every (x, y) ∈ L there is z ∈ {0, 1}k such that A(x, z) ∧
B(y, z) = 1.

(2) For every (x, y) 6∈ L, for all z ∈ {0, 1}k, it holds A(x, z) ∧
B(y, z) = 0.

The cost of such a protocol is k, the length of the message z. We de�ne
N1(f) to be the minimal cost of a successful nondeterministic protocol

32
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for f . We let N0(f) = N1(¬f) and N(f) = max{N0(f), N1(f)}.
One can equivalently think of a nondeterministic protocol as con-

sisting of two stages�in the �rst stage both players receive a message
z, and in the second stage they carry out a deterministic protocol�the
cost now being the length of z plus the communication in the deter-
ministic protocol. The de�nition we have given is equivalent to this one
as the transcript of the deterministic protocol can always be appended
to the witness z with each party accepting if the transcript agrees with
what they would have said in the protocol, given what the other party
said.

Let us revisit the SET INTERSECTION problem. If someone with
knowledge of both Alice's and Bob's schedule tells them they can meet
Thursday at noon, they can easily verify this is true. On the other hand,
if they have no time in common to meet, every suggestion of the prover
will lead to a con�ict. Thus for the SET INTERSECTION problem f

we have N1(f) ≤ dlog ne.
Besides the analogy with nondeterministic complexity classes, an-

other motivation for studying nondeterministic complexity is that it has
a very natural combinatorial characterization.

De�nition 3.1. Let f : X × Y → {0, 1} be a function, and let b ∈
{0, 1}. We denote by Cb(f) the smallest cardinality of a covering of
f−1(b) by combinatorial rectangles. To illustrate, a covering of f−1(1)
is a set of rank-one Boolean matrices {Ri}i∈I such that: if f(x, y) = 1
then Ri[x, y] = 1 for some i ∈ I, and if f(x, y) = 0 then Ri[x, y] = 0 for
all i ∈ I.

We can also view this de�nition in graph theoretic terms. An ar-
bitrary Boolean matrix B can be thought as the �reduced� adjacency
matrix of a bipartite graph, where rows are labeled by vertices of one
color class and columns by vertices of the other color class. Then C1(B)
is the size of a smallest covering of the edges of B by bipartite cliques.
It is known that this is NP-hard to compute in the size of the graph
[Orl77], and even NP-hard to approximate within a factor of nδ for
some δ > 0 for a n-vertex graph [LY94].
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Theorem 3.1. Let f : X × Y → {0, 1} be a function,

N1(f) =
⌈
logC1(f)

⌉
Proof. First we show that N1(f) ≤

⌈
logC1(f)

⌉
. Let {Ri} be a covering

of f−1(1) of minimal cardinality. If f(x, y) = 1, the players receive the
name i of a rectangle Ri = X ′ × Y ′ such that Ri[x, y] = 1. Alice then
checks that x ∈ X ′ and Bob checks that y ∈ Y ′. If this is indeed the
case then they accept. If f(x, y) = 0 then by de�nition of a covering no
such index exists.

Now consider the opposite direction. Let k = N1(f) and let fA :
X × {0, 1}k → {0, 1}, fB : Y × {0, 1}k → {0, 1} be functions realizing
that the nondeterministic complexity of f is k. Let Rz = {(x, y) :
fA(x, z)∧fB(y, z) = 1}. This is a rectangle, and by de�nition of success
of a protocol if f(x, y) = 1 then (x, y) ∈ Rz for some z and if f(x, y) = 0
then (x, y) 6∈ Rz for all z. This gives a covering of size 2k.

3.1 Relation between deterministic and nondeterministic
complexity

Many open questions in communication complexity revolve around
showing that the combinatorial and linear-algebraic lower bound tech-
niques we have developed are faithful. The next theorem, due to Aho,
Ullman, and Yannakakis, is one of the deepest results we know in this
regard. It shows how to turn a monochromatic rectangle covering of
a matrix into a deterministic algorithm. Alternatively, it says that if a
function has both an e�cient nondeterministic protocol and an e�cient
co-nondeterministic protocol, then it has an e�cient deterministic pro-
tocol. This is quite di�erent from what we expect in terms of traditional
complexity classes.

Theorem 3.2 (Aho, Ullman, Yannakakis [AUY83]). Let f : X×
Y → {0, 1} be a function, then

D(f) ≤ (N0(f) + 1)(N1(f) + 1).
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We will present a tighter version of this theorem due to Lovász
[Lov90], which follows the same basic outline but replaces N1(f) with
a smaller quantity. For a Boolean matrix B, de�ne ρ1(B) such that
ρ1(B) − 1 is equal to the largest (after possibly permuting rows and
columns) submatrix of B with ones on the diagonal and zeros below
the diagonal. Notice that ρ1(B) is at most N1(B) + 1, and also is at
most rank(B) + 1.

Theorem 3.3 (Lovász). Let B be a Boolean matrix. Then

D(B) ≤ (log(ρ1(B)) + 1)(N0(B) + 1).

Proof. The proof is by induction on ρ1(B). Suppose that ρ1(B) = 1.
In this case, B does not contain any ones at all and so is the all zeros
matrix and has D(B) = 1. This �nishes the base case of the induction.

Let R1, . . . , RM be a covering of the zeros of B which realizes
N0(B) = dlogMe. Let Si denote the submatrix of rows of B which
are incident with Ri, and similarly Ti the submatrix of columns of B
incident with Ri.

The key observation to make is that ρ1(Si) + ρ1(Ti) ≤ ρ1(B) for
each i. Thus we may assume without loss of generality that ρi(Si) ≤
ρ(B)/2 for i = 1, . . . , N with N ≥ M/2 and ρi(Ti) ≤ ρ(B)/2 for
i = N + 1, . . . ,M .

The protocol goes as follows. On input x, Alice looks for a rectangle
Ri for i = 1, . . . , N which intersects with the xth row of B. If such a
rectangle exists she sends to Bob the bit `0' followed by the index of
the rectangle and the round ends. If no such rectangle exists, she sends
`1.'

If Bob receives the message `1' from Alice, he looks for a rectangle
Ri for i = N + 1, . . . ,M which intersects the column labeled by his
input y. If yes, he sends a `0' followed by the name of such a rectangle,
otherwise he gives the answer `1.'

We analyze the cost of this protocol based on the outcome of three
cases. In each case, the protocol will either output the answer, or re-
duce the search to a submatrix where the induction hypothesis may be
applied.
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Case 1: Both Alice and Bob output `1.' In this case, (x, y) does not
lie in any zero rectangle of the covering, thus the answer must actually
be `1.'

Case 2: Alice outputs `0' and the name of a rectangle Ri. In this
case, the protocol continues in the submatrix Ai. As ρ(Ai) ≤ ρ(Bi)/2
we can apply the induction hypothesis to see that the communication
complexity of Ai is at most

(log(ρ(Ai)) + 1)(N0(Ai) + 1) ≤ log(ρ(B))(N0(B) + 1).

Adding in the length of Alice's initial message of 1 + N0(B) we get
that the total communication complexity of B is at most (log(ρ(B)) +
1)(N0(B) + 1) as desired.

Case 3: Alice outputs `1' and Bob outputs `0' and the name of a
rectangle. This case is works in the same way as case 2. Notice that
the communication for the initial round is again N0(B) + 1. We have
one bit from Alice's message and 1 + (N0(B) − 1) for Bob's message,
as there are less than M/2 possible rectangle labels he might output.

This theorem can be tight. Jayram, Kumar, and Sivakumar [JKS03]
give an example of a function f where N0(f) = N1(f) = O(

√
n) and

D(f) = Ω(n).

3.2 Relation with nonnegative rank

Recall the notion of nonnegative rank introduced earlier. Yannakakis
[Yan91] showed that nondeterministic communication complexity is a
lower bound on the logarithm of nonnegative rank.

Theorem 3.4 (Yannakakis [Yan91]). Let f : X × Y → {0, 1} be a
function, and let B be a Boolean matrix where B[x, y] = f(x, y). Then

N1(f) ≤ log rank+(B)
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Proof. Suppose that rank+(B) = r. Then we have a decomposition of
B as

B =
r∑
i=1

xiy
t
i

where xi, yi are nonnegative vectors. De�ne new vectors x′i, y
′
i by

x′i[j] =

{
1 if xi[j] > 0

0 otherwise

and similarly for y′i. Then
∑

i x
′
i(y
′
i)
t will be zero whenever B is, and

will be at least 1 whenever B is equal to 1.

This result, together with Theorem 3.3, implies that D(f) ≤
(log(rank(Bf )) + 1))(log(rank+(J − Bf )) + 1), where J is the all-ones
matrix.

3.3 Fractional cover

As in the case of the rectangle bound, we can similarly write the cover
number as an integer program. Let f : X × Y → {0, 1} be a function.
Then we see that

C1(f) = min
αi

∑
αi∑

i

αiRi[x, y] ≥ 1 for all (x, y) ∈ f−1(1)∑
i

αiRi[x, y] = 0 for all (x, y) ∈ f−1(0)

αi ∈ {0, 1},

where each Ri is a combinatorial rectangle. Karchmer, Kushilevitz, and
Nisan [KKN95] considered showing lower bounds on nondeterministic
communication complexity by the linear programming relaxation of the
cover number.

De�nition 3.2 (Fractional cover). Let f : X × Y → {0, 1} be a
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function, the fractional cover of f−1(1) is

C̄1(f) = min
αi

∑
αi∑

i

αiRi[x, y] ≥ 1 for all (x, y) ∈ f−1(1)∑
i

αiRi[x, y] = 0 for all (x, y) ∈ f−1(0)

αi ≥ 0,

where each Ri is a combinatorial rectangle.

Notice that the size of this program can be exponential in |X| + |Y |
since there is a variable αi for every combinatorial rectangle.

The fractional cover implements the �rst step of the �three-step ap-
proach.� It is a convex real-valued function and clearly C̄1(f) ≤ C1(f).
Moreover, C̄1(f) turns out to give a tight bound on C1(f). Lovász
[Lov75] has shown quite generally that the linear program relaxation of
set cover gives a good approximation to the integral problem. Karchmer,
Kushilevitz, and Nisan [KKN95] observed that this has the following
application for nondeterministic communication complexity.

Theorem 3.5 (Karchmer, Kushilevitz, and Nisan [KKN95]).

Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. Then

log C̄1(f) ≤ N1(f) ≤ log C̄1(f) + log n+O(1).

The fact that nondeterministic communication complexity is tightly
characterized by a linear program implies other nice properties as well.
Lovász [Lov75] also showed that the fractional cover program obeys a
product property: C̄1(A⊗B) = C̄1(A)C̄1(B) for every pair of Boolean
matrices A and B. Karchmer, Kushilevitz, and Nisan used this result to
obtain the following consequence for nondeterministic communication
complexity.

Theorem 3.6 (Karchmer, Kushilevitz, and Nisan [KKN95]).

Let A,B be any two Boolean matrices of size 2n-by-2n. Then

N1(A⊗B) ≥ N1(A) +N1(B)− 2 log n−O(1).
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Karchmer, Kushilevitz, and Nisan also carried out the second step
of the three-step formulation to give an equivalent �max� formulation of
C̄1(f) convenient for showing lower bounds. To see this, let us �rst write
the program for C̄1(f) more compactly in matrix notation. Let A be a
Boolean matrix with rows labeled by elements of f−1(1) and columns
labeled by 1-monochromatic rectangles, and where A[(x, y), Ri] = 1 if
and only if (x, y) ∈ Ri. Then the program from De�nition 3.2 can be
written

C̄1(f) = min
α

1tα

Aα ≥ 1

α ≥ 0.

Here 1,0 stand for the all-one vector and all zero vector respectively,
where the dimension can be inferred from the context.

Now consider the following maximization problem over a vector µ
of dimension |f−1(1)|.

¯
C1(f) = max

µ
1tµ

Atµ ≤ 1

µ ≥ 0.

In this program one assigns nonnegative weight µx,y to every in-
put (x, y) with f(x, y) = 1, such that the total weight given to any 1
monochromatic rectangle is at most 1.

It is easy to see that
¯
C1(f) ≤ C̄1(f). Indeed, let µ satisfy the con-

straints of the former and α satisfy the constraints of the latter. Then

1tµ ≤ (αtAt)µ = αt(Atµ) ≤ 1tα.

As we will discuss in Chapter 6, using linear programming duality one
can show that in fact

¯
C1(f) = C̄1(f).

3.4 Summary

Complexity measures Let A be a Boolean matrix.
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• N1(A) - the nondeterministic communication complexity of
A.

• N0(A) = N1(J −A), where J is the all-ones matrix.
• N(A) = max{N0(A), N1(A)}.
• C1(A) - the size of a minimal cover of the ones of A by
monochromatic rectangles.
• C̄1(A) - fractional cover.

Relations Let A and B be a pair of Boolean matrices of size 2n-by-2n

• D(A) ≤ (N0(A) + 2)(N1(A) + 2).
• N1(A) =

⌈
logC1(A)

⌉
.

• log C̄1(A) ≤ N1(A) ≤ log C̄1(A) + log n+O(1).
• N1(A⊗B) ≥ N1(A) +N1(B)− 2 log n−O(1).
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Randomized communication complexity

Suppose that Alice and Bob have access to a source of randomness�
that is, the next message they send is no longer a deterministic function
of their input and prior messages, but can also depend on the outcome
of a coin �ip. In this case the output of a protocol is no longer �xed
by the input, but can depend on the sequence of coin �ips. Say that
we also relax the requirement that the output of the protocol is always
correct, and only require this with high probability. As we shall see
in this chapter, for some problems randomness allows vastly more ef-
�cient protocols, and the task of proving lower bounds on randomized
protocols is correspondingly more challenging.

There are several di�erent versions of randomized communication
complexity one can consider. First, one can vary the output conditions,
and study protocols with no error, one-sided error, or two-sided error. In
this survey, we will just consider the two-sided error case. Secondly, one
can vary the players' mode of access to randomness, namely whether
randomness is shared or private.

In the shared randomness or public coin model, at the beginning of
the protocol Alice and Bob receive a common random string r. There
is no bound on how long this random string can be, and its length has

41
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no e�ect on the cost of the protocol. Alice and Bob then perform a de-
terministic protocol Pr where their messages can depend on the �xed
string r. Thus in the public coin model, a randomized communication
protocol is simply a probability distribution over deterministic proto-
cols. We say that a randomized protocol P computes a function f with
error at most ε if Prr[Pr(x, y) = f(x, y)] ≥ 1− ε for every input (x, y).
The cost of a public coin protocol is the maximal cost of any of the
deterministic protocols Pr. We let Rε(f) denote the minimal cost of a
public coin protocol which computes f with error at most ε.

The next theorem gives a nice equivalent de�nition of public coin
randomized communication complexity, in matrix language.

Theorem 4.1. A Boolean matrix A has randomized communication
complexity Rε(A) = h in the public coin model, if and only if there is
a probability distribution p1, . . . , pm and Boolean matrices B1, . . . , Bm
such that

(1) D(Bi) ≤ h for every i = 1, . . . ,m.
(2) ‖A−

∑m
i=1 piBi‖∞ ≤ ε.

We wrote Theorem 4.1 with Boolean matrices, but we also use the
corresponding steatement for sign matrices. The reader can easily verify
that, in the corresponding statement for sign matrices, one only needs
to change ε to 2ε in the last inequality.

In the private coin model, Alice and Bob independently receive a
random string which is not seen by the other player. Rather than ini-
tially receiving a random string at the beginning of the protocol, it
will be more convenient to imagine that Alice and Bob �ip coins �as
they go.� More precisely, let R be an arbitrary �nite set. A private
coin protocol is a binary tree where each internal node is either labeled
by a function av : X × R → {0, 1} or bv : X × R → {0, 1}. Leaves
are labeled by elements of {0, 1}. If a node v is labeled by av, then
on input x Alice outputs 1 with probability Prr∈R[av(x, r) = 1] and
outputs 0 with probability Prr∈R[av(x, r) = 0], and similarly for nodes
labeled by bv. We say that a private coin protocol P computes a func-
tion f : X × Y → {0, 1} with error at most ε if for every input (x, y)
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the probability that the path traced through the tree arrives at a leaf
labeled by f(x, y) is at least 1− ε. The cost of a protocol is the height
of the tree, and we denote Rpri

ε (f) the minimal cost of a private coin
protocol which computes f with error at most ε.

The �rst observation about the relative power of these two models
is that Rε(f) ≤ Rpri

ε (f). This is because in a public coin protocol Alice
can simply use the left half of the common random string and Bob the
right half to simulate a private coin protocol.

A very nice result by Newman [New91] shows that, at least for the
bounded-error case we are interested in, private coin protocols can also
simulate public coin protocols without too much overhead.

Theorem 4.2 (Newman [New91]). Let f : {0, 1}n × {0, 1}n →
{0, 1}. For every ε, δ > 0 it holds that

Rpri
ε+δ(f) ≤ Rε(f) +O(log n− log δ).

We will be concerned with the case where the error probability is a
small constant, and in this case the theorem essentially says that pub-
lic coin and private coin communication complexity are the same up to
an additive O(log n) term. 1 For this reason, and as we are primarily
concerned with lower bounds, we will focus on the public coin model
in this chapter. In particular, when we refer to �randomized communi-
cation complexity� without specifying public or private coin, we mean
the public coin model.

Before moving on to lower bounds for randomized communication
complexity, it is �rst insightful to see an example where randomized
protocols can be signi�cantly more powerful than deterministic proto-
cols. Luckily there is a simple example which shows the largest possible
gap between deterministic and randomized complexity, and incidentally

1Notice that the smaller δ is, the larger the potential gap between these models. In the
unbounded-error model, where the players need only succeed with probability strictly
greater than 1/2, the public coin model becomes trivial�every function can be computed
with constant communication. In the unbounded-error private coin model, on the other
hand, the inner product function still has complexity Ω(n) [For02].



44 Randomized communication complexity

also shows an Ω(log n) additive gap between the public and private coin
models, also implying that Newman's theorem can be tight.

Consider the 2n×2n identity matrix I2n , the Boolean communication
matrix for the EQUALITY problem. That is, I2n [x, y] = 1 if x = y

and I2n [x, y] = 0 otherwise. As this matrix is full rank, the log rank
lower bound of Theorem 2.3 thus implies that D(I2n) ≥ n + 1. The
public coin randomized communication complexity of this problem on
the other hand is Θ(1), and in the private coin model the complexity
is Θ(log n).

A randomized protocol that achieves this constant complexity is as
follows. Alice and Bob interpret their inputs x and y respectively as
elements of Zn2 , and also interpret the shared random string as a tuple
of d strings z1, . . . , zd ∈ Zn2 . Using d bits of communication Alice sends
to Bob the values 〈x, zi〉 ∈ Z2 for i = 1 . . . d. If the corresponding inner
products 〈y, zi〉 all agree, Bob reports that x = y, and otherwise he
announces that x and y are distinct. If x and y are equal this protocol
is always correct. If x and y are distinct the output of this protocol is
correct with probability 1− 2−d.

It is not hard to similarly devise an O(log n) complexity private coin
protocol for equality, or one can simply invoke Newman's theorem to
see this. A matching Ω(log n) lower bound is given by the following
relation between deterministic communication complexity and private
coin randomized communication complexity.

Lemma 4.1 ([KN97]). For every function f : X × Y → {0, 1}

Rpri
1/3(f) ≥ Ω(logD(f)).

The proof of this lemma works by presenting a deterministic simulation
of a private coin randomized protocol.

4.1 Approximate rank

Our �rst lower bound technique for randomized communication com-
plexity, as it was with deterministic communication complexity, will be
based on matrix rank. For randomized complexity the relevant rank
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bound becomes approximate rank, which is the minimal rank of a ma-
trix �close� to the target matrix.

De�nition 4.1 (Approximate rank). Let A be a sign matrix. The
approximate rank of A with approximation factor α, denoted rankα(A),
is

rankα(A) = min
B:1≤A[i,j]B[i,j]≤α

rank(B).

Motivated by the limit as α→∞, de�ne

rank∞(A) = min
B:1≤A[i,j]B[i,j]

rank(B).

This latter quantity is also known as the sign rank of A.

Note that approximate rank is de�ned as the optimum of an optimiza-
tion problem. In practice, this optimum can be quite di�cult to com-
pute. While we do not know if computing approximate rank is NP-hard,
the general class of problems of minimizing rank subject to linear con-
straints does contain NP-hard problems, see for example Section 7.3 of
[VB96].

Krause [Kra96] showed that approximate rank can be used to lower
bound randomized communication complexity.

Theorem 4.3 (Krause [Kra96]). Let A be a sign matrix and 0 ≤
ε < 1/2. Then

Rpri
ε (A) ≥ log rankα(A)

where α = 1/(1− 2ε).

Before we go into the proof, let us mention its application to the
previous example of the equality function. Alon [Alo09] shows a bound
on the approximate rank of the identity matrix with approximation
factor 2 of the form rank2(I2n) = Ω(n). Combined with Theorem 4.3,
this implies that Rpri

1/4(I2n) ≥ log n − O(1), giving an alternative proof
of this lower bound.

Proof. [Theorem 4.3] For this proof, it will be easier to work with
Boolean matrices, thus let A0 = (J − A)/2 be the Boolean version
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of the sign matrix A, where J is the all-ones matrix. Consider an op-
timal private coin protocol P for A with success probability 1− ε and
communication complexity c. Let P be a matrix where

P [x, y] = Pr[P(x, y) = 1].

Notice that by assumption ‖A0 − P‖∞ ≤ ε. We will now show
that the rank of P is at most 2c. This will �nish the proof by setting
P ∗ = −2P +J , that is by taking the inverse of the transformation from
Boolean to sign matrices above.

As described above, we can represent a randomized protocol as a
binary tree with internal nodes labeled by functions av : X×R→ {0, 1}
or bv : Y ×R→ {0, 1}. Consider a leaf ` in this tree, and let v1, . . . , vk, `

be the path from the root v1 to `. We can alternatively indicate this
path by labels s1 . . . sk ∈ {0, 1}k, specifying the values of avi or bvi .
For the sake of notational simplicity we assume that Alice and Bob
strictly alternate speaking on this path. On input x, y, we can write
the probability that the protocol arrives at leaf ` and outputs 1 as the
product

Pr
r

[av1(x, r) = s1] Pr
r

[bv2(y, r) = s2] · · ·Pr
r

[avk(x, r) = sk] Pr
r

[b`(y, r) = 1]

By grouping together the terms that depend on x and separately those
that depend on y, we can write this more succinctly as U`(x)V`(y). Then
we have

P [x, y] =
∑
`

U`(x)V`(y).

De�ne the matrix U with rows labeled by elements from X and
columns labeled by leaves `, and where U [x, `] = U`(x). De�ne V sim-
ilarly by V [y, `] = V`(y). Now both U and V have at most 2c many
columns and P = UV t. This demonstrates that rank(P ) ≤ 2c.

By Newman's theorem, we obtain the following corollary for public
coin randomized complexity

Corollary 4.1. Let A be a 2n-by-2n sign matrix. For every ε, δ > 0
such that ε+ δ < 1/2 set α = (1− 2ε− 2δ)−1. Then

Rε(A) ≥ log(rankα(A))−O(log n− log δ).
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In analogy with the log rank conjecture for deterministic complex-
ity it is natural to conjecture that approximate rank similarly gives a
polynomially tight lower bound on randomized complexity.

Conjecture 4.1 (log approximate rank conjecture). Fix 0 ≤
ε < 1/2. There is a constant c such that for every sign matrix A

Rpri
ε (A) ≤ (log rankα(A))c + 2

where α = 1/(1− 2ε).

The limiting case as ε→ 1/2 of this conjecture is true as Paturi and Si-
mon [PS86] show that log rank∞(A) characterizes the unbounded-error
complexity of A. In this model, the players simply have to output the
correct answer with probability strictly greater than 1/2. On the other
hand, in the bounded-error case a larger gap is known here than for the
deterministic log rank conjecture�for the DISJOINTNESS problem on
n bits Rpri

1/4(DISJ) = Ω(n) [KS87] yet rank2(DISJ) = 2O(
√
n). The up-

per bound on the approximate rank of DISJOINTNESS follows from an
upper bound on quantum communication complexity [BCW98, AA05],
see also Chapter 5.

The main drawback to the approximate rank technique is that in
practice it can be very di�cult to bound. One of the goals of the frame-
work of approximate norms, discussed in Section 4.2, is to develop easier
to compute convex relaxations of approximate rank.

4.2 Approximate norms

Like matrix rank for deterministic communication complexity, approx-
imate rank is one of the strongest lower bound techniques available
for randomized communication complexity. In Chapter 2 we saw sev-
eral norms that can be used to lower bound matrix rank, for exam-
ple γ2(·), µ(·), ‖ · ‖tr. We can naturally adapt these techniques to lower
bound approximate rank by considering approximate norms.
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De�nition 4.2 (approximate norm). Fix a general norm Φ, which
could be any of the above. For α ≥ 1 a real number and a sign matrix
A, we de�ne

Φα(A) = min
B

1≤A[i,j]B[i,j]≤α

Φ(B).

Motivated by the limit as α→∞ de�ne

Φ∞(A) = min
B

1≤A[i,j]B[i,j]

Φ(B).

Note that an approximate norm is not in general itself a norm.
Recall Equation 2.1 which shows that for any real matrix A

rank(A) ≥ max
u,v

‖A ◦ uvt‖2tr
‖A ◦ uvt‖2F

,

This immediately implies that

rankα(A) ≥ γα2 (A)2

α2
, (4.1)

as any matrix B that approximates the sign matrix A with factor α
satis�es ‖B ◦uvt‖2F ≤ α2, for arbitrary unit vectors u, v. The advantage
of studying γα2 is that it is an optimization problem over a convex func-
tion, and it turns out that it can be computed with arbitrary accuracy
in time polynomial in the size of the matrix by reduction to semide�nite
programming.

As γα2 (A) provides a lower bound on approximate rank, Corollary 4.1
immediately implies that it, as well as µα(A) and ‖A‖αtr, can be used
to lower bound randomized communication complexity.

The characterization of public coin randomized complexity as a
probability distribution over deterministic protocols (Theorem 4.1),
however, leads to a much more natural proof based on convexity. We
now give this proof which shows in general that for any norm Φ which
gives a lower bound on deterministic communication complexity, the
approximate norm Φα can be used to give a lower bound on random-
ized complexity.
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Theorem 4.4. Let Φ be a norm. Suppose there is a constant c such
that Φ(A) ≤ 2cD(A) for every sign matrix A. Then

cRε(A) ≥ log Φα(A)− logα,

for every sign matrix A, where α = α(ε) = 1
1−2ε .

Proof. Since a public coin randomized communication protocol is equiv-
alent to a probability distribution over deterministic protocols (Theo-
rem 4.1), there are sign matrices B1, . . . , Bm and a probability distri-
bution p1, . . . , pm such that

(1) ‖A−
∑m

i=1 piBi‖∞ ≤ 2ε.
(2) D(Bi) ≤ Rε(A) for 1 ≤ i ≤ m.

Let B = 1
1−2ε

∑
i piBi. Chosen in this way, by item (1) we have that

1 ≤ A[x, y]B[x, y] ≤ α for every entry (x, y). Therefore Φα(A) ≤ Φ(B)
by de�nition of an approximate norm. Since Φ is a norm we have

Φ(B) = Φ

(
1

1− 2ε

∑
i

piBi

)

≤ 1
1− 2ε

∑
i

piΦ(Bi)

≤ 1
1− 2ε

max
i

Φ(Bi).

Combining this with our assumption that Φ(Bi) ≤ 2cD(Bi) and with
item (2), we obtain Φ(B) ≤ 1

1−2ε2
cRε(A). This implies log Φα(A) −

logα ≤ cRε(A).

As a corollary of this theorem, the approximate versions of the norms
discussed in the chapter on deterministic complexity can all be used to
lower bound randomized complexity. We just state this corollary for γ2,
which dominates the trace norm method and µ norm, up to a constant
factor.
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Corollary 4.2. For every sign matrix A and 0 ≤ ε < 1
2

Rε(A) ≥ 2 log γα2 (A)− 2 logα,

where α = α(ε) = 1
1−2ε .

Proof. Use the previous theorem together with the fact γ2(A) ≤
2D(A)/2.

Up to an additive constant term, 2 log γα2 (A) gives tight bounds on the
randomized communication complexity for almost every sign matrix
[LMSS07].

Now γα2 is a convex relaxation of approximate rank which can be
computed with high precision in polynomial time. The question re-
mains: How much have we lost in considering this relaxation? Is there
a sign matrix A for which γα2 (A) can be much smaller than rankα(A)?
The next theorem shows that, for constant α larger than 1, the answer
is no.

Theorem 4.5 (Lee and Shraibman [LS08]). Let 1 < α < ∞.
Then for any m-by-n sign matrix A

rankα(A) = O

(
α6

(α− 1)6
ln3(4mn)γα2 (A)6

)
.

Before giving a proof sketch, let us make a few remarks. First, for
the case α = ∞, Ben-David et al. [BES02] show the tighter result
rank∞(A) = O(ln(4mn)γ∞2 (A)2). The interesting thing is that in this
case, the lower bound fails. Notice from Equation 4.1 that the lower
bound deteriorates as α grows. Buhrman et al. [BVW07] and indepen-
dently Sherstov [She08b] have shown that this is necessary, giving an
example of a sign matrix A where γ∞2 (A) is exponentially larger than
rank∞(A).

Secondly, we mention that the logarithmic term in this theorem
is necessary as demonstrated by the equality example studied earlier.
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Indeed, as log γα2 is a lower bound on public coin communication com-
plexity, γα2 (I2n) is constant while Alon shows that rankα(I2n) = Ω(n),
for α = 2. This example also demonstrates that the assumption α > 1
cannot be removed, since rank(I2n) = 2n.

Proof. [sketch of Theorem 4.5] The proof combines two ideas. The �rst,
observed by Alon and used by several authors [Alo03, AKM+06, KS07],
is that approximate rank changes relatively slowly as a function of α,
for α > 1. Quantitatively, one can show

rankα(A) ≤ 2(rank2α−1(A))3.

This reduces the problem to showing

rank2α−1(A) ≤ O
(

α2

(α− 1)2
ln(4mn)γα2 (A)2

)
.

For this part, we use dimension reduction. Notice that both matrix
rank and γ2 are statements about matrix factorization. If a m-by-n
matrix M has rank k, then there are vectors x1, . . . , xm ∈ Rk and
y1, . . . , yn ∈ Rk such thatM [i, j] = 〈xi, yj〉 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Similarly, if γ2(M) ≤ γ, then there are vectors x1, . . . , xm ∈ Rr and
y1, . . . , yn ∈ Rr such that M [i, j] = 〈xi, yj〉 and ‖xi‖2, ‖yj‖2 ≤ γ for
every i, j. In other words, in the case of rank, we have a bound on
the dimension of the vectors xi, yj , while in the case of γ2 we have a
bound on their length. If the dimension r is much larger than the length
of these vectors, however, then intuitively it seems plausible that they
can be compressed to a smaller dimension without a�ecting the inner
products 〈xi, yj〉 too much. This intuition can be made precise by the
Johnson-Lindenstrauss lemma [JL01]. We use a variant of this lemma
from [BES02] which addresses exactly this situation.

Lemma 4.2 (Corollary 19, [BES02]). Let x, y ∈ Rr. Let R be a
random k-by-r matrix with entries independent and identically dis-
tributed according to the normal distribution with mean 0 and variance
1. Then for every δ > 0

Pr
R

[
|〈Rx,Ry〉 − 〈x, y〉| ≥ δ

2
(
‖x‖22 + ‖y‖22

)]
≤ 4 exp(−δ2k/8).
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Now let {xi}, {yj} be a factorization which realizes γα2 (A) = γ. That
is, 〈xi, yj〉 = B[i, j] where 1 ≤ A[i, j]B[i, j] ≤ α and ‖xi‖22, ‖yj‖22 ≤ γ

for all i, j. By taking k = 8(α−1
α γ)2 ln(8mn) we can ensure by a union

bound that |〈Rxi, Ryj〉− 〈xi, yj〉| ≤ α−1
2α simultaneously for all i, j with

probability at least 1/2 over the choice of R. Setting x′i = α+1
2α Rxi and

y′j = α+1
2α Ryj , the matrix whose (i, j) entry is 〈x′i, y′j〉 gives a 2α − 1

approximation to A and has rank at most k.

4.3 Diagonal Fourier coe�cients

We have just seen that the approximate norm γα2 is polynomially related
to approximate rank, for constant α. This seems to indicate that one
can generally show good lower bounds by this technique�indeed if
the log approximate rank conjecture is true, then one can always show
polynomially tight lower bounds by studying γα2 .

More concretely, Linial and Shraibman [LS09c] show that the γα2
bound subsumes many other techniques in the literature. Here we see
that γα2 gives bounds at least as large as those given by a technique
based on diagonal Fourier coe�cients, developed for randomized com-
munication complexity by Raz [Raz95] and later extended to the quan-
tum case by Klauck [Kla01].

We identify vectors in R2n with functions f : Zn2 → R. Similarly we
identify real 2m × 2n matrices with functions A : Zm2 × Zn2 → R.

Corresponding to every z ∈ Zn2 , is a character of Zn2 denoted χz. It
is de�ned as

χz(x) = (−1)〈z,x〉,

for every x ∈ Zn2 . The Fourier coe�cients of a function f : Zn2 → R are
f̂z = 1

2n 〈f, χz〉 for all z ∈ Zn2 . The characters of Zm2 × Zn2 are denoted
χz,z′ for (z, z′) ∈ Zm2 × Zn2 . They satisfy

χz,z′(x, y) = (−1)〈z,x〉+〈z
′,y〉,

for every x ∈ Zm2 and y ∈ Zn2 . We denote by B̂z,z′ the corresponding
Fourier coe�cient of a real matrix B.

Let A be a 2n × 2n sign matrix. The subject of this section is the
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sum of diagonal Fourier coe�cients of A, i.e.

‖A‖D =
∑
z∈Zn2

|Âz,z|.

By our notation one can get the impression that the sum of diagonal
Fourier coe�cients is a norm. It is actually not a norm, because it can
achieve the value 0 on nonzero matrices. On the other hand, ‖ · ‖D
satis�es all the other properties of a norm: nonnegativity, homogeneity,
and subadditivity. A function that satisfy these properties is called a
seminorm.

Raz [Raz95] derived the following lower bound in terms of diagonal
Fourier coe�cients.

Theorem 4.6. For every sign matrix A and ε < 1
2

Rε(A) ≥ log(‖A‖αD)− logα−O(1),

where α = α(ε) = 1
1−2ε .

The lower bound in Theorem 4.6 follows from Corollary 4.2 using
the following relation between γ2 and the sum of diagonal Fourier co-
e�cients.

Theorem 4.7. For every sign matrix A and α ≥ 1

γα2 (A) ≥ 1
2
‖A‖αD.

We make use of the following simple fact:

Fact 4.1. Let z ∈ Zm2 and z′ ∈ Zn2 . The Fourier coe�cient of the rank-
one matrix fgt with respect to z, z′ is equal to f̂z ĝz′ .

Proof. [of Theorem 4.7] Recall that γ2(M) ≥ 1
2ν(M) for every real

matrix M . We show next that ν(M) ≥ ‖M‖D. Combining these in-
equalities we get that γ2(M) ≥ 1

2‖M‖D for every real matrix M . The
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inequality between the corresponding approximate norms then easily
follows.

We turn to prove the inequality ν(M) ≥ ‖M‖D. Since the unit ball
of ν is the convex hull of rank-one sign matrices, it is enough to prove
that for every rank-one sign matrix fgt it holds that ‖fgt‖D ≤ 1. This
follows because if M =

∑
i βifig

t
i and ν(M) =

∑
|βi|, then

‖M‖D = ‖
∑
i

βifig
t
i‖D ≤

∑
i

|βi|‖figti‖D ≤
∑
i

|βi|.

To prove that ‖fgt‖D ≤ 1 we use Fact 4.1. We get

‖fgt‖D =
∑
z

f̂z ĝz

≤

(∑
z

f̂2
z

)1/2(∑
z

ĝ2
z

)1/2

=
1

2n/2
‖f‖2

1
2n/2
‖g‖2

= 1.

The �rst inequality is an instance of the Cauchy-Schwarz inequality. The
next identity holds because the characters form an orthogonal basis.
The last equality uses the fact that f and g are sign vectors.

Remarks

(1) The lower bounds proved in [Raz95, Kla01] in terms of di-
agonal Fourier coe�cients, are di�erent than what we have
described above. But these bounds can be derived from the
bounds we showed in terms of ‖ · ‖αD, using simple properties
of approximate norms and error ampli�cation for the ran-
domized communication complexity, see e.g. [LS09c].

(2) As observed by Raz, instead of diagonal Fourier coe�cients
one can consider other sets of Fourier coe�cients. One can
prove a similar statement (repeating the same arguments) for
any subset F of Zn2×Zn2 of the form F = {(z, π(z)) : z ∈ Zn2},
where π is some permutation over Zn2 .
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4.4 Distributional complexity and discrepancy

We turn to an alternative characterization of randomized complexity in
terms of distributional complexity given by Yao [Yao83]. Distributional
complexity considers deterministic algorithms, but allows them to an-
swer incorrectly on some inputs (x, y). The requirement now is that the
total measure of incorrect answers should be small, according to a prob-
ability distribution �xed in advance. This alternative characterization
is very useful for proving lower bounds.

Recall that a public coin randomized protocol of complexity t is
simply a probability distribution over deterministic protocols of cost at
most t. This leads us to consider a geometric object, the convex hull of
sign matrices with deterministic communication complexity at most t.
Denote this convex body by B(D, t). A matrix B is in B(D, t) if and
only if it can be written as the convex combination of sign matrices with
deterministic communication complexity at most t. That is, if there is a
probability distribution p1, . . . , pm and matrices B1, . . . , Bm such that
D(Bi) ≤ t for i = 1 . . .m and B =

∑m
i=1 piBi. Obviously,

B(D, 1) ⊆ B(D, 2) ⊆ B(D, 3) . . .

As observed in Theorem 4.1, the randomized communication complexity
Rε(A) is equal to the smallest number t such that A is 2ε close in `∞
distance to B(D, t). Formally, Rε(A) is equal to the minimal t such that

min
B∈B(D,t)

‖A−B‖∞ ≤ 2ε.

This geometric de�nition shows that randomized complexity is an op-
timization problem over a convex set. As we shall see in Chapter 6
this allows the use of duality to obtain an equivalent characterization
of randomized complexity in terms of a maximization problem. For the
moment we simply state this result, and defer the proof to Section 6.2.1

Fix a distribution P on the entries of A. The distributional com-
plexity of A with respect to P and ε, denoted DP,ε(A), is the minimal
number t such that there exists a sign matrix B satisfying D(B) ≤ t

and P ({(i, j) : A[i, j] 6= B[i, j]}) ≤ ε. The distributional complexity of
A with error parameter ε is de�ned

Dε(A) = max
P

DP,ε(A).



56 Randomized communication complexity

Using the von Neumann minimax theorem, Yao [Yao83] showed the
following.

Theorem 4.8. Let A be a sign matrix.

Rε(A) = Dε(A).

This theorem is the starting point for many lower bound proofs on
randomized complexity.

Discrepancy One early lower bound technique developed for showing
lower bounds on randomized complexity based on Theorem 4.8 is the
discrepancy method. This is a very general technique, which applies even
as the error probability becomes very close to 1/2.

The discrepancy bound can be derived as follows. Let A be a sign
matrix, and P a probability distribution over its entries. We think of
P as a nonnegative matrix whose entries sum to one and which is of
the same dimensions as A. Let t = DP,ε(A) and let B be a sign matrix
which �realizes� this�in other words B agrees with A with probability
at least 1− ε under the distribution P and D(B) = t. As A and B are
di�erent with probability at most ε with respect to P we have

〈A ◦ P,B〉 ≥ 1− 2ε (4.2)

On the other hand, by Theorem 2.1, the matrix B can be partitioned
into at most 2t monochromatic combinatorial rectangles {R`}. Let
c(R`) ∈ {−1,+1} be the �color� of R`. We can rewrite Equation 4.2
as

〈A ◦ P,B〉 =
∑
`

c(R`)
∑

(i,j)∈R`

A[i, j]P [i, j] (4.3)

≤
∑
`

∣∣∣∣∣∣
∑

(i,j)∈R`

A[i, j]P [i, j]

∣∣∣∣∣∣ . (4.4)

Denote

discP (A) = max
R

∣∣∣∣∣∣
∑

(i,j)∈R

A[i, j]P [i, j]

∣∣∣∣∣∣ ,
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where the maximum is over all combinatorial rectangles. This is sim-
ply the cut norm of the matrix A ◦ P , so we can alternatively say
discP (A) = µ∗(A ◦ P ). It then follows from the Equations (4.2), (4.4)
that 2tdiscP (A) ≥ 1− 2ε, or equivalently

DP,ε(A) ≥ log
1− 2ε

discP (A)
.

Let disc(A) = minP discP (A) be the discrepancy of A. As this derivation
holds for an arbitrary probability distribution P we get

Theorem 4.9 (discrepancy method). For every sign matrix A and
every 0 ≤ ε < 1/2

Rε(A) ≥ log
1− 2ε
disc(A)

.

Before moving on, let us connect the discrepancy bound with the
linear programming relaxation of nondeterministic communication com-
plexity we saw in Chapter 3. Both disc(A) and C̄1(A) are optimization
problems over probability distributions. The dual formulation of C̄1(A)
can be expressed as

1
C̄1(A)

= min
P

max
R

P (R) = min
P

max
R

∑
(i,j)∈R

A[i, j]P [i, j]

where P is a probability distribution over {(i, j) : A[i, j] = 1} and
R is a 1-monochromatic rectangle. On the other hand, in discrepancy
the maximization is over all rectangles. Thus as long as the optimal
distribution in the discrepancy bound puts substantial weight on the
set {(i, j) : A[i, j] = 1}, we will have C̄1(A) = Ω(1/disc(A)). If the
optimal distribution in the discrepancy bound does not put substantial
weight on {(i, j) : A[i, j] = 1}, then the discrepancy method does not
show a good lower bound anyway. This gives the following theorem.

Theorem 4.10. Let A be a sign matrix. Then

C̄1(A) ≥ 1
3 disc(A)

.
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Proof. Let P be a probability distribution such that disc(A) =
discP (A). If P puts weight less than 1/3 on {(i, j) : A[i, j] = 1} then
clearly disc(A) ≥ 1/3. Otherwise, there is a 1-monochromatic rectan-
gle R such that 3P (R) ≥ 1/C̄1(A). As disc(A) ≥ P (R), we get the
theorem.

In particular, the discrepancy method also gives a lower bound on non-
deterministic communication complexity.

4.5 Corruption bound

The last lower bound technique we discuss for randomized communica-
tion complexity is the corruption bound. This is a powerful lower bound
technique which is particularly interesting because for some functions
it gives larger lower bounds than approximate rank. Indeed, the cor-
ruption bound can be used to show a tight Ω(n) lower bound on the
complexity of DISJOINTNESS [Raz92a], while approximate rank can
only show a lower bound of Θ(

√
n). In particular, as the quantum com-

munication complexity of DISJOINTNESS is O(
√
n) [BCW98, AA05]

the corruption bound is noteworthy as one of the few lower bound tech-
niques we know that can potentially separate quantum and randomized
communication complexity for total functions. It is a major open ques-
tion if these measures are polynomially related for all total functions. It
is also an open problem whether the corruption bound and approximate
rank are polynomially related.

The corruption bound does not really fall into the framework of
lower bounds described in this survey. The de�nition of this bound
is purely combinatorial, and it is not known if there is an equivalent
de�nition which involves a representation of the function in Euclidean
space. Still we feel it is insightful to describe this lower bound here and
encourage further study of it and its relation with the other bounds in
this survey.

The corruption bound was �rst introduced in a paper of Yao [Yao83],
and was derived using the characterization of randomized complexity in
terms of distributional complexity given in that same paper. Over the
years, this technique has been variously called one-sided discrepancy,
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ε-error rectangle bound [Kla03], and corruption bound [BPSW06]. We
will follow the latter terminology.

The original application of Yao gave the �rst explicit example of a
function whose randomized two-party complexity is Θ(n). Let p be an
n-bit prime. The function he considered is f : Zp ×Zp → Z2 de�ned as
f(x, y) = ((x · y) mod p) mod 2. In other words, f(x, y) is the parity
of (x · y) mod p. To prove a lower bound on this function, Yao proved
the following general statement.

Let f : X × Y → Z be a function and say |X| = |Y | = N . For each
x ∈ X and z ∈ Z, denote Sx(z) = {y : f(x, y) = z}. We write f−1(z)
for the set of indices (x, y) for which f(x, y) = z.

Fix constants 0 < µ < 1/2 and 0 < λ. We need the notions of
moderate and anticorrelated. For z ∈ Z we say that f is z-moderate if
µ < |f−1(z)|/N2 < 1− µ. We say that f is z-anticorrelated if

|Sx(z) ∩ Sx′(z)| ≤
1
N
|Sx(z)| · |Sx′(z)|(1 +O(

1
Nλ

)).

for every x, x′ ∈ X.

Theorem 4.11 (Yao [Yao83]). Let ε < 1/2 be a �xed constant. If
f : X × Y → Z is both z-moderate and z-anticorrelated for some
z ∈ Z, then Rε(f) = Θ(logN), where |X| = |Y | = N .

The above lower bound is very elegant. It implies in particular that a
pseudorandom sign matrix has high randomized communication com-
plexity.

A key lemma in the proof of this theorem is the corruption bound
technique, which has since been used and reformulated by several au-
thors [BFS86, Raz92a, Kla03, BPSW06]. Intuitively, the corruption
bound interpolates between the linear programming relaxation of non-
deterministic communication complexity C̄1(f) and the discrepancy
method.

1
C̄1(A)

= min
P

max
R:χ(R)=1

∑
i,j∈R

A[i, j]P [i, j]

disc(A) = min
P

max
R

∑
i,j∈R

A[i, j]P [i, j].



60 Randomized communication complexity

In the �rst case, the probability distribution P is only over {(i, j) :
A[i, j] = 1} and the maximization is over 1-monochromatic rectan-
gles; in the second case the probability distribution is arbitrary but
the maximization is over all rectangles. In the corruption bound, we
minimize over probability distributions that put su�cient weight on
{(i, j) : A[i, j] = 1}, and maximize over rectangles that are nearly 1-
monochromatic.

For a probability distribution µ and function f , say that a rect-
angle R is ε-monochromatic if µ(R ∩ f−1(0)) ≤ εµ(R). Further, let
ε-monoµ(f) = max{µ(R) : R is ε-monochromatic} be the largest
weight given to an ε-monochromatic rectangle under µ. The corrup-
tion bound gives the following.

Theorem 4.12 (corruption bound [Yao83, BPSW06]). Let B

be a Boolean matrix and µ a probability distribution on the entries of
B. Let ε′ > ε ≥ 0. Then

Rε(B) ≥ 〈B,µ〉 − ε− ε/ε
′

ε-monoµ(f)
.

Proof. We �rst use Yao's principle that Rε(B) = Dε(B). Suppose that
Dε(B) = c. Fix a distribution µ. Then here is a deterministic c-bit
protocol P which errs on B with probability at most ε with respect to
µ. Let {Ri} be a partition of B into 2c many rectangles given by this
protocol, and let I be the set of indices i for which the protocol outputs
1 on Ri. Note that this partition satis�es the following two properties.

(1) The probability with respect to µ that Ri contains a zero is
at most ε: ∑

i∈I
µ(Ri ∩ f−1(0)) ≤ ε.

(2) The rectangles Ri cover nearly all the ones of B, with respect
to µ: ∑

i∈I
µ(Ri) ≥ 〈B,µ〉 − ε.
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Set a cut-o� value ε′ > ε. Let I ′ ⊆ I be the set of indices of ε′-
monochromatic rectangles. By item (1), the total weight of rectangles
which are not ε′-monochromatic is at most ε/ε′. We then have∑

i∈I′
µ(Ri) ≥ 〈B,µ〉 − ε− ε/ε′∑

i∈I′
µ(Ri) ≤ 2c max

R
ε′−monochromatic

µ(R).

Rearranging gives the theorem.

It is an open problem if the corruption bound is polynomially related
to randomized communication complexity (open problem 3.23 from
[KN97]). Klauck [Kla03] has shown interesting connections between the
corruption bound and the communication models corresponding to the
complexity classes MA and AM. He shows that the square root of the
corruption bound is a lower bound on MA complexity, thereby giving an
Ω(
√
n) lower bound on the MA complexity of disjointness. Surprisingly,

this bound turns out to be tight by a beautiful protocol of Aaronson
and Wigderson [AW09]. Klauck also shows that the corruption bound
gives an upper bound on AM communication complexity.

4.6 Summary

Complexity measures Let A be a sign matrix and let M be a real
matrix

• Rε(A) - the randomized communication complexity of A with
error bound 0 ≤ ε < 1

2 .
• rankα(A) - the approximate rank of A, with approximation
factor α ≥ 1.
• Dε(A) - the distributional complexity of A with error at most

0 ≤ ε < 1
2 .

• disc(A) - the discrepancy of A.
• Φα(A) - the approximate Φ-norm of A, with approximation
factor α ≥ 1.

• ‖M‖D - the sum of diagonal Fourier coe�cients of M .
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Relations Let m ≤ n. For every m× n sign matrix A, a real matrix
M and 0 ≤ ε < 1

2

• Rε(A) = Dε(A).
• Rε(A) ≥ log 1−2ε

disc(A) .
• Rε(A) ≥ 2 log γα2 (A)− 2 logα, where α = α(ε) = 1

1−2ε .
• Rε(A) ≥ log rankα(A)−O(log n), where α = α(ε) = 1

1−2ε .

• rankα(A) ≥ γα2 (A)2

α2 .
• rankα(A) = Oα

(
ln3(4mn)γα2 (A)6

)
, for every 1 < α <∞.

• γα2 (A) ≤ να(A) ≤ µα(A) ≤ 4KGγ
α
2 (A).

• ν(M) ≥ ‖M‖D.
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Quantum communication complexity

In this chapter, we look at lower bounds on quantum communication
complexity. We will encounter familiar faces from the chapter on ran-
domized communication complexity. Indeed, it is a major open question
whether or not quantum communication complexity and randomized
complexity are polynomially related for all total functions. For a par-
tial function, however, an exponential separation between these models
is known [Raz99].

A major obstacle to showing larger separations between these mod-
els for total functions�other than the fact that perhaps no such sepa-
ration exists�is that nearly all lower bound techniques developed for
the randomized model also work in the quantum model, even in the
strongest quantum model where Alice and Bob share prior entangle-
ment.

One outstanding exception to this is the corruption bound from
Section 4.5 which as mentioned can be used to show a lower bound
of Ω(n) on the randomized communication complexity of disjointness
[KS87, Raz92b]. On the other hand, the quantum communication com-
plexity of disjointness is Θ(

√
n) [Raz03, AA05], giving a quadratic gap

between these models. This is the largest gap known for a total function.
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5.1 De�nition of the model

Intuitively, quantum communication complexity models are de�ned
similarly to the corresponding classical ones, with qubits replacing clas-
sical bits. Formally the protocols are described by unitary transforma-
tions operating on vectors in a Hilbert space. The state of a quan-
tum communication protocol is represented as vector in a Hilbert space
HA⊗C⊗HB. Here HA, HB are Hilbert spaces of arbitrary �nite dimen-
sion representing the �workspace� of Alice and Bob respectively. The
Hilbert space C is 2-dimensional and it stands for a one-qubit channel.
We assume that HA and HB each contain a register to hold the input.
Thus we have HA = HIA ⊗HWA

and HB = HIB ⊗HWB
where HI is a

register and HW represents workspace that is used arbitrarily.
In the model without entanglement, the initial state of a quantum

protocol on input (x, y) is the vector |Ψ0
x,y〉 = |x, 0〉|0〉|y, 0〉, where in

each case |0〉 is an arbitrary unit vector independent of the input. Thus
informally, the workspaces and channel are initially �clear.�

With entanglement, the initial state is a unit vector of the form
|Ψ0

x,y〉 =
∑

w αw|x,w〉|0〉|y, w〉, where the coe�cients αw are arbitrary
real numbers satisfying

∑
w α

2
w = 1. This di�erence in allowed initial

state is the only change between the models with and without entan-
glement.

Unlike other models of communication, here we assume that the
speaking order of the players strictly alternates 1. Alice and Bob �speak�
by applying a unitary transformation to the current state of the proto-
col. On Alice's turn, she applies an arbitrary unitary transformation of
the form U ⊗ IB which acts as the identity on HB. Similarly, on a turn
of Bob he applies a transformation of the form IA ⊗ U which acts as
the identity on HA. Thus after 2t rounds, the state of the protocol is

|Ψ2t
x,y〉 = (IA ⊗ U2t) · · · (IA ⊗ U2)(U1 ⊗ IB)|Ψ0

x,y〉

At the end of a t-round protocol, we project the �nal state |Ψt
x,y〉

onto the subspace HA ⊗ |1〉 ⊗HB. Denoting the length of this projec-
tion by p, the protocol outputs 1 with probability p2, and outputs 0

1Note that this requirement makes a di�erence of at most a multiplicative factor of two in
the communication complexity.
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otherwise. As the state of a quantum protocol is a unit vector, this is
equivalent to outputting 0 with probability the norm squared of the
projection of the �nal state onto HA ⊗ |0〉 ⊗HB. A quantum protocol
computes a Boolean matrix B with probability at least 1− ε, if its out-
put is in {0, 1} and the output is equal to B[x, y] with probability at
least 1 − ε for every input (x, y). The cost of a protocol is simply the
number of rounds. We de�ne the quantum communication complexity

Qε(B) of a Boolean matrix B, to be the minimal cost of a quantum pro-
tocol for B which succeeds with probability at least 1− ε in the model
without entanglement. We de�ne Q∗ε(B) similarly for the model with
entanglement. We will also refer to these measures for a sign matrix A
by the usual identi�cation with the Boolean matrix B = (A − J)/2,
where J is the all-ones matrix.

5.2 Approximate rank

As we have already been accustomed, we begin with a lower bound
based on matrix rank. Buhrman and de Wolf [BW01] showed that ap-
proximate rank provides a lower bound on quantum communication
without entanglement.

Theorem 5.1 (Buhrman and de Wolf [BW01]). Let A be a sign
matrix, and 0 ≤ ε < 1/2, then

Qε(A) ≥ log rankα(A)
2

,

where α = 1/(1− 2ε).

Notice that this bound is the same as the approximate rank bound
for private coin randomized protocols, up to the factor of two. Simi-
larly to public coin randomized protocols, this bound does not hold as
is for the model of quantum communication with entanglement�with
entanglement Alice and Bob can simulate a public coin.

Instead of proving Theorem 5.1, in the next section we prove a lower
bound on quantum communication complexity with entanglement in
terms of γα2 . As γ

α
2 and approximate rank are polynomially related

Theorem 4.5, this implies that the logarithm of approximate rank also
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lower bounds this model, up to a slightly larger multiplicative factor
and logarithmic fudge terms.

Where there is a rank bound, so goes a log rank conjecture. The
quantum model is no exception.

Conjecture 5.1 (log rank conjecture, quantum version). Fix
0 ≤ ε < 1/2. There is a constant c such that for every sign matrix A

Qε(A) ≤ (log rankα(A))c + 2,

where α = 1/(1− 2ε).

In our opinion, the quantum version of the log rank conjecture is the
most plausible of them all. Indeed, here we are not aware of any example
where quantum communication complexity is signi�cantly larger than
the logarithm of approximate rank.

Question 5.1. Give an example of a sign matrix A such that

Q1/3(A) ≥ (log rank2(A))c + 2

for a constant c > 1.

5.3 A lower bound via γα
2

As approximate rank is a lower bound on quantum communication com-
plexity, all the methods subsumed by the approximate rank technique
will also lower bound quantum complexity. In particular, the approx-
imate norm γα2 can be used to lower bound quantum communication
complexity. We present a separate proof for this fact however, which
gives a sharper bound and also works in the stronger model with en-
tanglement.

Previously, we proved lower bounds on communication complexity
by identifying a set of �simple� objects and seeing how a correct protocol
decomposes the communication matrix as a linear combination of these
simple objects. For example, in the case of deterministic protocols these
simpler objects were combinatorial rectangles, or equivalently rank-one
Boolean matrices. The µ norm measures the lowest �weight� decompo-
sition of a matrix as a linear combination of combinatorial rectangles.
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Combinatorial rectangles came up naturally in the context of de-
terministic communication protocols, as the latter partition the ma-
trix into monochromatic combinatorial rectangles. This property is not
shared by quantum communication protocols in any apparent way. Re-
markably, an e�cient quantum protocol still leads to an e�cient (ap-
proximate) description of the underlying matrix in terms of rank-one
Boolean matrices, just as in the randomized case. This fact was �rst
observed by Klauck [Kla01] who showed that Qε(A) = Ω(log µα(A)).

Klauck's work builds on earlier work of Yao and Kremer [Yao93,
Kre95] which began to formalize the mathematical properties of a sign
matrix with small bounded-error quantum communication complex-
ity. We present here what is currently the sharpest analysis of this
form, which is in terms of the γ2 norm due to Linial and Shraibman
[LS09c]. Roughly speaking, this result says that if a sign matrix A

has bounded-error quantum communication complexity c, even in the
model with entanglement, then there is a matrix B close to A which
satis�es γ2(B) ≤ 2c. The relation to combinatorial rectangles is then
nicely explained by Grothendieck's inequality which says that γ2 and µ
are closely related (See also Section 2.3).

The proof of Linial and Shraibman proceeds by explicitly construct-
ing a factorization to imply that γ2 is small. For variety, we present here
a di�erent proof of this result communicated to us by Harry Buhrman
[Buh07] that proceeds via the dual norm of γ2 and exploits the con-
nection of γ∗2 with so-called XOR games. A similar approach is used by
Degorre et al. [DKLR08] to show a lower bound not just on functions,
but also on the complexity of simulating probability distributions. To
explain this approach, let us �rst introduce XOR games.

5.3.1 XOR games

A XOR game is played by three parties, provers Alice and Bob and a
veri�er V. Let A be a |X|-by-|Y | sign matrix for two �nite sets X,Y .
The veri�er chooses (x, y) ∈ X × Y according to some probability dis-
tribution π(x, y) and sends x to Alice and y to Bob. The provers then
answer by ax, by ∈ {−1,+1} with the goal that ax · by = A[x, y]. In
other words, the provers want the XOR of their answers to agree with



68 Quantum communication complexity

A, explaining the name �XOR game.� The provers are allowed to have
access to a shared random string, but a convexity argument shows that
they can perform as well without it.

We will be interested in the maximal correlation the provers are
able to achieve with A under the distribution π. By de�nition, this is
the probability that the provers answer correctly minus the probability
that they answer incorrectly. One can see that this is exactly given by

Corrπ(A,P ) = max
a∈{−1,+1}|X|
b∈{−1,+1}|Y |

∑
x,y

A[x, y]π(x, y)ax · by

= max
a∈{−1,+1}|X|
b∈{−1,+1}|Y |

aT (A ◦ π)b.

This last quantity is exactly the in�nity-to-one norm introduced in Sec-
tion 2.3.5. Thus we can equivalently say

Corrπ(A,P ) = ‖A ◦ π‖∞→1.

We have just described a classical XOR game. We will actually be in-
terested in the case where Alice and Bob share entanglement. Formally,
a XOR protocol with entanglement is described by a shared quantum
state |ψ〉 ∈ Cd×d for some d ≥ 1 and a choice of ±1 valued measurement
observables Ax for every x ∈ X and similarly By for every y ∈ Y . On
input (x, y) the protocol outputs 1 with probability

〈ψ|Ax ⊗By|ψ〉.

Thus for a protocol P with shared entanglement and sign matrix A we
have

Corrπ(A,P ) =
∑
x,y

A[x, y]π(x, y) · 〈ψ|Ax ⊗By|ψ〉.

Tsirelson [Tsi87] has given a very elegant characterization of the
maximal correlation achievable by the provers in this situation.

Theorem 5.2 (Tsirelson [Tsi87]). Let A be a sign matrix. For any
probability distribution π over A

max
P

Corrπ(A,P ) = γ∗2(A ◦ π).
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where the maximum is taken over XOR protocols P with shared entan-
glement.

A very accessible presentation of this result can be found in the ap-
pendix of Unger's thesis [Ung08]. Note that as the maximization in
the de�nition of γ∗2 is over a larger set than that of ‖A‖∞→1 we have
‖A ◦ π‖∞→1 ≤ γ∗2(A ◦ π). The famous CHSH game [CHSH69] is a
simple XOR game where provers sharing entanglement can do better
than those without, under the uniform distribution. The CHSH game
is described by the matrix

CHSH =
[
1 1
1 −1

]
.

As this matrix represents the truth table of the AND function (where
−1 represents true), in words the goal of the provers in a CHSH game
on input x, y is to output a, b such that a⊕b = x∧y. It is not di�cult to
show that 1/2 = (1/4)‖CHSH‖∞→1 < (1/4)γ∗2(CHSH) = 1/

√
2, thus

provers sharing entanglement can achieve strictly better correlation in
the CHSH game under the uniform distribution.

The gap between ‖A ◦ π‖∞→1 and γ∗2(A ◦ π) cannot be much
larger. Grothendieck's inequality (Theorem 2.12) ensures that γ∗2(M) ≤
KG‖M‖∞→1 for every real matrix M , where KG ≤ 1.78 . . . is
Grothendieck's constant. Thus the

√
2 gap exhibited by the CHSH game

example is not far from optimal.

5.3.2 A communication protocol gives a XOR protocol

As observed by Harry Buhrman, Theorem 5.2 can be used to give an
alternative proof of a result of Linial and Shraibman. See also [DKLR08]
for a proof of a more general result along similar lines.

Theorem 5.3 (Linial and Shraibman [LS09c]). Let A be a sign
matrix and 0 ≤ ε < 1/2, then

2Q
∗
ε(A) ≥ (1− 2ε) · γ1/(1−2ε)

2 (A)

= max
M

(1− ε)〈A,M〉 − ε‖M‖1
γ∗2(M)

.
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The equality here follows by duality as proved in 6.2.2.

Buhrman's proof actually gives a slightly weaker bound

22Q∗ε(A) ≥ max
M

〈A,M〉 − 2ε‖M‖1
γ∗2(M)

. (5.1)

The better bound in Theorem 5.3 makes use of the assumption that the
players strictly alternate in speaking order, which the proof given here
does not. For comparison, recall that we know that the square of the
right hand side in Theorem 5.3 is a lower bound on 2Rε(A).

Proof. [of inequality (5.1)] Say that Q∗ε(A) = c. By using teleportation

two players who share entanglement can encode a quantum bit with
two classical bits. We refer the reader to the textbook of Nielsen and
Chuang for details [NC00]. This allows the transformation of the origi-
nal protocol into one with the same properties using at most 2c classical
bits. Let R[x, y] denote the expectation of the output of this protocol
on input x, y. Note that, by assumption of the correctness of the pro-
tocol, if A[x, y] = 1 then 1− 2ε ≤ R[x, y] ≤ 1 and if A[x, y] = −1 then
−1 ≤ R[x, y] ≤ −1 + 2ε.

Fix a probability distribution π and let B be an arbitrary sign ma-
trix of the same dimensions as A. We will see how the communication
protocol for A can be used to design a XOR protocol for B. The bias
of this protocol will be related to the amount of communication c and
the correlation 〈A,B ◦ π〉.

The strategy in the XOR game is as follows: As the provers share en-
tanglement, we may also assume they share a random string r of length
2c. Essentially, the players will simulate their actions in the commu-
nication protocol but instead of actually communicating will take the
responses from the other player to be given by r. More explicitly, say
that Alice speaks �rst in the communication protocol�she makes a
measurement on the entangled state and communicates a t-bit string
b to Bob. In the XOR protocol, she does the exact same thing but in-
stead of sending the message to Bob, she checks that what she would
send agrees with the �rst t bits of r. If at any point in the protocol r
does not agree with the communication Alice would have sent, we say
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that r is inconsistent with Alice. Similarly, Bob treats the �rst t bits of
r as if this was the message he received from Alice, and performs the
same action he would then do in the communication protocol. If Bob
ever sees that r does not agree with the message he would send in the
communication protocol, we say that r is inconsistent with Bob.

Now we de�ne the output conditions

• If the random string r is inconsistent with Alice, then she
outputs a random bit in {−1,+1}. Otherwise, she outputs a
bit {−1,+1} with expectation R[x, y].
• If r is inconsistent with Bob, then he outputs a random bit.
Otherwise, he outputs 1.

Let P (x, y) be the expected output of this protocol on input x, y.
Let us now compute the correlation of this protocol with B under π:

γ∗2(B ◦ π) ≥ Corrπ(B,P )

=
1

22c

∑
x,y

π(x, y)B[x, y]R[x, y]

≥ 1
22c

(∑
x,y

π(x, y)B[x, y]A[x, y]− 2ε

)

Rearranging, this gives the desired result:

22c ≥ max
B,π

〈A,B ◦ π〉 − 2ε
γ∗2(B ◦ π)

= max
M

〈A,M〉 − 2ε‖M‖1
γ∗2(M)

5.4 Summary: equivalent representations

Recall that this survey revolves around a �three-step approach.� We
focus on lower bounds that generally speaking follow the three steps

(1) Finding a representation.

(2) Quanti�er switching.

(3) Finding a witness.
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The previous chapters were mainly concerned with the �rst step of
�nding a representation of the communication complexity measure in
Euclidean space. We have seen various representations for several com-
munication complexity measures, e.g. rank, approximate rank, and ap-
proximate norms. Di�erent communication complexity measures give
rise to di�erent representations, re�ecting their nature. For example,
many representations for randomized complexity were simply �approx-
imate� versions of deterministic complexity measures. These approxi-
mate versions, such as rankα and γα2 , tend to be fairly robust in the
variation of α > 1, just as randomized complexity itself is robust in the
allowable error parameter ε. On the other hand, rank(A) and rankα(A)
for α > 1 can be vastly di�erent, as can D(f) and Rε(f) In this way,
the di�erence between deterministic and randomized complexity is well
expressed by their representations.

One might expect to similarly see a di�erence in the representations
for randomized and quantum communication complexity. The surpris-
ing result of this section is that this is not the case. Natural representa-
tions for randomized communication complexity, like approximate rank
and approximate norms such as µα turn out to also be representations
for quantum communication complexity. Thus, at least when consider-
ing this approach, we cannot distinguish between classical and quantum
complexities after the �rst step of the three-step approach.

We again stress that there are randomized lower bound techniques,
such as the corruption bound and information theoretic techniques,
which do not always give lower bounds on quantum communication
complexity. These bounds, however, are more combinatorial and less
geometrical. It seems a di�cult task to �nd other representations which
distinguish between randomized and quantum communication complex-
ity. We refer the reader to [LS09c, LSS09] for further reading on the
equivalence between the natural representations for randomized and
quantum communication complexity in di�erent models.
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The role of duality in proving lower bounds

This chapter deals with the second step of our three-step approach,
that is quanti�er-switching. This is, of course, a very broad subject, and
we only discuss one generic tool to address this problem, duality. We
consider principles of duality and study their close relation to quanti�er
switching. Recall that at this point, step 2 of the three-step approach,
we have some complexity measure G which is phrased in terms of a
minimization, e.g. an approximate norm. Duality provides a means to
obtain an equivalent formulation of G in terms of a maximization.

Finding a dual formulation (in terms of a maximization) is the sub-
ject of Section 6.2. The preliminary Section 6.1 details the exact prin-
ciples of duality that we need, including basic de�nitions and the state-
ment of the separation theorem.

Although our main focus is in communication complexity, we take
the opportunity in this section to discuss duality and its application in
a broader context.
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6.1 Duality and the separation theorem

Duality has a large number of meanings in mathematics. It appears
in many areas e.g. linear algebra, geometry, group theory, graph the-
ory, logic and order theory. Even if we restrict ourselves to the area we
are considering, i.e. geometry, we are still left with many di�erent no-
tions. Examples of such notions of duality are linear programming and
semide�nite programming duality, the dual space (of linear functionals),
norms duality and a list of duality transforms.

The notion of duality we have in mind is the linear algebraic duality
between a vector space and the space of linear functionals operating on
that space. This notion of duality is related to other notions such as a
dual norm and the duality transform. These concepts are discussed in
more detail in Section 6.1.1.

The following theorem (and similar theorems) is the main engine
behind the use of duality for quanti�er-switching.

Theorem 6.1 (Separation theorem). Let X1 and X2 be convex
subsets of Rn. If X1 ∩ X2 = ∅ then there is a vector y 6= 0 and a
scalar b such that

(1) 〈x, y〉 ≤ b for all x ∈ X1,
(2) 〈x, y〉 ≥ b for all x ∈ X2.

If X1 and X2 are closed and at least one of them is bounded, then the
separation above can be made strict.

An equivalent way to state Theorem 6.1 is: Given two convex subsets
X1 and X2 of Rn, if X1 and X2 are disjoint then there exists an a�ne
hyperplane H such that X1 is contained in the half-space on one side
of H and X2 is contained in the complementing half-space (i.e., H
separates X1 from X2).

Note that the assumption X1 ∩ X2 = ∅ in Theorem 6.1 is about
nonexistence (of a point in both X1 and X2), while the consequence
is about existence (of a separating hyperplane). This way the separa-
tion theorem, when applicable, provides a way to transform a statement
about nonexistence into a statement about existence. In particular The-
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orem 6.1 provides a tool to switch a universal quanti�er with an exis-
tential quanti�er, which is what we need.

Illustrative examples of how Theorem 6.1 is used for switching quan-
ti�ers in the context of communication complexity are provided in Sec-
tion 6.2. We prove there the equivalence between randomized commu-
nication complexity and distributional complexity, and also provide an
equivalent formulation for approximate norms.

6.1.1 Dual space, dual norms and the duality transform

The aim of this section is to introduce the notions of a dual space,
dual norm and the duality transform. We also study basic properties of
these de�nitions and examine them from a complexity theoretic point
of view.

We start with the dual space of linear functionals. Given a vector
space V over a �eld F, the set of all linear functionals form V to F is
called the dual space. When the vector space is Rn, the dual space is
also isomorphic to Rn. A natural isomorphism maps a vector y ∈ Rn to
the linear functional f : Rn → R de�ned by f(x) = 〈y, x〉.

Observe that the consequence in Theorem 6.1 is really a statement
about the dual space, its subject is a separating hyperplane or equiva-
lently a linear functional. Therefore duality is inherent in any applica-
tion of the separation theorem.

Banach space theory studies vector spaces equipped with a norm.
For example the space `n2 = (Rn, ‖ · ‖2) is the vector space Rn with the
`2 (Frobenius) norm. Now the dual space of linear operators is also a
Banach space (with a norm de�ned on it). The dual space of a Banach
space (V, ‖ ·‖) is the pair (V ∗, ‖ ·‖∗). Here V ∗ is the dual space of linear
functionals and ‖ · ‖∗ is the dual norm, de�ned for every f ∈ V ∗ by

‖f‖∗ = max
x∈V :‖x‖≤1

f(x).

In words, the dual norm of f is the maximal value given by f to a vector
with unit norm. In the special case V = Rn we are interested in, this
takes the form

‖y‖∗ = max
x∈Rn:‖x‖≤1

〈y, x〉.



76 The role of duality in proving lower bounds

for every y ∈ Rn.
Another, more combinatorial way, to reach the de�nition of a dual

norm is as follows: It starts with the (geometric) duality transform. To a
nonzero point a ∈ Rn\{0} the duality transform assigns the hyperplane
{x ∈ Rn : 〈a, x〉 = 1}, and to a hyperplane H that does not pass trough
the origin and can be uniquely written as H = {x ∈ Rn : 〈a, x〉 = 1} it
assigns the point a.

From the duality transform that assigns hyperplanes to points and
vice versa, one can derive a transformation on sets of points. For a set
X ⊂ Rn we de�ne the set dual to X, denoted by X∗, as follows:

X∗ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ X}.

In other words
X∗ = {y ∈ Rn : sup

x∈X
〈x, y〉 ≤ 1}.

A simple, but important, property of dual sets is

Fact 6.1. For any set X ⊂ Rn

(1) The set X∗ is closed and convex and contains the origin.
(2) The set (X∗)∗ is the closure of conv(X ∪ {0}).

The �rst part of Fact 6.1 is easy, and the second is proved using
Theorem 6.1. It follows that for every closed and convex set X ⊂ Rn

that contains the origin we have that (X∗)∗ = X.
Convexity is a prerequisite for Theorem 6.1 to apply. Without the

assumption that X1 and X2 are convex the statement of this theorem
is false. This is one reason why working with norms is very convenient.
We describe norms and duality of norms in a little more detail next.

6.1.1.1 Norms

A norm on Rn is a function Φ : Rn → R such that

(1) Φ(x) > 0 for every x ∈ Rn\{0}.
(2) Φ(a · x) = |a|Φ(x) for every x ∈ Rn and a ∈ R.
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(3) Φ(x+ y) ≤ Φ(x) + Φ(y) for every x, y ∈ Rn.

Let Φ be a norm on Rn, the set BΦ = {x ∈ Rn : Φ(x) ≤ 1} is
called the unit ball of Φ. It is not hard to verify that BΦ is convex
and symmetric around the origin. On the other hand, given a convex
and 0-symmetric body B ⊂ Rn, it naturally induces a norm ΦB by the
Minkowski functional. Namely, ΦB(x) is equal to c−1, where c is the
minimal scalar such that c · x ∈ B. Norms can therefore be identi�ed
with their unit balls.

Consider B∗Φ, the dual set to BΦ. We have that

B∗Φ = {y ∈ Rn : sup
x:Φ(x)≤1

〈x, y〉 ≤ 1}.

Therefore, for every pair of vectors x ∈ Rn and y ∈ B∗Φ
〈x, y〉 ≤ Φ(x).

This inequality is sometimes called weak duality. The separation theo-
rem implies that strong duality also holds, i.e. that for every x ∈ Rn

there is a y ∈ B∗Φ such that 〈x, y〉 = Φ(x). Observe that B∗Φ = BΦ∗ , i.e.
the dual norm Φ∗ is the norm induced by the dual set B∗Φ.

Duality, combined with the separation theorem thus provides an
equivalent formulation of any norm Φ in terms of a maximization:

Φ(x) = max
y:Φ∗(y)≤1

|〈x, y〉|. (6.1)

Let us now interpret this from a complexity theoretic point of view,
which is our main objective. Assume we have a vector x for which we
want to prove that Φ(x) is large. Any vector y ∈ B∗Φ provides a proof of
some lower bound on Φ(x), and strong duality implies that this proof
system is optimal, i.e. there is always a proof of this type that gives the
value of Φ(x).

6.2 Applying the separation theorem - �nding a dual for-
mulation

6.2.1 Distributional complexity

The next theorem is the equivalence between randomized commu-
nication complexity and distributional complexity, proved by Yao
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[Yao83, KN97] using a minimax theorem. We apply Theorem 6.1 di-
rectly to prove this equivalence.

Theorem 6.2. For every sign matrix A, Rε(A) is equal to

max
P

min
B

P (B[i,j]6=A[i,j])≤ε

D(B),

where the maximum is over all probability distributions P on the entries
of A, and B ranges over sign matrices.

Proof. Recall from Section 4.4 that for a sign matrix A, Rε(A) is the
minimal number t such that there exists a matrix Ẽ ∈ B(D, t) satisfying
‖A− Ẽ‖∞ ≤ 2ε.

First let us see that Rε(A) is larger than the expression in the the-
orem (i.e., distributional complexity of A). Say Rε(A) = t and assume

‖A−
∑
k

pkEk‖∞ ≤ 2ε,

where p1, . . . , pm are a probability distribution and E1, . . . , Em are sign
matrices with deterministic communication complexity at most t. For
every matrix Y with ‖Y ‖1 = 1 we have∑

i,j

Y [i, j](A[i, j]−
∑
k

pkEk[i, j]) ≤ 2ε.

Rearranging, we get∑
k

pk
∑
i,j

Y [i, j](A[i, j]− Ek[i, j]) ≤ 2ε.

Therefore there is some k ∈ [m] such that∑
i,j

Y [i, j](A[i, j]− Ek[i, j]) ≤ 2ε

Considering matrices Y of the form Y = A ◦ P for an arbitrary
probability distribution P we can reinterpret the above inequality as
P (A[i, j] 6= Ek[i, j]) ≤ ε. Since we work with an arbitrary distribution
P , and D(Ek) ≤ t, we get that the distributional complexity of A is
smaller than Rε(A).
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For the opposite inequality, �x a number t and assume that Rε(A) >
t. Denote by Aε the following set

Aε = {Ã : ‖A− Ã‖∞ ≤ 2ε} = {A+ ∆ : ‖∆‖∞ ≤ 2ε}.

Both B(D, t) and Aε are closed and bounded convex sets, and our as-
sumption that Rε > t implies that they are disjoint. By Theorem 6.1
therefore, there is a matrix Y and a scalar b such that

(1) 〈Ẽ, Y 〉 ≤ b for all Ẽ ∈ B(D, t),
(2) 〈Ã, Y 〉 > b for all Ã ∈ Aε.

It is not hard to check that the above two conditions are equivalent to:

(1) 〈E, Y 〉 ≤ b for all E with D(E) ≤ t,
(2) 〈A+ ∆, Y 〉 > b for all ∆ satisfying ‖∆‖∞ ≤ 2ε.

We can assume without loss of generality that ‖Y ‖1 = 1. Let S =
sign(Y ) be the sign matrix whose (i, j) entry is the sign of Y [i, j], and
denote P = S ◦Y . Observe that P is a probability distribution. We can
rewrite our two conditions as

(1) 〈E ◦ S, P 〉 ≤ b for all E with D(E) ≤ t,
(2) 〈(A+ ∆) ◦ S, P 〉 > b for all ∆ satisfying ‖∆‖∞ ≤ 2ε.

By choosing ∆ = −2εS in the second condition we get that 〈A◦S, P 〉 >
b + 2ε, which together with the �rst condition implies that the proba-
bility with respect to P that A is di�erent from E is larger than ε for
every sign matrix E with D(E) ≤ t. The distributional complexity of
A is therefore also larger than t, concluding the proof.

6.2.2 Approximate norms

We have de�ned approximate norms in Section 4.2, to serve as a repre-
senting measure for randomized communication complexity in di�erent
models. In this section we apply duality to �nd an equivalent formula-
tion for approximate norms.

As it will require no additional e�ort in the proof, we consider the
following slightly more general de�nition of an approximate norm. Let
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Φ and ξ be two norms on Rn and let α ≥ 1 be a real number. The
(α,Φ, ξ)-approximate norm is de�ned by

Φα
ξ (x) = min

y:ξ(y− 1+α
2
x)≤α−1

2

Φ(y)

for every x ∈ {±1}n. Using duality we get

Theorem 6.3. For any two norms Φ and ξ on Rn, a real number α ≥ 1,
and every x ∈ {±1}n

Φα
ξ (x) = max

w
Φ∗(w)≤1

(1 + α)
2
〈x,w〉+

(1− α)
2

ξ∗(w)

Proof. Fix a sign vector x ∈ {±1}n, and let t be a real number such
that Φα

ξ (x) > t. Consider the following two convex sets

Y =
{
y|ξ(y − 1 + α

2
x) ≤ α− 1

2

}
and

Z = {z|Φ(z) ≤ t}.

Y and Z are closed, convex, and bounded subsets of Rn. Our assumption
that Φα

ξ (x) > t implies that Y ∩ Z = ∅. By the separation theorem
therefore, there is a vector w and a scalar b such that

(1) 〈w, y〉 > b for all y ∈ Y ,
(2) 〈w, z〉 ≤ b for all z ∈ Z.

Note that Z = t · BΦ and hence, the second condition is equivalent
to saying that Φ(w)∗ ≤ b/t. As for the �rst condition, observe that one
can rewrite Y as

Y =
{

1 + α

2
x+ ∆|ξ(∆) ≤ α− 1

2

}
Rewriting the �rst condition accordingly we get that

1 + α

2
〈w, x〉 −max

∆
〈w,∆〉 > b, (6.2)
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where the maximum is over all ∆ such that ξ(∆) ≤ (α − 1)/2. By the
de�nition of a dual norm the maximum in Equation (6.2) is equal to
(α−1)ξ∗(w)/2. We conclude then that there exists a vector w such that
Φ∗(w) ≤ b/t and

1 + α

2
〈w, x〉+

1− α
2

ξ∗(w) > b.

Normalizing w so that Φ∗(w) ≤ 1 we get that the expression in the
theorem is at least as large as Φα

ξ (x). It is not hard to verify that the
converse inequality is also true, which concludes the theorem.

Comparing the dual expression for norms and approximate norms
we see that for approximate norms the functional we are optimizing on
is more cumbersome, involving ξ∗(w) and not only the inner product
we had before, and a weighting that depends on α. Nevertheless the
set of witnesses we need to consider, i.e. BΦ∗ , remains the same. The
problems of �nding a good witness for some norm or any approximate
version of it share much in common.
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Choosing a witness

We have now seen several examples of approximate norms and how they
can give lower bounds on communication complexity. We have also seen
how approximate norms have an equivalent formulation in terms of a
maximization problem. We are left with the third step of the three-
step approach, the problem of �nding a good witness. In this section
we focus on this problem for approximate norms where ξ = `∞. Recall
from Theorem 6.3 that the equivalent maximization formulation for an
approximate norm in this case is

Φα(x) = max
w:Φ∗(w)≤1

(1 + α)
2
〈x,w〉+

(1− α)
2
‖w‖1.

Thus, we need to �nd a vector w satisfying Φ∗(w) ≤ 1 for which the
target function is large. This problem can be quite di�cult to solve in
general; we will restrict ourselves to two speci�c known cases: a general
heuristic for choosing w as a weighted version of x, described in Sec-
tion 7.1, and a family of structured vectors x for which we know how
to optimally choose w, described in Section 7.2.

82
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7.1 Nonnegative weighting

For a given sign vector x ∈ {±1}N we seek a vector w that maximizes

max
w

(1 + α)〈x,w〉+ (1− α)‖w‖1
2Φ∗(w)

. (7.1)

A �rst choice that comes to mind is to take w = x. Since x ∈ {±1}N
this gives

Φα(x) ≥ N

Φ∗(x)
. (7.2)

The quality of this lower bound depends on the value of Φ∗(x). Some-
times this simple choice provides a tight lower bound for Φα(x), as
illustrated by the next example.

Example 7.1. Consider real 2n-by-2n matrices with the trace norm
‖ · ‖tr. The operator norm, or spectral norm, ‖ · ‖, is dual to the trace
norm.

Recall from Theorem 2.7 that for a 2n-by-2n sign matrix A

2D(A) ≥ ‖A‖
2
tr

22n
.

As D(A) ≤ n+ 1, this shows that ‖A‖tr ≤ 2(3n+1)/2. It follows that

‖A‖αtr ≤ ‖A‖tr ≤ 2(3n+1)/2,

for every 2n × 2n sign matrix A and every real number α ≥ 1.
Taking A to be the Hadamard matrix Hn, we see that this upper

bound can be tight. Simply take the witness w to be Hn as well. As
HnH

t
n = 2nI we have ‖Hn‖ = 2n/2, and so by Equation (7.2),

‖Hn‖αtr ≥
22n

‖Hn‖
= 23n/2.

In communication complexity terms, by Corollary 4.2 this means
that the inner product function on n bits has randomized communi-
cation complexity n − O(log n) bits even when the allowed error is
ε = 1

2 −
1

nO(1) .

The above example shows that x itself can sometimes be a good
witness. But this is not always so:
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Example 7.2. Consider the settings of Example 7.1. Denote by Jn the
2n × 2n sign matrix all of whose elements are 1, and Hn is again the
Hadamard matrix of the same size. Take the matrix

A =
(
Hn−1 Jn−1

Jn−1 Jn−1

)
The approximate trace norm of a sign matrix is at least the approximate
trace norm of any of its submatrices, thus by the previous example

‖A‖αtr ≥ 23(n−1)/2

On the other hand, the operator norm of A is larger than 2n√
2
. There-

fore, taking A itself as a witness only gives ‖A‖tr ≥ 2n+1/2, which leads
to a trivial communication complexity bound.

A natural remedy to overcome the pitfalls of the previous example is
to choose a witness of the form w = p◦x where p is a probability vector
(i.e., a nonnegative vector whose entries sum up to 1). The numerator
of Equation 7.1 is still easy to handle, and we get

Φα(x) ≥ max
p:p≥0
‖p‖1=1

1
Φ∗(p ◦ x)

. (7.3)

Note that taking w = x is equivalent to taking p above to be the uniform
probability distribution.

Taking a weighted version of x can improve the lower bounds we
can get. For example, consider the sign matrix A from Example 7.2. By
taking A weighted with the following probability distribution P we can
get a nearly optimal bound.

P =
4

22n

(
Jn−1 0

0 0

)
With w = P ◦ A as a witness we get a bound of ‖A‖αtr ≥ 23(n−1)/2,
which is close to optimal.

The heuristic of taking a witness of the form p ◦ x for a probability
distribution p has a very nice characterization in terms of approximate
norms. Using duality we see that it is actually equivalent to the ∞-
approximate norm.
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Theorem 7.1. Let Φ be a norm on RN , then for every x ∈ {−1,+1}N

Φ∞(x) = max
p:p≥0
‖p‖1=1

1
Φ∗(p ◦ x)

.

Proof. The proof follows similar lines to that of Theorem 6.3. Intu-
itively, the above expression for Φ∞ is what we expect as this is what
one gets by taking the limit as α → ∞ in the expression for Φα in
Theorem 6.3.

Consider the special case Φ = µ. Recall the de�nition of discrepancy
from Chapter 4. It is not hard to check that a reformulation of this
de�nition is

disc(A) = min
P :P≥0
‖P‖1=1

µ∗(P ◦A).

Theorem 7.1 implies that the inverse of discrepancy is equal to µ∞.
Note that the approximate norm µα(A) is a decreasing function of α,
achieving its minimal value when α = ∞. Thus, the lower bound on
randomized communication complexity in terms of the α-approximate
µ norm, given in Chapter 4, is a generalization of the discrepancy lower
bound and has also been called the generalized discrepancy method.

Dependence of Φα on α We saw in Example 7.1 that the α-
approximate trace norm ‖ · ‖αtr can remain constant as α varies, since
‖Hn‖αtr = 23n/2 for every α ≥ 1. On the other hand, there are also sign
matrices A for which the value of µα(A) decreases very rapidly. In par-
ticular µ∞(A) can be exponentially smaller than µα(A) for α = 2. For
such matrices A, the discrepancy method fails to give good lower bounds
on Rε(A), while the lower bound via the bounded α-approximate norm
does much better. In particular, this means that for some functions one
cannot show a good lower bound via Equation 7.1 simply by choosing
a witness of the form w = p ◦ x for a probability distribution p.

A famous example where µα decreases rapidly is the disjointness
function.
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Theorem 7.2. Consider the 2n × 2n sign matrix An that corresponds
to the disjointness function. The disjointness function DISJ : {0, 1}n ×
{0, 1}n → {T, F} is de�ned by DISJ(x, y) = T if x ∩ y = ∅ and
DISJ(x, y) = F otherwise. Then

µ(An) ≥ 2

(√
5

2

)n
− 1

µ∞(An) ≤ 16n+ 8.

Proof. Recall from Corollary 2.1 that γ2(M) ≤ µ(M) ≤ 8γ2(M) for
every real matrix M . We show next that γ∞2 (An) ≤ 2n+ 1.

Denote by Ln the n× 2n Boolean matrix whose columns are the 2n

Boolean strings of length n. Then the matrix 2LnLtn − J has the same
sign pattern as An and its entries are all larger than 1. Therefore

γ∞2 (An) ≤ γ2(2LnLtn − J) ≤ 2n+ 1.

Now we show a lower bound on γ2(An). Recall that

γ2(M) ≥ ‖M‖tr√
size(M)

for any sign matrix M . We actually lower bound the trace norm of
An. It will be more convenient to work with the Boolean valued matrix
Bn = (J − An)/2. This is the Boolean communication matrix for the
disjointness function. The matrix Bn is nice to work with because of its
tensor product structure; indeed, if we let

B1 =
(

1 1
1 0

)
then Bn = (B1)⊗n.

As ‖M ⊗M‖tr = ‖M‖2tr, and a simple calculation shows ‖B1‖tr =√
5, we �nd

‖Bn‖tr = 5n/2,

which gives the theorem.
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7.2 Block composed functions

Many functions of interest in communication complexity can be viewed
as the composition of an inner function and an outer function. More pre-
cisely, the input x to Alice can be broken up into blocks x = (x1, . . . , xn)
and similarly with the input to Bob y = (y1, . . . , yn), so that the com-
munication function h can be expressed as

h(x, y) = (f • gn)(x, y) = f(g(x1, y1), . . . , g(xn, yn)).

Here f and g can be arbitrary Boolean functions of the appropriate
size. We call a function h of this form a block composed function, and
refer to f as the outer function and g as the inner function.

A well studied class of functions arises when we take the inner func-
tion g to be the AND function on one bit. Then if f is the PARITY
function, for example, we arrive at the INNER PRODUCT function,
and if f is OR we get the SET INTERSECTION function.

Before we discuss lower bounds for block composed functions, let
us �rst think about what we should expect their complexity to be.
A fundamental idea going back to Buhrman, Cleve, and Wigderson
[BCW98], is that the complexity of f • gn can be related to the query

complexity of f and the communication complexity of g. Let RQ(f)
indicate the randomized query complexity of f with error probability
at most 1/3. This is the number of queries of the form xi =? needed by
a randomized algorithm to evaluate f(x) with probability at least 2/3
on the worst case input. Similarly let QQ(f) be the number of queries
needed by a quantum query algorithm to evaluate f(x) with success
probability at least 2/3. For formal de�nitions and a survey of query
complexity we recommend Buhrman and de Wolf [BW02].

Theorem 7.3 (Buhrman, Cleve, and Wigderson [BCW98]).

For any two functions f : {−1,+1}n → {−1,+1} and
g : X × Y → {−1,+1},

R(f • gn) = O(RQ(f)R(g) logRQ(f))

Q(f • gn) = O(QQ(f)Q(g) log n).
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Proof. We just treat the randomized case here. Let P be a random-
ized query algorithm for f with success probability 2/3 and making
RQ(f) many queries. When P queries the ith bit we run a randomized
communication protocol computing g(xi, yi). By repeating this protocol
O(logRQ(f)) many times, we can reduce the error probability to be at
most (10RQ(f))−1. Then by a union bound, with probability at least
9/10 all such queries will be made correctly, and the decision tree algo-
rithm will answer correctly with probability at least 3/5. By repeating
a constant number of times, we can boost this up to 2/3.

Unlike randomized communication complexity, for randomized and
quantum query complexity we know a polynomially tight characteri-
zation in terms of a natural mathematical quantity, the approximate
polynomial degree.

De�nition 7.1 (approximate degree). Let f : {−1,+1}n →
{−1,+1}. The (polynomial) degree of f is the degree of the unique mul-
tilinear polynomial representing f . For α ≥ 1 we say that a function f ′

gives an α-approximate to f if 1 ≤ f ′(x)f(x) ≤ α for all x ∈ {−1,+1}n.
The α-approximate degree of f , denoted degα(f), is the smallest degree
of a function f ′ which gives an α-approximate to f .

Remark 7.1. In a di�erent scenario, one can consider a Boolean val-
ued function f and de�ne the approximate degree as min{deg(f ′) :
‖f −f ′‖∞ ≤ ε}. Letting f± be the sign representation of f , one can see
that this de�nition with error parameter 0 ≤ ε < 1/2 is equivalent to
degαε(f±) where αε = 1+2ε

1−2ε .

A polynomial relationship between query complexity and approx-
imate degree was �rst shown by Nisan and Szegedy [NS94] and later
improved by Buhrman et al. [BBC+01].

Theorem 7.4 ([NS94, BBC+01]). Let f : {−1,+1}n → {−1,+1}.
Then

RQ(f) ≤ deg2(f)6.
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This bound holds even with RQ(f) replaced by the deterministic query
complexity of f . Using this result together with Theorem 7.3 gives the
following corollary:

Corollary 7.1. For any two functions f : {−1,+1}n → {−1,+1} and
g : X × Y → {−1,+1},

R(f • gn) = O(deg2(f)6R(g) log deg2(f)),

Q(f • gn) = O(deg2(f)6Q(g) log n).

Our goal, then, in showing lower bounds on the complexity of a block
composed function f • gn is to get something at least in the ballpark of
this upper bound. Of course, this is not always possible�the protocol
given by Theorem 7.3 is not always optimal. For example, when f is the
PARITY function on n bits, and g is the two bit XOR function, this
protocol just gives an upper bound of n bits, when the true complexity
is constant.

For a broad class of functions, however, we do expect that a lower
bound resembling the upper bound of Corollary 7.1 should hold. In a
seminal paper, Razborov [Raz03] showed a theorem of this type. He
showed that whenever f is a symmetric function, and g is the AND
function the complexity of f•gn is Ω(deg2(f)) by using the approximate
trace norm method. This lower bound is polynomially related to the
upper bound in Corollary 7.1.

More recently, very nice frameworks have been developed by Sher-
stov [She09, She08c] and in independent work by Shi and Zhu [SZ09b]
which can show a lower bound on a block composed function f • gn
in terms of the approximate degree of f for an arbitrary function f ,
provided that g satis�es certain technical conditions. Both of these pa-
pers work again with the approximate trace norm, more precisely with
the dual formulation of the approximate trace norm as in Equation 7.1.
Using this dual form, the problem of showing lower bounds on commu-
nication complexity reduces to �nding a good witness. A key idea of
Sherstov and Shi�Zhu is to de�ne a witness for the approximate trace
norm bound in terms of the dual polynomial, described next.
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A degree d polynomial which approximates a function f provides a
certi�cate that the approximate degree is at most some value. Similarly,
a dual polynomial for f provides a certi�cate that the approximate
polynomial degree of f is at least a certain value. More precisely, the
dual polynomial has the following properties.

Lemma 7.1 (Sherstov [She08c], Shi-Zhu [SZ09b]). 1 Let f :
{−1,+1}n → {−1,+1} and let d = degα(f) for α ≥ 1. Then there
exists a function v : {−1,+1}n → R such that

(1) 〈v, f〉 ≥ α−1
α+1 .

(2) ‖v‖1 = 1.
(3) 〈v, g〉 = 0 for any function g of degree ≤ d.

Furthermore, when α =∞, there is a function v : {−1,+1}n → R sat-
isfying items (2), (3), and such that v(x)f(x) ≥ 0 for all x ∈ {−1,+1}n.

A function v as above is called a dual polynomial for f . The proper-
ties of the dual polynomial mesh very well with the properties required
by a good witness in the dual formulation of approximate trace norm.
Namely, if v is a dual polynomial for f , to show that the approxi-
mate trace norm of f • gn is large we choose as a witness the function
v • gn, up to a normalization factor. Item (1) is then used to show that
〈f • gn, v • gn〉 is large; item (2) is used to bound ‖v • gn‖1; and, in the
most di�cult step, item (3) is used to upper bound ‖v • gn‖.

The function g serves as a mediator in the transference of properties
of the dual polynomial to the trace norm witness. All that is required
of g for the transference of properties (1), (2) is that it is balanced�it
outputs the value +1 as often as −1. When g is balanced, the inner
product 〈v, f〉 and the `1 norm ‖v‖1 are proportional to 〈v • gn, f • gn〉
and ‖v • gn‖1, respectively.

Item (3), however, is more di�cult, and this is where the papers of
Sherstov [She08c] and Shi and Zhu [SZ09b] diverge. Sherstov considers
the case where g is a �xed function of a particularly nice form, which

1This is Lemma 3.3.1 of [She08c] and can be found in Section 3.1 of [SZ09b].
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leads f •gn to be what he calls a pattern matrix. The structure of a pat-
tern matrix allows one to compute the spectral norm of v •gn precisely.
The pattern matrix framework has proven extremely useful and has
found many further applications in unbounded-error communication
complexity [She08d, RS08] and multiparty communication complexity
[Cha07, LS09a, CA08, BHN08] which will be described in Chapter 8.

Shi and Zhu take a di�erent approach, and are able to get a bound
on f • gn in terms of the approximate degree of f whenever g is su�-
ciently �hard.� This approach simply uses the triangle inequality to up-
per bound the spectral norm of v •gn. We refer the reader to the survey
of Sherstov [She08a] for a detailed comparison of these two methods.

We present both the approaches of Sherstov and Shi-Zhu in the next
two sections.

7.2.1 Strongly balanced inner function

We begin by describing the pattern matrix method of Sherstov. A pat-
tern matrix can be seen as a block composed function where the inner
function g is of the form g : {−1,+1}k × ([k] × {−1,+1}). On input
(x, (i, b)) de�ne g(x, (i, b)) = xi · b. In other words, the inner function
simply selects a bit of x or its negation. If we let A be a 2k-by-k matrix
where A[x, i] = xi we can see that Ag is of the form

Ag =
[
A −A

]
. (7.4)

For a function f : {−1,+1}n → {−1,+1}, the pattern matrix corre-
sponding to f is a block composed function f(g(x1, y1), . . . , g(xn, yn)).
Notice that the role of g here is to select a bit from each block of
x = (x1, . . . , xn), possibly negating some bits, and then applying f to
the resulting n-bit substring. Sherstov shows the following theorem.

Theorem 7.5 (Sherstov, Theorem 5.1 [She08c]). Let f be an ar-
bitrary function, and let g : {−1,+1}k×([k]×{−1,+1}) be as described
above. Then

Q∗1/4(f • gn) ≥ 1
2

deg3(f) log(k)− 2.
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A key property of pattern matrices which allows for a precise calcu-
lation of the spectral norm of v•gn is that the inner function is strongly
balanced, as de�ned next.

De�nition 7.2 (Strongly balanced). Let A be a matrix, and J be
the all-ones matrix of the same dimensions as A. We say that A is
balanced if Tr(AJ t) = 0. We say that A is strongly balanced if AJ t =
JAt = 0. That is, a matrix is strongly balanced if the sum over each
row is zero, and similarly for each column. We say that a function is
balanced or strongly balanced if its sign matrix representation is.

Notice in Equation 7.4 that columns of A correspond to the characters of
degree one, and hence are balanced. The purpose of b in the construction
of a pattern matrix is to also make the rows of Ag also balanced, and
thus Ag strongly balanced overall.

Lee, Shraibman, and Zhang [LSZ09] observe that Sherstov's proof of
Theorem 7.5 works essentially unchanged whenever the inner function
g is strongly balanced.

Theorem 7.6 (Lee-Shraibman-Zhang [LSZ09]). Let f :
{−1,+1}n → {−1,+1} be an arbitrary function, and let g be a
strongly balanced function. Fix 0 < ε < 1/2, let α = 1/(1 − 2ε), and
α0 > α. Then

Q∗ε(f • gn) ≥ degα0
(f) log

(√
size(Ag)
‖Ag‖

)
+ log

(
α0 − α
α(α0 + 1)

)
.

Proof. Let d = degα0
(f) and let v be a dual polynomial for f with

properties as in Lemma 7.1. By Theorem 5.3 and the de�nition of γ2

given in 2.3.2, the approximate trace norm of Af•gn gives a lower bound
on Q∗ε(f • gn). We therefore use the dual expression of the approximate
trace norm of Af•gn to prove a lower bound. For this purpose we de�ne
a witness matrix B by

B[x, y] =
2n

size(Ag)n
v(g(x1, y1), . . . , g(xn, yn)).
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Let us �rst lower bound the inner product 〈Af•gn , B〉. Notice that
as g is strongly balanced, it is in particular balanced, and so

〈Af•gn , B〉 =
2n

size(Ag)n
∑
x,y

(f • gn)(x, y) · (v • gn)(x, y)

=
2n

size(Ag)n
∑

z∈{−1,+1}n
f(z)v(z) · |{x, y : gn(x, y) = z}|

= 〈f, v〉

≥ α0 − 1
α0 + 1

.

The third equality is because |{x, y : gn(x, y) = z}| = size(Ag)/2 for
balanced functions g, and the last inequality is by Lemma 7.1. A similar
argument shows that ‖B‖1 = 1 as ‖v‖1 = 1.

Now we turn to evaluate ‖B‖. To do this, we expand B in terms of
the Fourier coe�cients of v. We write

B[x, y] =
2n

size(Ag)n
∑
T⊆[n]

v̂T χT (g(x1, y1), . . . , g(xn, yn))

=
2n

size(Ag)n
∑
T⊆[n]

v̂T
∏
i∈[n]

g(xi, yi)T [i]

where T [i] = 1 if i ∈ T and T [i] = 0 otherwise. We can write this more
compactly in matrix notation using tensor product

B =
2n

size(Ag)n
∑
T⊆[n]

v̂TAχT •gn

=
2n

size(Ag)n
∑
T⊆[n]

v̂T
⊗
i

AT [i]
g

where A1
g = Ag and A0

g = J the all-ones matrix of appropriate size.
Now observe that the product AχT •gnAχS•gn is equal to zero when-
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ever S 6= T . Indeed,

AχT •gnA
t
χS•gn =

(⊗
i

AT [i]
g

)(⊗
i

AS[i]
g

)t
=
⊗
i

(
AT [i]
g (AS[i]

g )t
)

= 0.

When T 6= S, there is some i for which T [i] 6= S[i]. The corresponding
term is thus either AgJ t or JAtg. Either way the product nulli�es as g
is strongly balanced.

We can therefore use the following fact to analyze ‖B‖.

Fact 7.1 (Lemma 4.2 [She08c]). If ABt = BAt = 0 then ‖A+B‖ =
max{‖A‖, ‖B‖}.

This is the key fact which makes Sherstov's analysis of the spectral
norm of pattern matrices so clean. As we shall see in the next section,
Shi-Zhu do not assume that the inner function is strongly balanced,
and thus simply use ‖A + B‖ ≤ ‖A‖ + ‖B‖ the triangle inequality at
this stage.

We get

‖B‖ =
2n

size(Ag)n
‖
∑
T⊆[n]

v̂TAχT •gn‖

=
2n

size(Ag)n
max
T
|v̂T |‖AχT •gn‖

= max
T

2n|v̂T |
∏
i

‖AT [i]
g ‖

size(Ag)

≤ max
T :v̂T 6=0

∏
i

‖AT [i]
g ‖

size(Ag)

≤

(
‖Ag‖√
size(Ag)

)d(
1

size(Ag)

)n/2
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In the second to last step we have used that |v̂T | ≤ 1/2n as ‖v‖1 = 1,
and in the last step we have used the fact that ‖J‖ =

√
size(Ag).

We conclude that

‖Af•gn‖αtr√
size(Af•gn)

≥ α0 − α
(α0 + 1)

(√
size(Ag)
‖Ag‖

)d
.

While it may look strange at �rst, the expression for the complexity
of g in Theorem 7.6 is closely related to the discrepancy of g with
respect to the uniform distribution. Let A be am-by-n sign matrix. The
discrepancy of A with respect to the uniform distribution, discU (A), can
be written as

discU (A) =
1

size(A)
max

x∈{0,1}m
y∈{0,1}n

|xtAy|.

It is easy to see from this expression that

discU (A) ≤ ‖A‖√
size(A)

.

Shaltiel [Sha03] has shown the deeper result that this bound is in fact
polynomially tight:

Theorem 7.7 (Shaltiel). Let A be a sign matrix.

discU (A) = Ω

(
‖A‖√
size(A)

)3

.

Using this characterization, we get the following corollary:

Corollary 7.2. In the settings of Theorem 7.6.

Q∗ε(f•gn) = degα0
(f)
(

1
3

log
(

1
discU (Ag)

)
−O(1)

)
+log

(
α0 − α
α(α0 + 1)

)
.



96 Choosing a witness

7.2.2 Triangle Inequality

The method of Shi-Zhu does not restrict the form of the inner function
g, but rather works for any g which is su�ciently �hard.� The hardness
condition they require is phrased in terms of a somewhat awkward
measure they term spectral discrepancy.

De�nition 7.3 (spectral discrepancy). LetA be am-by-n sign ma-
trix. The spectral discrepancy of A, denoted ρ(A), is the smallest r such
that there is a submatrix A′ of A and a probability distribution µ on
the entries of A′ satisfying:

(1) A′ is balanced with respect to µ, i.e. the distribution which
gives equal weight to −1 entries and +1 entries of A′.

(2) The spectral norm of A′ ◦ µ is small:

‖A′ ◦ µ‖ ≤ r√
size(A′)

(3) The entrywise absolute value of the matrix A′ ◦µ should also
have a bound on its spectral norm in terms of r:

‖|A′ ◦ µ|‖ ≤ 1 + r√
size(A′)

While conditions (1),(2) in the de�nition of spectral discrepancy are
quite natural, condition (3) can be complicated to verify. Note that
condition (3) will always be satis�ed when µ is taken to be the uniform
distribution. Using this notion of spectral discrepancy, Shi-Zhu show
the following theorem.

Theorem 7.8 (Shi-Zhu [SZ09b]). Let f : {−1,+1}n → {−1,+1},
and g : {−1,+1}m1 × {−1,+1}m2 → {−1,+1}. If ρ(g) ≤ deg3(f)

2en then

Q1/4(f • gn) ≥ Ω(deg3(f)).

Here e = 2.718 . . . is Euler's number.
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Chattopadhyay [Cha08] extended the technique of Shi-Zhu to the
case of multiparty communication complexity, answering an open ques-
tion of Sherstov [She08a]. In doing so, he gave a more natural condition
on the hardness of g in terms of an upper bound on discrepancy we
shall encounter in Chapter 8, Theorem 8.5. Following this proof, Lee-
Shraibman-Zhang further relaxed the requirement on the inner function
g to simply having small discrepancy under a balancing distribution.

Theorem 7.9 (Lee-Shraibman-Zhang [LSZ09]). Let f :
{−1,+1}n → {−1,+1}, and g : {−1,+1}m1×{−1,+1}m2 → {−1,+1}.
Fix 0 < ε < 1/2, let α = 1/(1− 2ε), and α0 > α. Then

Q∗ε(f • gn) ≥ degα0
(f) + log

(
α0 − α
α(α0 + 1)

)
.

provided there is a distribution µ which is balanced with respect to g

and for which γ∗2(g ◦ µ) ≤ degα0
(f)

2en .

Proof. As before we use Theorem 5.3, and thus we really lower bound
γα2 (Af•gn). By the dual expression for γα2 (Theorem 6.3) we have

γα2 (Af•gn) = max
B

(1 + α)〈Af•gn , B〉+ (1− α)‖B‖1
2γ∗2(B)

.

To prove a lower bound we choose a witness matrix B as follows

B[x, y] = 2n · v(g(x1, y1), . . . , g(xn, yn)) ·
n∏
i=1

µ(xi, yi).

where v witnesses that f has approximate degree at least d = degα0
(f).

This de�nition is the same as in the previous section where µ was simply
the uniform distribution. As argued before, we have 〈Af•gn , B〉 ≥ α0−1

α0+1

and ‖B‖1 = 1 because Ag ◦ µ is balanced.
We again expand B as

B = 2n
∑

T :|T |≥d

v̂T

n⊗
i=1

(Ag ◦ µ)T (i),

where (Ag ◦ µ)1 = Ag ◦ µ and (Ag ◦ µ)0 = µ.
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Now comes the di�erence with the previous proof. As we do not
have special knowledge of the function g, we simply bound γ∗2(B) using
the triangle inequality.

γ∗2(B) ≤ 2n
∑

T :|T |≥d

|v̂T | γ∗2

(
n⊗
i=1

(Ag ◦ µ)T (i)

)

= 2n
∑

T :|T |≥d

|v̂T | γ∗2(Ag ◦ µ)|T |γ∗2(µ)n−|T |

≤
∑

T :|T |≥d

γ∗2(Ag ◦ µ)|T |,

where in the last step we have used that γ∗2(µ) ≤ 1 as µ is a probability
distribution and that |v̂T | ≤ 2−n. In the second step (equality) we
used the fact that γ∗2 is multiplicative with respect to tensor product,
a property proved in [LS�08]. We continue with simple arithmetic:

γ∗2(B) ≤
n∑
i=d

(
n

i

)
γ∗2(Ag ◦ µ)i

≤
n∑
i=d

(
enγ∗2(Ag ◦ µ)

d

)i
≤ 2−d

provided that γ∗2(g ◦ µ) ≤ d
2en .

An interesting open question, raised by Sherstov [She08a], is if there
are cases where Theorem 7.9 can be applied where Theorem 7.6 cannot.
While the condition that the inner function g be strongly balanced may
seem rather restrictive, as communication complexity is nonincreasing
under function restriction, this theorem can also be applied with re-
spect to a strongly balanced submatrix of g. In this light, the question
informally becomes: does every function g for which there is a distribu-
tion µ such that g ◦ µ is balanced and γ∗2(g ◦ µ) is small contain a large
strongly balanced submatrix?

7.2.3 Examples

In this section we give some examples of the application of Theorem 7.6.
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Disjointness Disjointness can be written in the following way.

DISJ(x, y) =
n∨
i=1

(xi ∧ yi).

In other words, in this case f is the n-bit OR function, and g is the AND
function on one bit. Notice that the sign matrix of the AND function
on one bit looks as follows.

H =
[
1 1
1 −1

]
This matrix is not strongly balanced. Sherstov gets around this problem
in the following way. We can alternatively think of the disjointness
function on n bits (assuming that four divides n) as

DISJ(x, y) =
n/4∨
i=1

(
∨3
j=0(x4i+j ∧ y4i+j)

)
Here we take f to be the OR function on n/4 bits and g to be the
OR-AND function on 4 bits.

Now g does contain a strongly balanced submatrix. Namely,

0001 0010 1000 0100
0011 −1 −1 1 1
0101 −1 1 1 −1
1100 1 1 −1 −1
1010 1 −1 −1 1

One can check that the spectral norm of this matrix is 2
√

2. Indeed,
we can write the spectral norm of this matrix as∥∥∥∥[−H H

H −H

]∥∥∥∥ ≤ ∥∥∥∥[−H 0
0 −H

]∥∥∥∥+
∥∥∥∥[ 0 H

H 0

]∥∥∥∥ = 2
√

2.

This gives us √
size(Ag′)
‖Ag′‖

=
√

2

Nisan and Szegedy [NS94] show that the bounded-error degree of the
OR function on n bits is Ω(

√
n), and so we get a Ω(

√
n) lower bound

for the disjointness function.
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When g is inner product When g is the inner product function on
k-bits, the sign matrix Ag is a 2k-by-2k Hadamard (Sylvester) matrix
Hk. This matrix can be de�ned recursively by H0 = [1] and

Hk =
[
Hk−1 Hk−1

Hk−1 −Hk−1

]
From this de�nition we can see that Hk contains a strongly balanced

submatrix of size 2k−1-by-2k−1 for all k > 1. For k > 1 we can write
Hk as

Hk =


Hk−2 Hk−2 Hk−2 Hk−2

Hk−2 −Hk−2 Hk−2 −Hk−2

Hk−2 Hk−2 −Hk−2 −Hk−2

Hk−2 −Hk−2 −Hk−2 Hk−2


The submatrix sitting in the middle[

−Hk−2 Hk−2

Hk−2 −Hk−2

]
is clearly strongly balanced and is of dimension 2k−1-by-2k−1. This ma-
trix has spectral norm 2

√
2k−1 and so we obtain

Q∗1/4(f • gn) ≥ (k − 1)
2

deg3(f)−O(1)

for any function f , when g is the inner product function on k bits.

7.2.4 XOR functions

As we have hopefully demonstrated, the dual polynomial of f can be
a very powerful technique for choosing a witness when working with
a block composed function. In this section, however, we will consider
a case when the lower bound in terms of approximate degree, Theo-
rem 7.6, does not show a good lower bound.

Say that the inner function g = ⊕(x, y) is the XOR function on one
bit. This is a strongly balanced function, so we can apply Theorem 7.6.
In this case, however, the theorem gives nothing as Ag is a rank-one
matrix and ‖Ag‖ =

√
size(Ag). Indeed, we should expect this as when

f is the PARITY function, the complexity of f • gn is constant.
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When g is the XOR function, it turns out that the complexity of f •
gn is not related to the approximate degree of f , but to the approximate
`1 norm of the Fourier coe�cients of f . Let us de�ne this next.

De�nition 7.4. Let f : {−1,+1}n → {−1,+1} be a Boolean function.
Denote by ‖f̂‖1 the `1 norm of the Fourier coe�cients of f . In the usual
way we also de�ne the approximate version of this norm: for α ≥ 1, let

‖f̂‖α1 = min
g:1≤g(x)f(x)≤α

‖ĝ‖1

Theorem 7.10. Let f : {−1,+1}n → {−1,+1} be an arbitrary func-
tion, and g(x, y) = ⊕(x, y) be the XOR function on one bit. Let A be
the sign matrix representation of f • gn. Then

‖A‖αtr√
size(A)

= ‖f̂‖α1 .

Proof. We show the lower bound �rst. For this, we will use the general
formulation of the dual of an approximate norm from Theorem 6.3. The
dual norm of ‖f̂‖1 is given by

‖f̂‖∗1 = max
u:‖û‖1=1

〈f, u〉

= max
u:‖û‖1=1

∑
T

f̂T 〈χT , u〉 = 2n max
T
|f̂T |.

Thus we see that ‖f̂‖∗1 = 2n‖f̂‖∞.
By the general formulation of the dual of an approximate norm, this

means that there is a function v such that

(1) (1+α)〈v,f〉+(1−α)‖v‖1
2 = ‖f̂‖α1 .

(2) 2n‖v̂‖∞ ≤ 1,

We now de�ne a witness to show that the approximate trace norm
of A is large as

B[x, y] =
2n

size(Ag)n
v(g(x1, y1), . . . , g(xn, yn)).
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As argued in the proof of Theorem 7.6, item (1) can be used to show
that

(1 + α)〈A,B〉+ (1− α)‖B‖1
2

= ‖f̂‖α1 .

Now we use item (2) to show ‖B‖ ≤ 1. We will again use the fact
that g is strongly balanced and so the matrices AχT •gn corresponding
to distinct T are orthogonal.

‖B‖ =
2n

size(Ag)n
‖
∑
T⊆[n]

v̂T
⊗

AT [i]
g ‖

=
2n

size(Ag)n
max
T⊆n
|v̂T |

∏
i

‖AT [i]
g ‖

= max
T⊆n
|v̂T |.

The last step follows since when g is the XOR function on one bit we
have ‖Ag‖ = ‖J‖ =

√
size(Ag) = size(Ag)/2. This gives the desired

lower bound as by property (2)

max
T⊆n
|v̂T | ≤

1
2n

=
1√

size(A)
.

Now we turn to the upper bound. Let w be a function such that
1 ≤ w(x)f(x) ≤ α and ‖ŵ‖1 = ‖f̂‖α1 . De�ne

B[x, y] = w(g(x1, y1), . . . , g(xn, yn)).

Then clearly 1 ≤ A[x, y]B[x, y] ≤ α. To bound the trace norm of B we
will use the fact that if XY t = XtY = 0 then ‖X + Y ‖tr = ‖X‖tr +
‖Y ‖tr. This gives

‖B‖tr = ‖
∑
T⊆[n]

ŵT
⊗

AT [i]
g ‖

=
∑
T⊆n

ŵT
∏
i

‖AT [i]
g ‖

=
√

size(A)‖f̂‖α1 .



7.2. Block composed functions 103

Remark 7.2. This theorem can be alternatively proven as follows. Let
f : {−1,+1}n → {−1,+1} and A be the sign matrix where A[x, y] =
f(x⊕ y). It is easy to see that

‖A‖tr√
size(A)

= `1(f̂)

as the (unnormalized) eigenvectors of A are given by the characters
χS(x) =

∏
i∈S xi for S ⊆ {0, 1}n.

By a symmetrization argument one can then show that, without
loss of generality, the matrix B of minimal trace norm which gives an
α-approximation to A is of the form B[x, y] = g(x⊕ y) for a function g
which gives an α-approximation to f .

Shi and Zhang [SZ09a] are able to completely determine the ran-
domized and quantum complexities of XOR functions in the case of
symmetric f . For the lower bound they do not use the above approach,
but rather a reduction to the case of f(x ∧ y). We record their result
here.

Theorem 7.11 (Shi and Zhang [SZ09a]). Let S : [n] → {−1,+1}
and de�ne a sign matrix A[x, y] = S(|x ⊕ y|). Let r0, r1 ≤ n/2 be the
minimum integers such that S(k) = S(k + 2) for all k ∈ [r0, n − r1).
Then

R1/4(A) = O(r1 + r2)

Q1/4(A) = Ω(r1 + r2).
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Multiparty communication complexity

In this chapter we look at communication complexity where the in-
put is distributed over k-many players who wish to evaluate a function
f(x1, . . . , xk). There are two common ways of distributing the inputs
among the players, leading to the number-in-hand and number-on-the-
forehead models. In the case of two players, both of these models spe-
cialize to the usual model of two-party complexity. In the number-in-
hand model, player i receives input xi. In the number-on-the-forehead
model, player i receives (x1, . . . , xi−1, xi+1, . . . , xk), i.e. the entire input
except for xi. Here one can picture the input xi sitting on the forehead
of player i.

Deterministic and randomized communication complexity in the
multiparty model are de�ned similarly as in the two player model. We
will only deal with the public coin model of multiparty complexity, thus
a randomized multiparty protocol is simply a probability distribution
over deterministic protocols. It is common in multiparty communica-
tion complexity to take a generous model of communication and assume
that the players write their messages on a blackboard that is seen by
everyone. We denote k-party deterministic communication complexity
by Dk. Randomized communication complexity with error bound ε is

104
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denoted by Rkε . The superscripts are omitted when k is clear from the
context. If the subscript is omitted it is assumed that ε = 1/3.

The study of both the number-in-hand and number-on-the-forehead
models have interesting applications. As shown by a seminal paper of
Alon, Matias, and Szegedy [AMS99], lower bounds on disjointness in the
number-in-hand model have applications to showing lower bounds on
the memory requirements of streaming algorithms. In the number-on-
the-forehead model as well, Beame, Pitassi, and Segerlind [BPS06] have
shown that lower bounds on disjointness have interesting applications to
lower bounds on proof complexity. Finally, and perhaps the greatest mo-
tivation to the study of the number-on-the-forehead model, is that lower
bounds here imply circuit complexity lower bounds. In particular, show-
ing an explicit function which requires super-polylogarithmic complex-
ity in the number-on-the-forehead model with super-polylogarithmic
many players would give an explicit function outside of the circuit com-
plexity class ACC0, currently a major open problem. Currently the best
lower bounds in the number-on-the-forehead for explicit functions are of
the form n/2k for k-players. The applications of multiparty complexity
are discussed in more detail in Chapter 9.

To give a �avor of the di�erence between the number-in-hand and
number-on-the-forehead models, let us consider the equality problem
EQn. This is de�ned as EQn(x1, . . . , xk) = T if all of the n-bit strings
x1, . . . , xk are all equal, and F otherwise. In the number-in-hand model
of communication complexity a lower bound of n can be proved for
EQn by a reduction to the 2-player case. On the other hand there is a
2-bit protocol for the equality problem in the number-on-the-forehead
model for k ≥ 3 players. In this protocol player 1 and player 2 check if
all the inputs they observe are equal, and output T if they are and F
otherwise. It is not hard to check that this protocol is correct.

8.1 Protocol decomposition

Let X be a �nite set and consider a multiparty function f : Xk →
{−1,+1}. We will associate this function with a k-dimensional ten-
sor Af , known as the communication tensor, where Af [x1, . . . , xk] =
f(x1, . . . , xk).
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As in the case of two-party deterministic communication complexity,
we �rst look at the decomposition of the communication tensor into
simpler objects which is induced by a correct communication protocol.
Recall that in the case of two-party deterministic complexity, these
simpler objects were monochromatic combinatorial rectangles.

In the number-in-hand model, the analog of combinatorial rectan-
gles are the natural higher dimension version of these objects. In other
words, we now consider combinatorial cubes of the form I1×I2×· · ·×Ik,
where each Ij ⊆ X.

In the number-on-the-forehead model, the analog of combina-
torial rectangles are more complicated objects known as cylin-
der intersections. A cylinder in the ith dimension is a set
Ci ⊆ Xk which does not depend on the ith coordinate. In
other words, if (x1, . . . , xi−1, xi, xi+1, . . . , xk) ∈ Ci then also
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) ∈ Ci for every x′i ∈ X. One can see how

such sets might be relevant to number-on-the-forehead complexity as
the message of the ith player does not depend on the ith input. A cylin-
der intersection C is a set which can be written as the intersection of
cylinders: C = C1 ∩ . . . ∩ Ck.

Theorem 8.1 (NIH partition bound). A successful c-bit deter-
ministic number-in-hand communication protocol for f partitions the
communication tensor into at most 2c combinatorial cubes which are
monochromatic with respect to f .

Theorem 8.2 (NOF partition bound). A successful c-bit deter-
ministic number-on-the-forehead communication protocol for f parti-
tions the communication matrix into at most 2c cylinder intersections
which are monochromatic with respect to f .

As in the two-party case, we can use the partition bound to de�ne
an appropriate norm to bound multiparty communication complexity.
From now on, we focus on the number-on-the-forehead model. Usually,
it will be straightforward to transfer the elements of the discussion to
the number-in-hand model as well. Also we should point out that for the
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number-in-hand model information theoretic lower bounds often give
better lower bounds [CKS03, BYJKS04] than the norm based approach
we outline here. On the other hand, it is not known how to extend these
information theoretic techniques to the number-on-the-forehead model.

A characteristic tensor of a set F ⊆ Xk is the (0, 1) tensor χF
satisfying χF [x1, . . . , xk] = 1 if and only if (x1, . . . , xk) ∈ F . By a slight
abuse of notation we identify a set with its characteristic tensor.

De�nition 8.1 (Cylinder intersection norm). Let M be a k-
tensor. De�ne

µ(M) = min

{∑
i

|αi| : M =
∑
i

αiCi

}
where each Ci is a cylinder intersection.

Notice that when M is a matrix, this reduces to the µ norm we have
seen before.

As in the two-party case, the following theorem is immediate from
the partition bound.

Theorem 8.3. Let A be a sign k-tensor. Then

D(A) ≥ log(µ(A)).

Also in direct analogy with the two-party case Theorem 4.4, we can
show that the approximate version of µ can be used to lower bound
randomized number-on-the-forehead complexity.

Theorem 8.4. Let A be a sign k-tensor, and 0 ≤ ε < 1/2. Then

Rε(A) ≥ log(µα(A))− log(αε)

where αε = 1/(1− 2ε) and α ≥ αε.

Finally, discrepancy of cylinder intersections (sometimes called mul-
tiparty discrepancy) is also de�ned as in the two player case. By The-
orem 7.1 the bound given by the multiparty discrepancy method of a
sign tensor A is equal to µ∞(A).
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8.2 Bounding number-on-the-forehead discrepancy

Cylinder intersections are di�cult combinatorial objects. After much
e�ort, there is still essentially just one technique available for bounding
multiparty discrepancy. This technique appeared in the early paper of
Babai, Nisan, and Szegedy [BNS89]. Moreover, this technique is inher-
ently limited to showing lower bounds of the form n/2k. Thus one of
the major obstacles to showing non-trivial bounds on number-on-the-
forehead complexity for more than log n players is �nding alternative
lower bound approaches.

The next statement is from [BNS89], see also [Chu90, Raz00] for
similar formulations.

Theorem 8.5. Let M be a k-tensor. Then(
µ∗(M)
size(M)

)2k

≤ Ex̄0,x̄1

 ∏
`∈{0,1}k

M [x`11 , x
`2
2 , . . . , x

`k
k ]


where x̄0 = (x0

1, . . . , x
0
k) and similarly x̄1 = (x1

1, . . . , x
1
k).

The following variant of the bound of [BNS89] �rst appeared in
[Cha07] for use with the pattern tensor framework.

Theorem 8.6. Let M be a k-tensor of dimensions n1, n2, . . . , nk, and
let size(M) = n1n2 · · ·nk be the number of entries in M . Denote by
(M •1 M) the (2k − 2)-tensor de�ned by

(M •1 M)[y0
1, y

1
1, . . . , y

0
k−1, y

1
k−1] = Ex

∏
`∈{0,1}k−1

M [x, y`11 , . . . , y
`k−1

k−1 ].

Then (
µ∗(M)
size(M)

)2k−1

≤ Eȳ0,ȳ1 |(M •1 M)| ,

where ȳ0 = (y0
1, . . . , y

0
k−1) and similarly ȳ1 = (y1

1, . . . , y
1
k−1).

Both theorems are proved using repeated application of Cauchy-
Schwarz inequality�it is applied k times for the �rst theorem, and
k − 1 many times for the second.
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8.2.1 Example: Hadamard tensors

We give an example to show how Theorem 8.6 can be used in conjunc-
tion with duality. This example is similar to Example 7.1. Let H be
a N -by-N Hadamard matrix. We show that µ∞(H) ≥

√
N . Indeed,

simply let the witness matrix be H itself. With this choice

µ∞(H) ≥ 〈H,H〉
µ∗(H)

=
N2

µ∗(H)

Now we bound µ∗(H) using Theorem 8.6 which gives:

µ∗(H)2 ≤ N4 E |H •1 H| = N3

as H •1 H has nonzero entries only on the diagonal, and these entries
are of magnitude one.

Ford and Gál [FG05] extend the notion of matrix orthogonality to
tensors, de�ning what they call Hadamard tensors.

De�nition 8.2 (Hadamard tensor). Let H be a sign k-tensor. We
say that H is a Hadamard tensor if

(H •1 H)[x0
2, x

1
2, . . . , x

0
k, x

1
k] = 0

whenever x0
i 6= x1

i for all i = 2, . . . , k.

The �orthogonality� property of Hadamard tensors combined with
Theorem 8.6 imply

µ∗(H)2k−1 ≤ (k − 1)
Nk2k−1

N
.

The simple proof above for Hadamard matrices can now be easily ex-
tended to Hadamard tensors:

Theorem 8.7 (Ford and Gál [FG05]). Let H be a Hadamard k-
tensor of side length N . Then

µ∞(H) ≥
(

N

k − 1

)1/2k−1
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Remark 8.1. By doing a more careful inductive analysis, Ford and
Gál obtain this result without the k−1 term in the denominator. They
also construct explicit examples of Hadamard tensors.

8.3 Pattern Tensors

We now de�ne a natural generalization of the pattern matrices of Sher-
stov [She09, She08c] to the tensor case. This generalization was �rst
de�ned, in a slightly di�erent form, by Chattopadhyay [Cha07]. Like
a pattern matrix, a pattern tensor can be thought of as a block com-
posed function. The outer function f : {−1,+1}n → {−1,+1} can be
arbitrary. Let us now describe the inner function g. The inner function
takes k arguments�the �rst argument can be thought of as a k − 1
dimensional tensor, and the other k − 1 arguments as indices into the
sides of this tensor. Thus

g(x, y1, . . . , yk−1) = x[y1, . . . , yk−1].

Fix an integer N . As a whole, the pattern tensor Af,N is then de�ned
such that Af,N [x, y1, . . . , yk−1] is equal to

f(g(x1, y1[1], . . . , yk−1[1]), . . . , g(xn, y1[n], . . . , yk−1[n])).

Here x is a k dimensional sign tensor with dimensions n×N ×· · ·×N ,
xi is the k − 1 dimensional tensor achieved by constraining the �rst
index of x to be equal to i. The yj 's are vectors of indices in [N ]n, and
yj [i] is the ith element of the jth vector.

Notice that here the de�nition of the inner function g is less so-
phisticated than that used for pattern matrices. For pattern matrices,
remember that a key feature is that they are strongly balanced. In the
matrix case, having g be strongly balanced aided substantially in evalu-
ating the spectral norm of a pattern matrix. In the tensor case, however,
instead of using spectral norm we are using the more blunt tool of the
theorem of [BNS89]. Here it is not clear that being strongly balanced
is of any help, so we stick to this simpler de�nition of g.

Pattern tensors satisfy the following.
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Theorem 8.8 ([LS09a, CA08]). Let f : {−1,+1}n → {−1,+1} be
a boolean function, then

logµα(Af,N ) ≥
degα0

(f)
2k−1

+ log
α0 − α
α0 + 1

,

for every 1 ≤ α < α0 <∞, provided N ≥ 2e(k−1)22k−1
n

degα0
(f) .

By now the reader should be able to guess the sketch of the proof of
Theorem 8.8. We use the dual formulation of µα and take as a witness
the pattern tensor of the dual polynomial. Namely, if v is the dual
polynomial as in Lemma 7.1 we take as our witness the pattern tensor
Q = Qv,N . That is, Q[x, y1, . . . , yk−1] is equal to

v(g(x1, y1[1], . . . , yk−1[1]), . . . , g(xn, y1[n], . . . , yk−1[n])).

Just as we saw in Section 7.2, the dual formulations of approximate de-
gree and approximate norm �t well together. This makes handling the
numerator in the max formulation of µα very easy. The inner product
〈Af,N , Qv,N 〉 is proportional to 〈f, v〉 and similarly ‖Qv,N‖1 is propor-
tional to ‖v‖1, with the same ratio size(Q)

2n . It is therefore left to bound
µ∗(Q) in terms of something proportional to degα0

(f). Here we �rst
prove such a relation for the case k = 2, and then extend it to general
k.

Lemma 8.1 ([Cha07, LS09a, CA08]). Let v : {−1,+1}n → R be a
function satisfying:

(1) ‖v‖1 ≤ 1,
(2) v̂T = 0 for every T ⊆ [n] with cardinality |T | ≤ d.

Take Q = Qv,N be the pattern matrix corresponding to v. Then

µ∗(Q) ≤ size(Q)
2n+d/2

,

provided that N ≥ 2en/d.
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Proof. Consider the de�nition of a pattern tensor. In the two dimen-
sional (matrix) case, the input x is an n × N sign matrix, and y is a
vector in [N ]n. By Theorem 8.6 we have(

µ∗(Q)
size(Q)

)2

≤ Ey0,y1
∣∣ExQ[x, y0]Q[x, y1]

∣∣ . (8.1)

To estimate the inner expectations over x, we use the Fourier represen-
tation v =

∑
T v̂TχT of v.

We can express Q as a linear combination Q =
∑

T v̂TχT,N , where
χT,N is the pattern matrix corresponding to the character χT . Now the
right hand side of (8.1) becomes

Ey0,y1

∣∣∣∣∣∣Ex
∑
T,T ′

v̂T v̂T ′χT,N [x, y0]χT ′,N [x, y1]

∣∣∣∣∣∣ .
By linearity of expectation and the triangle inequality this is bounded
by ∑

T,T ′

|v̂T v̂T ′ |Ey0,y1
∣∣ExχT,N [x, y0]χT ′,N [x, y1]

∣∣ .
We now use the properties of v. First, ‖v‖1 ≤ 1 and therefore |v̂T | ≤ 1

2n .
In addition v̂T = 0 for every set T with |T | ≤ d. We therefore arrive at
the following expression

1
22n

∑
T,T ′:|T |,|T ′|>d

Ey0,y1
∣∣ExχT,N [x, y0]χT ′,N [x, y1]

∣∣ .
This is equal to

1
22n

∑
T,T ′:|T |,|T ′|>d

Ey0,y1

∣∣∣∣∣∣Ex
∏
i∈T

x[i, y0[i]]
∏
j∈T ′

x[j, y1[j]]

∣∣∣∣∣∣ .
The expectation inside the absolute value is equal to 0 if T 6= T ′, and
also if T = T ′ but there is an element i ∈ T such that y0[i] 6= y1[i].
The value of this expectation is 1 in all other cases. Our expression is
therefore equal to

1
22n

∑
T :|T |>d

Pr
y0,y1

[
∀i ∈ T , y0[i] = y1[i]

]
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For a set T of cardinality |T | = t, we have

Pr
y0,y1

[
∀i ∈ T , y0[i] = y1[i]

]
≤ N−t.

Therefore, the sum of these probabilities above can be bounded as fol-
lows

1
22n

n∑
t=d+1

(
n

t

)
N−t ≤ 1

22n

n∑
t=d+1

( en
dN

)t
≤ 1

22n+d
,

assuming N ≥ 2en/d. Plugging this back into (8.1) we get the desired
result.

The extension of Lemma 8.1 to general k is:

Lemma 8.2 ([Cha07, LS09a, CA08]). Let v : {−1,+1}n → R be a
function satisfying:

(1) ‖v‖1 ≤ 1,
(2) v̂T = 0 for every T ⊂ [n] with cardinality |T | ≤ d.

Take Q = Qv,N be the pattern k-tensor corresponding to v. Then

µ∗(Q) ≤ size(Q)
2n+d/2k−1 ,

provided that N ≥ 2e(k−1)22k−1
n

d .

Proof. The proof starts as the proof of Lemma 8.1. First, Theorem 8.6
is applied(

µ∗(Q)
size(Q)

)2k−1

≤ Eȳ0,ȳ1

∣∣∣∣∣∣Ex
∏

l∈{0,1}k−1

Q[x, yl[1]
1 , . . . , y

l[k−1]
k−1 ]

∣∣∣∣∣∣ ,
where ȳ0 = (y0

1, . . . , y
0
k−1) and similarly ȳ1 = (y1

1, . . . , y
1
k−1). Now we

use the Fourier representation of v. Denote by
([n]
>d

)
the family of subsets
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of [n] whose size is larger than d, and let T =
([n]
>d

)2k−1

be the family of

2k−1-tuples of subsets from
([n]
>d

)
. Then,

1
22k−1n

∑
(T1,...,T2k−1 )∈T

Eȳ0,ȳ1

∣∣∣∣∣∣Ex
∏

l∈{0,1}k−1

χTl,N [x, yl[1]
1 , . . . , y

l[k−1]
k−1 ]

∣∣∣∣∣∣ .
By de�nition of χTl,N this is equivalent to

1
22k−1n

∑
(T1,...,T2k−1 )∈T

Eȳ0,ȳ1

∣∣∣∣∣∣Ex
∏

l∈{0,1}k−1

∏
i∈Tl

x[i, yl[1]
1 [i], . . . , yl[k−1]

k−1 [i]]

∣∣∣∣∣∣ .
As we have seen in Lemma 8.1, the inner expectation can be equal

to either 0 or 1. The value 1 is obtained if and only if every vector of
indices (i, yl[1]

1 [i], . . . , yl[k−1]
k−1 [i]) that appears in the expression inside the

expectation, appears there an even number of times. Thus, to complete
the proof, we bound the probability of this event. Clearly, a su�cient
condition for this event not to hold is that there is some i ∈

⋃
l Tl such

that the 2k−1 possible vectors (yl[1]
1 [i], . . . , yl[k−1]

k−1 [i]) for l ∈ {0, 1}k−1,
are all distinct. Namely, for every m = 1 . . . k − 1, y0

m[i] 6= y1
m[i]. If

this condition holds we call the index i, nondegenerate, and i is called
degenerate otherwise.

Suppose that for some choice of y0
1, . . . , y

0
k−1, y

1
1, . . . , y

1
k−1 there are

g many degenerate indices i ∈ [n]. By the above reasoning the number
of sets (T1, . . . , T2k−1) ∈ T which lead to a nonzero expectation is at
most (

g∑
r=d+1

(
g

r

))2k−1

≤ 2g2
k−1

.

Now we bound the probability that for y0
1, . . . , y

0
k−1, y

1
1, . . . , y

1
k−1

there are g many degenerate indices. The probability that y0
m[i] 6= y1

m[i]
is 1/N . Thus by a union bound, the probability that a single index
is degenerate is at most (k − 1)/N . Finally, as each index is chosen
independently, the probability of g many degenerate cubes is at most(

n

g

)(
k − 1
N

)g
.
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Putting everything together we have

µ∗(Q)2k−1 ≤ size(Q)2k−1

22k−1n

m∑
g=d+1

(
n

g

)(
k − 1
N

)g
2g2

k−1

≤ size(Q)2k−1

22k−1n

m∑
g=d+1

(
e(k − 1)22k−1

n

dN

)g

≤ size(Q)2k−1

22k−1n+d
.

The last step holds, provided that N ≥ 2e(k − 1)22k−1
n/d.

8.4 Applications

8.4.1 The complexity of disjointness

As mentioned, the best lower bound proved so far on the NOF com-
munication complexity of a k-tensor is of the form n

2k−1 , where n is the
size of the input [FG05] (see also Section 8.2). This bound is proved
using discrepancy, and as long as we use Theorem 8.6 to bound dis-
crepancy, this 2k−1 factor will remain. Improving on this is a big open
problem in multiparty communication complexity. In particular, an ex-
plicit function which requires super-polylogarithmic complexity in the
number-on-the-forehead model with super-polylogarithmic many play-
ers would give an explicit function outside of the circuit complexity
class ACC0 (see Chapter 9). But even within this limit, lower bounds
on the communication complexity of explicit functions in the number-
on-the-forehead model have strong applications.

Beame et al [BPS06] showed that an ω(log4 n) lower bound for 3-
party communication complexity of the set-disjointness function, im-
plies superpolynomial lower bounds on tree-like Lovász-Schrijver proof
systems that refute unsatis�able CNF's. More generally, a strong lower
bound on (k + 1)-party number-on-the-forehead communication com-
plexity of set-disjointness implies a strong lower bound for all tree-like
proof systems whose formulas are degree k polynomial inequalities.

Let ORn : {0, 1}n → {−1,+1} be the OR function on n bits, then
the k-part set-disjointness function DISJk,n : ({0, 1}n)k → {−1,+1} is
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de�ned as DISJk,n(x1, . . . , xk) = ORn(x1 ∧ x2 . . . ∧ xk).
Recall the discussion from Section 8.3, about the dependency of µα

on α. We saw that µα(DISJ2,n) decreases very rapidly as α tends to in-
�nity. In particular in Lemma 7.2 we proved that µ∞(DISJ2,n) = O(n),

while µ(DISJ2,n) ≥
(√

5
2

)n
. Thus the discrepancy bound yields weak

results for this function. In Section 7.2.3 we proved that for bounded
approximation it holds that µ2(An) ≥ Ω(2

√
n), by reduction to approx-

imate degree, and we will see in Chapter 5 that this is tight.
The situation with the k-party set-disjointness function DISJk,n, for

k ≥ 3, seems similar. The extension of the upper bound on µ∞(DISJk,n)
is quite straightforward. And exponentially better bounds can be proved
for µ2(DISJk,n):

Theorem 8.9 ([LS09a, CA08]). For every k and n

R(DISJk,n) ≥ Ω

(
n1/(k+1)

22k

)
.

Observe that the lower bound on DISJk,n becomes weaker as k grows.
It is reasonable to assume that even for k = 3 the lower bound is no
longer tight. The lower bounds on k-party set-disjointness are proved
by a reduction to pattern tensors of Section 8.3.

Proof. For integers m,M , let Am,M be the pattern tensor that corre-
sponds to ORm. We show that Am,M is a subtensor of DISJk,n. Recall
that Am,M [x, y1, . . . , yk−1] is equal to

OR(x[1, y1[1], . . . , yk−1[1]], . . . , x[m, y1[m], . . . , yk−1[m]]).

Here we consider x as a k-dimensional Boolean tensor with dimensions
m×M×· · ·×M , and the yi's are vectors of m indices in [M ]. Thus the
k − 1 inputs y1, . . . , yk−1 serve as pointers into the �rst input x. Then
the OR function is invoked on the m bits of x which are selected by
the inputs {yi}. Let us interpret the disjointness function in a similar
manner, namely

DISJ[x, z1, . . . , zk−1] = OR(x ∧ (z1 ∧ · · · ∧ zk−1)).
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Since the OR function only cares about the 1 inputs in x, we can think
of disjointness as the OR function invoked on the bits of x where the
vector (z1 ∧ · · · ∧ zk−1) is equal to 1. In other words, �rst the zi's select
the set of bits where they are all equal to 1, then OR is called upon
those bits in x.

Thus, the only obstacle in relating the pattern tensor Am,M with
disjointness is in the manner in which the last inputs point into the �rst.
This di�erence can be bridged though. Let x, y1, . . . , yk−1 be inputs to
Am,M . We associate each yi with a Boolean tensor zi of dimensions
m × M × · · · × M de�ned as follows: zi is equal to 1 on inputs of
the form (t, s1, . . . , si−1, yi[t], si+1, . . . , sk−1), and is equal to zero on all
other inputs. With this de�nition it is not hard to check that the vector
(z1 ∧ · · · ∧ zk−1) points into x exactly the same way as y1, . . . , yk−1. We
see therefore that Am,M is a subtensor of DISJk,n where n = mMk−1.

Now, back to the lower bound. By Theorem 8.8

logµ2(Am,M ) ≥ deg3(ORm)
2k−1

−O(1),

provided M ≥ 2e(k−1)22k−1
m

deg3(ORm) . Nisan and Szegedy [NS94] show that
deg3(ORm) = Ω(

√
m), thus

logµ2(Am,M ) ≥ Ω
(√

m

2k−1

)
,

provided M ≥ Ω
(

22k√m
)
. Theorem 8.4 implies that this lower bound

holds for the randomized communication complexity of Am,M as well.
Since Am,M is a subtensor of DISJk,n for n = mMk−1, or alternatively

for
√
m = Θ(n

1
k+1 /22k), we get

R(DISJk,n) ≥ Ω

(
n1/(k+1)

22k

)
.

Observe that Theorem 8.9 provides a nontrivial lower bound on
DISJk,n only as long as the number of players is at most log log n. Beame
and Huynh-Ngoc obtained a lower bound of the form Ω(2

√
logn/

√
k−k)
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on k-party number-on-the-forehead randomized communication com-
plexity of set-disjointness, which is nontrivial up to Θ(log1/3 n) players.
Beame and Huynh-Ngoc show their results by reducing the communi-
cation complexity problem to a stronger notion of approximate degree
which they call (ε, α)-approximate degree. This notion of degree is not
easy to handle, but they give a general technique to convert functions
of large approximate degree to functions of large (ε, α)-approximate de-
gree. This technique cannot be applied directly to OR, thus their lower
bounds on set-disjointness is proved via reduction. In addition to the
new notion of approximate degree, they also use pattern tensors with
other classes of inner functions g, than the one presented in Section 8.3.

8.4.2 Separating communication complexity classes

It is interesting to compare the strength of di�erent types of commu-
nication protocols, deterministic vs. nondeterministic, deterministic vs.
randomized etc. The example of the identity function from Chapter 4
demonstrates that randomized protocols can be much more powerful
than deterministic ones. As we saw, for this simple function there is a
randomized protocol which requires constant number of bits, while there
is no deterministic protocol that is more e�cient than the trivial one.
Randomized protocols are known to be more powerful than determinis-
tic ones also for k-party number-on-the-forehead multiparty communi-
cation complexity with k up to nO(1) [BDPW07]. When k ≥ 3, though,
this separation is not proved for an explicit function, but rather via a
counting argument. Note that an explicit separation for k ≥ 3 seems to
require new ideas, as there is currently no lower bound technique for
deterministic number-on-the-forehead communication complexity that
does not also hold for randomized communication.

The set-disjointness function of Section 8.4.1 demonstrates that non-
deterministic protocols can be much stronger than randomized proto-
cols, and thus also deterministic ones. There is a simple nondetermin-
istic protocol for the set-disjointness, as we have seen in Chapter 3
for two players. It is more convenient to specify this protocol for the
complement function set-intersection: The players nondeterministically
guess a coordinate, then the players output 1 if their input is equal to 1
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on that coordinate. The output of the protocol is 1 if all players wrote
1 on the blackboard, and the output is 0 otherwise. Certainly, if the
player's subsets intersect there is a guess which leads to an output of
1. While if the sets do not intersect then all guesses leads to an output
of 0. Thus the nondeterministic communication complexity of Dk,n is
O(log n). On the other hand, by results from Section 8.4.1 for 2-players,
and Section 8.4.1 for up to log log n players, the randomized communi-
cation complexity of set-intersection is exponentially larger. Using sim-
ilar techniques as in Section 8.3 David, Pitassi, and Viola [DPV08] give
an explicit function which separates nondeterministic and randomized
number-on-the-forehead communication complexity for up to Ω(log n)
players. They are also able, for any constant c to give a function com-
putable in AC0 which separates them for up to c log log n players. (Note
that disjointness can be also computed in AC0.)

In fact the above simple nondeterministic protocol for set-
intersection provides another explanation for why the discrepancy
method yields bad bounds for set-disjointness, as discrepancy is also
a lower bound on nondeterministic communication complexity:

Theorem 8.10. For any sign k-tensor A

Nk(A) ≥ logµ∞(A)−O(1).
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Upper bounds on multiparty communication

complexity

The study of multiparty communication complexity has applications to
many other models of communication. Often these results take on the
following form: an e�cient algorithm for a problem f in some computa-
tional model results in an e�cient multiparty communication protocol
for some related function g. Of course this means that by showing lower

bounds on the multiparty communication complexity of g one can ob-
tain lower bounds in the desired computational model. Some examples
of results of this type are:

(1) Streaming algorithms is a burgeoning �eld designed to com-
pute properties of massive data sets too large to be stored
in memory in their entirety. A seminal paper in this �eld
[AMS99] shows that algorithms to compute some impor-
tant features of a data stream lead to e�cient algorithms
for a promise version of DISJOINTNESS in the multiparty
number-in-hand model.

(2) Beame, Pitassi, and Segerlind [BPS06] show that e�cient
refutations of certain unsatis�able formulas in a broad class of
proof systems give rise to e�cient algorithms for DISJOINT-

120
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NESS in the multiparty number-on-the-forehead model.
(3) Work of [All89, Yao90, BT94, HG91] has given a huge moti-

vation to the study of the number-on-the-forehead model by
showing that functions with small ACC0 circuits have e�-
cient number-on-the-forehead protocols. ACC0 is the class of
languages which can be computed by polynomial size circuits
of constant depth using AND, OR, NOT and MOD m gates
for any m.

Fortunately, the reductions involved for items (1),(3) are relatively easy
and we will present them below. The argument for item (2) is fairly
involved and we refer the reader to the paper of Beame, Pitassi, and
Segerlind for more details.

We will also discuss an upper bound on multiparty communication
complexity in the more traditional sense. This is a clever protocol of
Grolmusz [Gro94] which shows that any problem of the form f(x1∧. . .∧
xk) for a symmetric function f has a number-on-the-forehead protocol
of complexity roughly k2n/2k. Showing a lower bound on an explicit
function for more than k = log n players is a major open problem, with
serious implications by item (3) above. This protocol illuminates the
surprising power of the number-on-the-forehead model and part of the
di�culty to break the k = log n barrier.

9.1 Streaming lower bounds

We are increasingly exposed to large amounts of data. Sometimes we
would like to compute some features of this data, but storing it in its
entirety is infeasible. Imagine instead that the data is streaming by and
we only have a small amount of memory to use to take notes as it
passes. Can we still compute meaningful properties of the data in this
scenario?

Many important properties of the data can be learned from its fre-

quency moments Consider a stream a = a1 . . . am consists ofm elements
from a universe [n]. For i ∈ [n], let ci be the number of occurrences of
i in the string a. Then the kth frequency moment, Fk is

Fk =
∑
i

cki .
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Notice that F0 is simply the number of distinct characters in the string
and F1 is the length of the string. We de�ne F∞ to be

F∞ = max
i
ci.

In a seminal paper, Alon, Matias, and Szegedy [AMS99] consider
the complexity of streaming algorithms computing frequency moments.
Somewhat surprisingly, they show that one can approximate F0, F1, F2

by a randomized algorithm using logarithmic space. On the other hand,
approximately computing Fk for k ≥ 6 requires space of order nΩ(1).
This lower bound was later shown to also hold for all k ≥ 3 [BYJKS04],
even for multiple pass algorithms [CKS03], thus giving essentially a
complete picture of the complexity of computing frequency moments.

All of these lower bounds work by showing that an e�cient algo-
rithm for computing Fk leads to an e�cient protocol for a promise
version of DISJOINTNESS in the number-in-the-hand model of mul-
tiparty communication complexity, and then showing lower bounds on
this communication problem. We will now sketch how this reduction
works.

Let us �rst see how to get a lower bound on the space required
to compute F∞ from the two-party lower bound on DISJOINTNESS.
This case is easier and will illustrate the basic idea. Say that we have a
streaming algorithm which uses space c and which for any stream of at
most 2n elements outputs a value in (1 ± 1/4)F∞ with probability at
least 2/3. We will use this streaming algorithm to construct a random-
ized protocol for disjointness using c bits of communication and success
probability at least 2/3.

On input x ∈ {0, 1}n, Alice forms a string ax consisting of the in-
dices where x has a one. Bob does the same with y to create ay. Alice
then runs the streaming algorithm on ax and sends the contents of the
memory to Bob with c bits of communication. Bob �nishes the com-
putation of the streaming algorithm on ay. If the computation of F∞
returns a value of at most 5/4, then they say that the strings do not
intersect, otherwise that they do. Notice that if the strings do not in-
tersect the true value of F∞ will be one, whereas if they do intersect,
it will be at least two. Thus by the success guarantee of the streaming
algorithm, the communication protocol will be correct with probability
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at least 2/3. Finally, as Kalyanasundaram and Schnitger [KS87] have
shown that any randomized protocol for disjointness requires commu-
nication Ω(n) it follows that any streaming algorithm approximating
F∞ with high probability requires memory linear in the length of the
stream. Notice that the algorithm we constructed was in fact one-way;
as the Kalyanasundaram and Schnitger lower bound works for general
protocols, this shows that even streaming algorithms which make mul-
tiple passes over the data in the same order must use linear space.

The general case reduces computing Fk to a promise version of
disjointness, UNIQUE DISJOINTNESS, in the k-party number-in-
hand model. This problem is de�ned as UDISJk(x1, . . . , xk) = T if
x1 ∩ · · · ∩ xk = ∅ and F if they intersect in exactly one element. Oth-
erwise the problem is unde�ned.

Theorem 9.1 (Alon, Matias, and Szegedy [AMS99]). Fix a
natural number k. Suppose there is a randomized streaming algorithm
which for every stream of length n uses c(n) bits of memory and
outputs a value in [ 9

10Fk,
11
10Fk] with probability at least 2/3. Then in

the n1/k-party number-in-hand model

R(UDISJn1/k) = O(c(n)n1/k)

Proof. We will assume that the total number of ones in the inputs to
the players is exactly n. As in the F∞ case described above, each player
converts her input xi into a stream ai consisting of the indices where
xi has a one. The �rst player then runs the streaming algorithm for Fk
on a1 and communicates with c bits the contents of the memory to the
second player, who does the same thing and reports the contents of the
memory to the third player, etc. The last player sees the �nal output
of the streaming algorithm and says that the strings do intersect if the
answer is at least 12

10n, and otherwise says that they do not intersect.
The total communication is thus c and is one-way. Notice that if the
inputs are mutually disjoint, then Fk is exactly n. On the other hand,
if the sets uniquely intersect, then Fk will be n+ n− n1/k ≥ 3n/2.

The best known results on the number-in-the-hand multiparty com-
plexity of disjointness show
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Theorem 9.2 (Chakrabarti, Khot, and Sun [CKS03]). In the
number-in-the-hand multiparty model, s players must communicate at
least Ω(n/s log(s)) bits to determine if their sets from the universe [n]
are mutually disjoint or uniquely intersecting with probability at least
2/3.

By the above reduction, this theorem has the following application:

Theorem 9.3. Any streaming algorithm which computes Fk within a
multiplicative factor of 1.1 with high probability must use space at least
Ω(n1−2/k/ log n), even if a constant number of passes are permitted.

9.2 NOF upper bounds

A major open problem is to show a lower bound in the number-on-the-
forehead model of multiparty communication complexity which remains
nontrivial for more than log n players. We have surveyed the existing
lower bound techniques in the number-on-the-forehead model, and also
seen that they are inherently limited to bounds of the form n/2k for
k-many players. The results we discuss in this section both give a lot
of motivation to showing lower bounds for more than log n players, and
show that this is not possible for a class of well studied functions.

9.2.1 Protocol of Grolmusz

Let f : {0, 1}n → {0, 1} be a symmetric function. In other words,
f(x) = f(y) whenever x and y have the same number of ones. Let
x1, . . . , xk ∈ {0, 1}n be the inputs to the k-players. We will think of the
input as being described by a k-by-n matrix X whose ith row is xi. The
key step in the protocol of Grolmusz is the following lemma:

Lemma 9.1 (Grolmusz [Gro94]). Let f be a symmetric function.
Suppose the players know that some string r ∈ {0, 1}k does not appear
in the input matrix X. Then they can evaluate f(x1 ∧ . . . ∧ xk) with
k log n bits of communication.
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Proof. Notice that if the players can count the number of all-one
columns in X then they can compute f . By rearranging the rows of
X as necessary, we may assume that the missing column r is of the
form 0`1k−` where ` ∈ {1, . . . , k}. If ` = 0 then the all-one column does
not appear, and the players can immediately evaluate f .

More generally, let ei = 0i1k−i for i ∈ {0, . . . , k}. Thus the players
want to count the number of times e0 appears as a column of X. Let
Ei be the number of times the string ei appears as a column of X.

Although the �rst player cannot distinguish between a column of the
form e0 or e1 as he does not see the �rst bit, he can exactly compute
E0 + E1. Player 1 announces this number with log n bits. Similarly,
player 2 announces E1 + E2. The players continue this way until they
reach player `, who will announce E`−1 as by assumption e` does not
appear as a column of X. With this knowledge, the players can then
solve for E0 and evaluate f .

Theorem 9.4 (Grolmusz [Gro94]). Let f be a symmetric function.
Then

Dk(f(x1 ∧ . . . ∧ xk)) ≤ k2 log(n)
⌈

n

2k−1 − 1

⌉
.

Proof. The �rst player will play a special role in the protocol. He (men-

tally) partitions the input matrix X into
⌈

n
2k−1−1

⌉
many blocks of

columns of size 2k−1−1. By counting, in each of these blocks of columns,
there is some k − 1 bit string which does not appear, and can be iden-
ti�ed by the �rst player. The �rst player announces these strings, and
then the players perform the protocol given in the lemma. The total
communication is

k2 log(n)
⌈

n

2k−1 − 1

⌉
.
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Remark 9.1. In the special case where f is the parity function, this
communication can be reduced to

k

⌈
n

2k−1 − 1

⌉
as in the lemma the players do not need to say Ei + Ei+1 but just the
parity of this number.

Remark 9.2. Notice that the protocol of Grolmusz is nearly simul-
taneous, but not quite as the �rst player must announce the missing
columns to the other players. Babai et al. [BGKL03] have shown that
any function f(x1 ∧ . . . ∧ xk) for symmetric f indeed has a simultane-
ous protocol with O(logO(1)(n)) bits of communication whenever the
number of players is larger than log n+ 1.

9.2.2 Protocol for small circuits

One of the principal motivations for studying multiparty number-on-
the-forehead communication complexity is that lower bounds in this
model imply circuit complexity lower bounds. A key observation in this
connection is due to Håstad and Goldmann.

Lemma 9.2 (Håstad and Goldmann [HG91]). Suppose that a
function f can be computed by a depth-2 circuit whose top gate is
an arbitrary symmetric function of fan-in s and whose bottom gates
compute arbitrary functions of fan-in at most k − 1. Then, under any
partition of the input variables, the k-party number-on-the-forehead
complexity of f is at most k log(s). Furthermore, this can be achieved
by a simultaneous protocol.

Proof. As each bottom gate has fan-in at most k−1, under any partition
of the input variables, there is some player who sees the entire input
to this gate. By a scheme arranged beforehand, the players partition
these gates among themselves so that each gate is computed by some
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player. Each player then announces the number of gates assigned to him
which evaluate to true. This takes log s bits of communication. Once
the players know the total number of bottom gates which evaluate to
true, they can compute f . The total communication is k log(s).

The functions which can be computed by quasipolynomial size
depth-2 circuits with a symmetric top gate and bottom gates of polylog-
arithmic size fan-in is a surprisingly rich class. Indeed, Allender [All89]
shows that this class can compute all of AC0. Further work by Yao
[Yao90] shows that the probabilistic version of this class can compute
all of ACC0 and Beigel and Tarui [BT94] improve this to a deterministic
simulation. We record this statement for reference.

Theorem 9.5 (Beigel and Tarui). Any language in ACC0 can be
computed by a depth-2 circuit of size 2logO(1)(n) with a symmetric gate
at the top and AND gates of fan-in logO(1) n at the bottom.

As a consequence, showing that a function f requires super-
polylogarithmic communication for super-polylogarithmic many players
in the simultaneous number-on-the-forehead model will show that f is
not in ACC0. We currently do not know of any explicit function which
is outside of ACC0.
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