$CS \ 448/2405$

Automata and Formal Languages ASSIGNMENT # 2

DUE DATE: Monday, March 6

- 1. Give PDA's for the following languages.
 - a. The set of all strings over $\{0,1\}$ with exactly twice as many 0's as 1's.
 - b. The set of all strings over $\{a, b, c\}$ of the form $a^i b^j c^k$ such that either $i \neq j$ or $j \neq k$.
- 2. Give context-free grammars generating the following languages.
 - a. The set of all strings over $\{a, b\}$ not of the form ww for some string $w \in \{a, b\}^*$.
 - b. The complement of the language $\{a^nb^n \mid n \geq 0\}$
- 3. Are the following languages context free? Prove or disprove your answer.
 - a. $\{a^i b^j \mid j = i^2\}$
 - b. $\{a^i \mid i \text{ is a prime}\}$
 - c. $\{w \# x \mid w \text{ is a substring of } x, \text{ where } w, x \in \{a, b\}^*\}$
- 4. Prove that if L is a context-free language over a one-symbol alphabet, then L is regular.
- 5. Prove that the class of context-free languages are not closed under complementation.
- 6. (Hard) Let $D = \{xy \mid x, y \in \{0, 1\}^* \text{ and } |x| = |y| \text{ but } x \neq y\}$. Show that D is a context-free language.
- 7. (Hard) Let PRIME be the set of strings over $\{0,1\}$ that are prime numbers in binary notation. Prove that PRIME is not a context-free language.