CS 448/2405
Automata and Formal Languages

ASSIGNMENT # 1
DUE DATE: Monday, February 6

1. Give deterministic finite automata accepting the following languages over {0, 1}.

a. The set of all strings not containing the substring 101.

b. The set of all strings of length at least 4, and such that every block of four
consecutive symbols contains at least 2 1’s.

c. The set of all strings with at least three symbols such that the third symbol
from the right end is 1.

2. Prove of disprove the following for regular expressions r, s and ¢.

a. (rs+r) =r(sr+r)*
b. s(rs+s)* =rr*s(rr*s)*

c. (r+s)=r*+s*

3. Are the following languages regular? Prove or disprove your answer.

a. L ={w | w=w?}, where w is a string over {0, 1}*.
b. L ={0" | n is not prime}
. L={0"|nis even}

. L ={0"1"0" | m,n >0}

o o

4. Problem 1.57 in Sipser. NOTE: This is problem 1.42 in the OLD version of
Sipser. The problem is as follows. If A is any language, let Half(A) be the set
of all first halves of strings in A. So z is in Half(A) if there is some string y of
the same length as z such that the string zy is in A. Prove that if A is regular,
then Half(A) is also regular.

5. Let L be any subset of {a}*. Prove that L* is regular.

6. This question concerns the minimization algorithm discussed in class.

a. Prove that there exists a constant ¢ > 0 such that the algorithm requires
time greater than cn? for infinitely many DFA where n is the number of
states and the input alphabet has two symbols.

b. Glve an improved algorithm for minimizing states in a DFA with a smaller
runtime. In particular, try to get runtime O(|X|nlogn) where |X] is the
size of the input alphabet, . Hint: Instead of asking for each pair of states
(p,q) and each input a if d(p,a) and 6(q,a) are distinguishable, partition
the states into final and nonfinal states. Then refine the partition by
considering all states whose next state under some input symbol is in one
particular block of the partition. Each time a block is partitioned, refine
the partition further by using the smaller subblock. Use list processing to
make the algorithm as efficient as possible.

