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Covariate Shift Detection with a Learning Model
Setup:

» A classifier f is trained on a dataset P = {(z;,v;)}?, where

€X; ~ P
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» [ is deployed on unlabeled samples Q = {Z;}, where Z; ~ Q
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Covariate Shift Detection with a Learning Model
Setup:

» A classifier f is trained on a dataset P = {(z;,v;)}?, where

€X; ~ P
iid

» [ is deployed on unlabeled samples Q = {Z;}, where Z; ~ Q
Question:

» How can we leverage f to design a two-sample test for covariate
shift between P and Q particularly when the observed number of
test samples is small i.e. |Q| < |P|
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» Autoencoder/PCA + Low Dimensional Two Sample
Testing (Rabanser, Giinnemann, and Z. C. Lipton, 2019)

» Black Box Shift Detection (Z. Lipton, Wang, and Smola, 2018)
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Related Methods for Covariate Shift Detection

Dimensionality Reduction

» Autoencoder/PCA + Low Dimensional Two Sample
Testing (Rabanser, Giinnemann, and Z. C. Lipton, 2019)

» Black Box Shift Detection (Z. Lipton, Wang, and Smola, 2018)
Out-of-Distribution Detection / Uncertainty Estimation

» Deep Mahalanobis Score (Lee et al., 2018)

» Deep Ensembles (Ovadia et al., 2019)
High Dimensional Two-Sample Testing

» Classifier Two Sample Tests (Lopez-Paz and Oquab, 2017)

» Deep MMD (Liu et al., 2020)

» H-Divergence (Zhao et al., 2022)

Shortcomings
— Not well suited to the small sample regime;
— Do not generalize for non Neural Network based models.
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Constrained Disagreement
We build constrained disagreement classifiers (CDCs) to explicitly
» Maximize out-of-distribution disagreement,
» while, constrained to behave similarly in the training domain
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Constrained Disagreement

We build constrained disagreement classifiers (CDCs) to explicitly
» Maximize out-of-distribution disagreement,

» while, constrained to behave similarly in the training domain
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We introduce the disagreement cross-entropy (DCE) as a score that
encourages a classifier to disagree with a target label y € {1,..., N}

N
X 1 N
DCE(3,y) = -~ > log(§i)6izy
=1
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The Detectron

A test for covariate shift using con-

strained disagreement

» We calibrate
the expected disagreement
rate of a CDC when trained
to disagree on unseen data
from the source distribution
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Figure: Training CDCs from a classifier
f trained on CIFAR 10 to disagree on
data unseen data from CIFAR 10 P*
and near OOD data (CIFAR 10.1) Q
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The Detectron

A test for covariate shift using con-
strained disagreement

» We calibrate
the expected disagreement
rate of a CDC when trained
to disagree on unseen data
from the source distribution

» When training CDCs on
out-of-distribution data Q we
can reject the null hypothesis
P = Q if the disagreement
rate is above the calibration
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Figure: Training CDCs from a classifier
f trained on CIFAR 10 to disagree on
data unseen data from CIFAR 10 P*
and near OOD data (CIFAR 10.1) Q
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Power of the Detectron Two-Sample Test
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Figure: Detectron achieves compelling SOTA two sample testing results on several
high-dimensional image and tabular datasets for extremely small sample sizes.
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Concluding Remarks

» Our work presents a practical application for detecting covariate
shifts that achieves SOTA performance on small sample sizes

» Our methodology works well on both neural networks and
random forests
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Concluding Remarks

» Our work presents a practical application for detecting covariate
shifts that achieves SOTA performance on small sample sizes

» Our methodology works well on both neural networks and
random forests

Future Directions

» Exploring the relationship between model complexity,
generalization error and test power

» Improving the computational runtime

» Using constrained disagreement as a representation learning
objective to correct for covariate shift

» Data efficient + learning-based methods for label and concept
shift
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