

A Learning Based Hypothesis Test for Harmful Covariate Shift

Tom Ginsberg, Zhongyuan Liang, Rahul G. Krishnan {tomginsberg, zhongyuan, rahulgk}@cs.toronto.edu

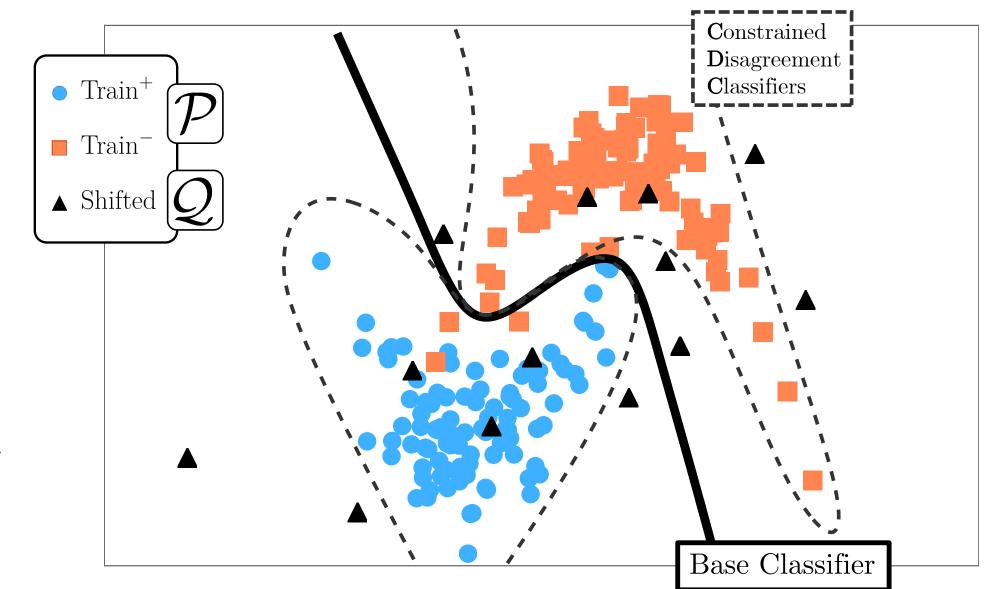
Motivation

The ability to quickly and accurately identify covariate shifts at test time is a critical component of safe machine learning systems deployed in high-risk domains
 We show how to leverage any deployed classifier as a domain-aware shift detector well-suited to small sample sizes

Approach: Detecting Shift with Model Disagreement

We define *harmful covariate shift* as a shift where a model's behaviour is poorly specified due to lack of learned invariances
 We identify harmful shifts by answering the question:

can we train multiple models to meet similar performance

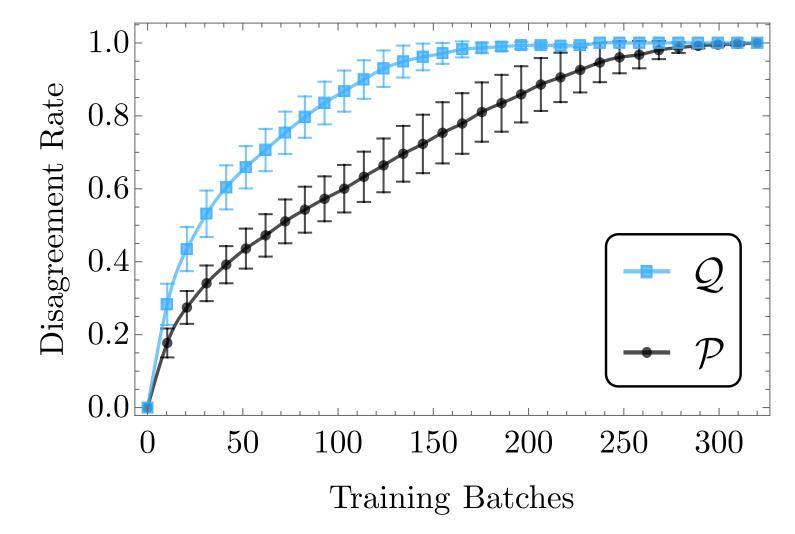


criteria on the training dataset \mathcal{P} while disagreeing with each other on an unlabeled test set \mathcal{Q} ?

 $_{\circ}$ We give an algorithm for *Constrained Disagreement Classifiers* (CDCs) which maximize classification disagreement on \mathcal{Q} while constrained to predict consistently on \mathcal{P}

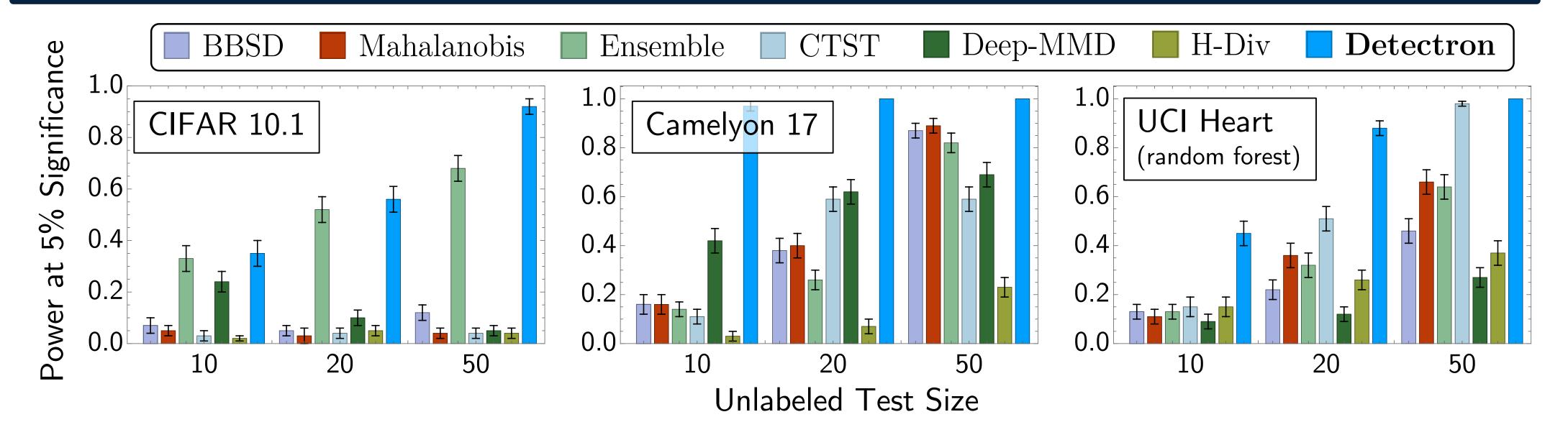
 $_{\circ}$ The rate that CDCs disagree is a powerful and sample-efficient statistic for identifying covariate shift \mathcal{P} $_{
eq} \mathcal{Q}$.

Learning to Disagree and Two-Sample Testing



• We train a model \boldsymbol{g} to agree with a set of labelled training data, while disagreeing with a baseline model \boldsymbol{f} on unlabeled data $\mathcal{L}\left(\mathcal{P}, \mathcal{Q}\right) = \frac{1}{|\mathcal{P}| + |\mathcal{Q}|} \left(\underbrace{\sum_{(x,y)\in\mathcal{P}} \mathcal{A}\left(\boldsymbol{g}(x), y\right)}_{(x,y)\in\mathcal{P}} + \lambda \underbrace{\sum_{\tilde{x}\in\mathcal{Q}} \mathcal{D}\left(\boldsymbol{g}(x), \boldsymbol{f}(x)\right)}_{\tilde{x}\in\mathcal{Q}} \right)$ • A permutation test is used to bound the significance level for rejecting \mathcal{H}_0 : $\mathcal{H}_0: \boldsymbol{g}$ will disagree on \mathcal{P} and \mathcal{Q} with the same rate $\mathcal{H}_a: \boldsymbol{g}$ is more likely disagree on \mathcal{Q} compared to $\mathcal{P} \implies$ harmful shift

Performance on Shift Detection Benchmarks



Conclusion and Future Work

We present a promising technique to perform two sample testing with high statistical power using a pretrained classifier
 Future directions:

Improving computational runtime | Establishing a theoretical connection between model complexity generalization error and test power | Extending to arbitrary tasks beyond classification | Large-scale experiments (e.g. ImageNet)