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o The ability to quickly and accurately identity covariate shifts at test time is a critical component of safe

machine learning systems deployed in high-risk domains

> We show how to leverage any deployed classifier as a domain-aware shift detector well-suited to small sample sizes

Approach: Detecting Shift with Model Disagreement

- We detine harmful covariate shift as a shift where a model's
behaviour is poorly specitied due to lack of learned invariances

> We identity harmful shifts by answering the question:

other on an unlabeled test set O 7

can we train multiple models to meet similar performance
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criteria on the training dataset P while disagreeing with each g

- We give an algorithm for Constrained Disagreement A \

Classifiers (CDCs) which maximize classification disagreement

on O while constrained

to predict consistently on P
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o The rate that CDCs disagree is a powerful and sample-efficient statistic for identitying covariate shift P » Q.

Learning to Disagree and Two-Sample Testing
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Performance on Shift Detection Benchmarks

o We train a model g to agree with a set of labelled training data, while

disagreeing with a baseline model f on unlabeled data
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o A permutation test is used to bound the significance level for rejecting Hy:

Ho : g will disagree on P and Q with the same rate

H, : g is more likely disagree on Q compared to P — harmful shift
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Conclusion and Future Work

Unlabeled Test Size

o We present a promising technique to perform two sample testing with high statistical power using a pretrained classifier

- Future directions:

Improving computational runtime | Establishing a theoretical connection between model complexity generalization
error and test power | Extending to arbitrary tasks beyond classification | Large-scale experiments (e.g. ImageNet)



