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Motivationg

˝ The ability to quickly and accurately identify covariate shifts at test time is a critical component of safe
machine learning systems deployed in high-risk domains
˝ We show how to leverage any deployed classifier as a domain-aware shift detector well-suited to small sample sizes

Approach: Detecting Shift with Model Disagreement
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˝ We define harmful covariate shift as a shift where a model’s
behaviour is poorly specified due to lack of learned invariances
˝ We identify harmful shifts by answering the question:

can we train multiple models to meet similar performance
criteria on the training dataset P while disagreeing with each
other on an unlabeled test set Q?

˝ We give an algorithm for Constrained Disagreement
Classifiers (CDCs) which maximize classification disagreement
on Q while constrained to predict consistently on P
˝ The rate that CDCs disagree is a powerful and sample-efficient statistic for identifying covariate shift P ‰ Q.

Learning to Disagree and Two-Sample Testing
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˝ We train a model g to agree with a set of labelled training data, while
disagreeing with a baseline model f on unlabeled data
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˝ A permutation test is used to bound the significance level for rejecting H0:

H0 : g will disagree on P and Q with the same rate
Ha : g is more likely disagree on Q compared to P ùñ harmful shift

Performance on Shift Detection Benchmarksg
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Conclusion and Future Workg

˝ We present a promising technique to perform two sample testing with high statistical power using a pretrained classifier
˝ Future directions:

Improving computational runtime | Establishing a theoretical connection between model complexity generalization
error and test power | Extending to arbitrary tasks beyond classification | Large-scale experiments (e.g. ImageNet)


