
UNIVERSITY OF TORONTO

INSTITUTE FOR AEROSPACE STUDIES

4925 Dufferin Street, Toronto, Ontario, Canada, M3H 5T6

BALL BALL U

Ball Dispensing Machine

prepared by

Team 50 – Wednesday

Chengnan Shentu (Jimmy) (1003917434)
Chuyi Hou (Sky) (1004197834)

En Xu Li (Thomas) (1004028759)

prepared for

Prof. M.R. Emami

A technical report submitted for
AER201 – Engineering Design

TA: Michael Bazzocchi

April 11, 2019

Chapter 1

Acknowledgements

The success of this project would not be possible without the help and encouragement from the following
individuals and businesses.

Firstly, we would like to thank Professor M. Reza Emami for the ongoing recognition and support through-
out the term. Particularly, Professor Emami has given incredibly useful and concise lectures on general
engineering designs. These lectures at the beginning of the term have helped the team to come up with
the alternative designs and converge to the best possible solution. In addition, Professor Emami has given
introductory lecture series on the fundamentals of microcontrollers. The successful programming control of
the machine would be impossible without these lecture series. Moreover, he has helped our team to debug the
system and gave invaluable advice regarding the design to help the team make important design decisions,
such as, changing the orientation of the wheels to improve the mobility of the machine.

Secondly, we would like to acknowledge our lovely supervisor, Michael Bazzocchi. He has been supervising
the team throughout the term. He met our team once a week to check on the progress of the project and
always provided constructive feedback to our machine for future improvements.

Moreover, we would like to also acknowledge two teacher assistants, Michael Bazzocchi and Houman
Hakima They both gave us a solid foundation for circuitry and electromechanical system for this project.
This machine would not be possible without their hard work teaching us the fundamentals.

In addition, we would like to thank friendly staffs at Myhal Fabrication Facility and the Undergraduate
Aerospace Laboratory for offering us tools and equipment, as well as valuable advice. For example, most of
our frame is done using laser cutting techniques with multiple iterations. This would not be possible without
the continuous and rapid support from Myhal Fabrication Facility staffs.

Furthermore, we would like to acknowledge Creatron Inc. and TaoBao Corp. for providing electronic
supplies, such as DC motors, stepper motors, driver boards, and sensors.

Lastly, we would like to thank Engineering Science class of 2021, our fellow classmates. The class has
been helping each other with the design framing and system debugging. When many of us encountered the
same type of issue, we encourage each other and tackle the problem together. Most importantly, we created
a positive working environment for each other.

2

Figure 1.1: Team BALLBALLU Photo

Team 50 | AER201 | PRA0103 | TA: Michael Bazzocchi | Instructor: M. Reza Emami

3

Chapter 2

Abstract

An engineering R & D company is seeking for a prototype for mobile ball dispensing machines. The machine
should be designed to travel along a row of canisters and dispense balls according to the requirements stated
as per the RFP[1]. This machine must be fully autonomous, operating on its own with on-board power
supply, and is controlled by microcontroller chips on-board.

The project is firstly divided into 3 subsystems, and each team member specializes in one of the sub-
systems, electromech, circuits and sensors, and microcontroller. After achieving the individual milestones
before week 8 of the project, we came together to integrate our design. Our design solution, BALL BALL U,
has a dimension of 50 cm x 45 cm x 48 cm and its weight is 4.52 kg, fulfilling the size constraint. During the
stages of integration, several major problems have occurred. In particular, the mobility of the robot could
not be easily controlled with the help of one microcontroller board. Therefore, we are proud of making the
biggest design decision of changing the direction and wheels and adding another Arduino Nano with PD
motor control.

From sketch to a fully functional machine, the entire project took 57 days to complete. Despite countless
challenges we have faced during integration, the machine is qualified with a huge success.

4

Contents

1 Acknowledgements 2

2 Abstract 4

3 Abbreviation 8

4 Introduction 9
4.1 Statement of Need . 9
4.2 Background . 9
4.3 Motivation . 9

5 Project Concept and Design Parameters 11

6 Perspective 12
6.1 Theory and History . 12
6.2 Background Surveys . 12

6.2.1 Literature Survey . 12
6.2.2 Market Survey . 12
6.2.3 Idea Survey . 13

7 Design Overview 14
7.1 Stakeholders . 14
7.2 Objectives . 14
7.3 Requirements . 16
7.4 Budget . 19

8 Detailed Design 20
8.1 Standard Operating Procedure . 20
8.2 Problem Division . 20
8.3 Electromechanical Subsystem . 20

8.3.1 Mechanical Frame . 21
8.3.2 Ball Storage Unit . 23
8.3.3 Ball Selection Unit . 25
8.3.4 Ball Dispense Unit . 26
8.3.5 Mass Budget . 28
8.3.6 Mobility Unit . 28
8.3.7 Circuits and Microcontroller Housing . 30
8.3.8 Sensors Housing . 31
8.3.9 Material Selection . 31

8.4 Circuits and Sensors . 32
8.4.1 Circuitry Design . 33
8.4.2 Sensors . 34
8.4.3 Motor Driver Boards . 35

5

8.4.4 Power Delivering . 37
8.4.5 Future Improvements for this subsystem . 38

8.5 Microcontroller . 38
8.5.1 Choice of Microcontroller . 39
8.5.2 User Interface . 41
8.5.3 Permanent Log . 44
8.5.4 Communication between PIC and Arduino . 45
8.5.5 Mobility . 46
8.5.6 Canister Detection . 46
8.5.7 Ball Dispensing . 47
8.5.8 Pin Assignments . 48

9 Integration 50
9.1 Mobility . 50

9.1.1 4WD Calibration with 2 PWM Pins from PIC . 50
9.1.2 Additional Arduino Nano to Control 4 DC Motors . 51
9.1.3 Change Direction of the Motors . 51
9.1.4 PID Motor Control . 51

9.2 Power Source . 51
9.2.1 Voltage Regulator . 51
9.2.2 Battery Supply . 52
9.2.3 Debugging . 52

10 Project Execution 53
10.1 Initial Gantt Chart . 53
10.2 Final Gantt Chart . 56

11 Conclusions 60
11.1 Bottlenecks . 60
11.2 Future Improvements . 60

A Datasheets 62
A.1 DC Motor with Encoder Data Sheet . 62
A.2 US Sensor HC-SR04 Data Sheet . 64
A.3 IR Receiver VS1838 Data Sheet . 67
A.4 L298N H-Bridge Driver Board Data Sheet . 71
A.5 Nema 42 Stepper Motor Data Sheet . 75
A.6 A4988 Stepper Driver Board Data Sheet . 77
A.7 IR Proximity Sensor Data Sheet . 84

B PIC Microcontroller Main Program 87

C PIC Microcontroller I2C Program 112

D PIC Microcontroller LCD Program 114

E PIC Microcontroller Configuration Bits 117

F Arduino Microcontroller Main Program 120

G PC Interface Main Code 130

H PC Interface Data Structure 132

I Laser Cut Files 134

6

J 3D Print File 139

7

Chapter 3

Abbreviation

all abbreviations spelled out in alphabetical order

4WD Four-wheel drive

CCW Counterclockwise

CW Clockwise

DC Direct Current

I2C Inter-Integrated Circuit

IR Infrared

MDF Medium Density Fibreboard

MISS Make it super simple

MSB Most Significant Bit

PD Motor Control Proportional-derivative Motor Control

PIC PIC18F4620

PWM Pulse Width Modulate

RFP Request for proposal

RTC Real Time Clock

R&D Research and Development

SD Card Secure Digital Card

UI User Interface

US Ultrasonic

8

Chapter 4

Introduction

As a second year design team, we have always been passionate to engineering design problems. This
section of the report will introduce the design challenge with the background of the project. Our motivation
of the design project will also be discussed.

4.1 Statement of Need
An engineering R & D company wants to develop a functional prototype for fully automatic mobile ball

dispensing machines. This prototype will need to have as many functionalities, which are specified by the
requirements in the RFP, as the machine is required. It is mainly expected to travel along a row of canisters
and dispense balls according to the conditions specified [1].

Robots have often been suggested by researches to be suitable for performing dull,dirty and dangerous
work in place of human [2]. The case introduced in the RFP is relatively low-skilled, tedious, and time-
consuming. In this case, autonomous robots could help reduce human workload [2]. Thus, it allows human
workers to focus more on higher level tasks such as decision making.

The objective of our team is to design and build from sketch, and finally develop a fully autonomous and
efficient mobile machine that can store and dispense balls based on the conditions already given.

4.2 Background
This project requests second year Engineering Science students to design from sketch, and finally come up

with a prototype that should meet the requirements. Due to the nature of this design project, there could be
various design solutions that will meet the objectives. Student teams should use their own decision making
skills to come up the best solutions they could ever thought. To come up with alternatives, teams would
need to do numerous surveys to gather information and idea related to this project.

4.3 Motivation
As the robotic industry developing rapidly, it is important for student engineers, like us, to acquire

knowledge and experience related to this field. As the future engineers of the world, we were motivated to
go through a difficult journey of developing our very first task-oriented autonomous mobile machine, as our
first step into the field of robotics.

Moreover, we were so enthusiastic about this project that we worked day by day planning and developing
the machine. It was quite a precious experience for us, leaving no regret that we tried our best. Also, it

9

is what we wanted to accomplish to leave AER201, its instructor, Prof. Emami, and TAs, with unique
memories.

10

Chapter 5

Project Concept and Design Parameters

This section will focus on the how the machine is designed to complete assigned task while meeting the
requirements, plus the machine’s physical appearances.

The most important part of this design is the machine’s mobility while it is designed to go over the
canisters. It is hard for a 4WD machine to drive in a perfect straight line. In addition, the space between
the wheels/motors, which allows the pass of canisters, is limited. We had to add a functionality which allows
the machine to adjust its current position, so that it will avoid any collisions with canisters as it is moving
forward. Hence, we chose a special wheel type, mecanum wheels. This wheel type allows the machine to
drive in parallel translation directions (i.e. forward, backward, left, and right). Although, it is not perfectly
parallel, which is understandable due to manufacture and powering asymmetric existing in the machine, it
is good enough for the machine to drive in a way which does not hit any canisters.

Secondly, the ball dispensing mechanism is also essential. The ability of moving in omnidirections acquired
from mecanum wheels can improve the ball dispensing accuracy. The machine will move closer to a canister
as ball dispensing process starts.

Moreover, canister detection (with its opening and its distance from the start line) is indispensable. This
function is achieved by using only one US sensor which is placed at the front of the machine not pointing
forward but side way instead. The information gained from the US sensor can tell the machine that a canister
is under it. In addition to that, the distance recorded can actually tell the opening of the canister. Based on
our testing trials, we found that a reasonable distance but more 18cm than means that the detected canister
is opening to the left, while a distance less or equal to 18cm means that the detected canister is opening to
the right.

Last but not least, ball detection plus the opening information allows the machine to make accurate
dispenses. Detecting yellow balls inside canisters is accomplished by using two digital IR sensors. One IR
sensor is placed on left bottom and the other is on the right bottom of the machine. These two IR sensors will
scan through the canister as it is passing through. The contrast will generate the detection signals. Based
on simple algorithm, the signals can be processed, with the help of the opening information, to determine
whether there is a ball inside or not.

The dimension of the design is 50 cm x 45 cm x 48 cm and its weight is 4.52 kg.

11

Chapter 6

Perspective

6.1 Theory and History
P(Power) = VI Mobile machine requires on-board power supply. Thus, determining power needed for the

entire system is important, as well as the choice of on-board power supply.
US sensor distance calculation: Convert timer to distance: timer/58.82 Distance detected is back and

forth, so we need to divide the distance by 2 to get the actual distance from the ultrasonic to the object.

6.2 Background Surveys
This section will introduce the major background researches we did during the course of this project. The
followings are literature surveys, market surveys, and idea surveys in additional to the ones mentioned in
the proposal [2].

6.2.1 Literature Survey
PID Controller uses a feedback loop structure to control any variable such as velocity and temperature.

Examples of application include cruise control and indoor temperature maintain. For instance, the cruise
control takes the distance from the current vehicle to the one at the front as the input value. It tries to
calculate the optimal output of gasoline to the vehicle in order for maintaining the relative distance. It is one
of the most accurate and reliable controllers used in industry [3]. This controller type can be very beneficial
for our design, since we do need a controller to monitor the current status of the machine giving a set point
to the machine and let itself decided how to reach that point.

The 3 parameters of PID controller are kp, ki, and kd, standing for proportional coefficient, integration
coefficient, and derivative coefficient. PID Auto Tuning library has been found in Arduino; however, Arduino
Nano has not enough memory for setting up 4 PID control with auto turnings [4]. Therefore, our team has
followed the protocol online for determining these three parameters [5].

6.2.2 Market Survey
Currently in the market, some existing products have similar functionality with the design requested for
this project. For instance, the golf ball dispenser is like a vending machine dispense golf balls to users. The
mechanism behind dispensing the golf ball is somewhat similar to the design of the ball dispensing machine
described in the RFP [1]. What they have in common is the part where both machines have to select a
user-defined number of balls from a pool of balls. These balls need to be separated from the rest by some
mechanism. This mechanism has to ensure that the balls don’t get stuck or get jammed. Similarly, a
gumball machine also has a similar function where it selects one gumball from a box of gumballs. These
kinds of mechanisms usually involve with a stepper motor or servo motor to do so.

12

6.2.3 Idea Survey
For the nature of this project, mobility of the machine is a top focus since it will affect the entire design to
a great extend. For example, ball dispensing mechanism can vary a lot if we choose to go over the canister
instead of driving around the row of canisters. Thus, we wanted to put more attention to the selection of
the paths we wanted the machine to take, along with the choices of wheels. Since our team values the
concept of MISS, we wanted to design the machine to go over the canisters, which is our preferred alternative.
Meanwhile, we also want our machine to operate in various conditions such as terrain conditions and canisters
positions, etc. Thus, we were looking for some special wheels that allow the machine to perform specially.

Mecanum Wheel

A Mecanum wheel comprises a circular surrounded with a plurality of peripheral flanges. A set of rollers are
mounted to the tab portions bent at an angle of 45◦ from said pate []. The greatest benefit from choosing
this type of wheel is that it enables the machine to drive in any directions as shown in figure below 6.1

Figure 6.1: Driving Mecanum Wheels in Omnidirections

13

Chapter 7

Design Overview

The design solution is expected to travel along a line of canisters, trying to recognize the presence of
canisters with directions of openings. Meanwhile, the distances from the start line of each canister must be
tracked in order to determine if the ball is required to be dispensed. According to the RFP, the machine
only dispenses a ball if it’s a empty canister with a greater than 30cm distance from the previous one [1].
The stakeholders and the detailed design objectives along with requirements are summarized in the following
sections.

7.1 Stakeholders
Engineering R&D Company gives RFP for the ball dispensing machine that the design team needs to
develop.

AER201 Course Instructor: Prof. M.R. Emami wrote the RFP and is responsible for guiding the
design team going through the entire process.

Design Team is the main active stakeholder who are responsible for every stage throughout this project.

7.2 Objectives
The following objectives stated in the RFP [] are valued by our team:

• Usability/Accessibility

– User can load/unload balls conveniently.

– Setting up the machine before each operation should be done simply and must not exceed 2 min.

– The LCD UI should be straight forward, can be easily used by the user without any confusion.

– Balls should not be stuck leading to a emergency stop during the operation.

• Manufacturability

– Components and materials are easy to obtain.

– Building phase of the machine should be easy and quick.

• Accuracy

– The machine should contain a RTC telling the user more time details of the operations, such as
when is the operation been done, and what time is it right now.

– Distance of each canister from the start line should be recorded correctly within 10cm.

14

– Dispensing only one ball at a time if applicable.

– Emptiness/fullness of canisters should be detected correctly.

– Obtaining correct information about the openings of the canisters, so that the machine can make
accurate dispenses.

– The machine should notify the user using any means of signal (e.g. sound, light, motion, etc)
whenever it detects a new canister in range.

• Safety

– Canisters must not be significantly moved or stroked by the machine during operations.

– The machine must be equipped with an emergency stop button which allows the machine to stop
immediately after the button is pressed.

– The machine must not act dangerously or hazardously to any of the surroundings.

• Compactness

– The entire prototype must fit within an envelope of 50cm*50cm*50cm during operations.

– The weight of the machine should be less than 8 kg.

• Efficiency

– The machine should work efficiently taking as less time as possible for each operation. The
operation time is limited to less than 3 min.

– The machine should consume as few power as possible

– Ball dispensing mechanism should be done efficiently in terms of time and power.

• Cost

– The total cost of building the machine must not exceed 230.00 CAD.

• Durability

– The machine should be able to run for multiple operations with little maintenance or repair.

– The machine can withstand heavier load of balls.

– Materials such as paper and tape must not be used in the machine for construction purposes.

15

7.3 Requirements

Table 7.1: Requirements

16

17

18

7.4 Budget

Table 7.2: Budget Table
Budget

1 RMB = 0.1943 CAD
ITEM Supplier Per Unit Cost CAD Quantity COST IN CAD COST IN RMB
Mini Balance DC Motor with Encoder TaoBao 8.14 4 32.56
Mini Balance Mecanum Wheels TaoBao 10.75 4 43
Mini Balance Motor Support TaoBao 0.46 4 1.84
Arduino Nano Board TaoBao 2.1574 1 2.1574 12.88
PIC DevBugger Board Project Kit 55 1 55
LCD Display + Keypad Project Kit 8 1 8
Real Time Clock Chip + Coin Battery Project Kit 4 1 4
L298N Driver Board TaoBao 0.75375 2 1.5075 4.5
A4988 Stepper Driver Board TaoBao 0.641525 1 0.641525 3.83
Stepper Motor Screw Rod with Support TaoBao 2.76375 1 2.76375 16.5
Nema 42 Stepper Motor with Support TaoBao 4.929525 1 4.929525 29.43
US Sensor HC-SR04 TaoBao 0.293125 1 0.293125 1.75
IR Receiver + Remote Control Pack TaoBao 0.6365 1 0.6365 3.8
IR Sensor EK1254x5C TaoBao 0.373525 4 1.4941 2.23
3.7V 18650 Battery 4 pack Amazon 15.99 1 15.99
Emergency Switch Creatron 6.25 1 6.25
Frame - Laser cut in 1/8 in MDF Myhal 1.33 4 5.32
Frame - Time cost of laser cutting Myhal 5 1 5
Screw and Nut (M2 M3 M4 Assortment Kit 1080pc) Amazon 29.95 0.1 2.995
Brass Standoff (M2 M3 M4 Aassorment Kit 360 pc) Amazon 26.99 0.1 2.699
Flexible Aluminum Duct 3 inch x8 foot Home Depot 8.67 1 8.67
3D Printed Battery Pack Myhal 3.96 1 3.96

Total CAD 209.71
Constraint 230.00

19

Chapter 8

Detailed Design

8.1 Standard Operating Procedure
For each operation, the machine should be placed along the row of canisters roughly centred at the same line.
After positioning the machine, make sure the emergency stop button is not pressed down. LCD will light up
showing "Press * to start" with real time clock underneath the text. Operation will start after a long press
on the "*" button. During the operation, the machine will complete its dispensing task fully autonomously
according to the requirements stated in the RFP. It will adjust its horizontal position if it detects a canister
which is too far away from the centre line. After the machine dispense all 10 balls, or detected 10 canisters,
or went 4 meters, the machine will first move forward a short distance and then shift to its right and run
back to the start line. In total of five previous operations will be recorded on the PIC through EEPROM.

8.2 Problem Division
Problem was divided into three subsystems. In particular, Jimmy is responsible for the electromechanical
part of the project where he has designed and built the structural frame of the machine and installed sensors
and actuators onto the robot. Sky worked on choosing the sensors, designing and building electrical circuits
to connect all the sensors with the microcontroller. Thomas designed the UI of the machine and programmed
the microcontroller to process input signals from the sensors and output appropriate actions accordingly.
Three subsystems would have to work together to accomplish the final machine.

In this chapter, we will discuss each subsystem in detail at the final stage of the design, also including
the changes from what we planned from the proposal.

8.3 Electromechanical Subsystem
The electromechanical subsystem refers to the combination of electrical and mechanical structures that

provide the prototype with required functionalities. Specifically, the electromechanical subsystem is respon-
sible for the storage and dispensing of the balls, mobility of the prototype, and the housing for all circuits,
sensor, and microcontroller components. We applied the design principle of MISS (make it super simple) to
ensure reliability and robustness. In this section, the detailed design of each electromechanical components
are explained, along with supporting materials, and an overview of the design process.

The machine is divided into the following units: Mechanical Frame, Ball storage unit, Ball Selection Unit,
Ball Dispense Unit, Mobility Unit, and Housing for Circuits and Microcontroller. Their problem assessment,
detailed design, changes made from proposal, justifications, and potential improvements are explained for
each functional unit.

20

Figure 8.1: Overview of Final Design

8.3.1 Mechanical Frame
Assessment of the Problem

The main electromechanical objectives of the frame are as follows:

• Provide strength to support functional units, especially for Mecanum wheels which have high precision
requirements

• Ensure clearance for passing over canisters

• Provide clearance in front to avoid collisions when approaching canisters

• Provide openings for wires and accessibility to the Circuits Unit

• Maximize Strength-to-Weight ratio

• Remain Stable during Motion

• Provide easily accessible space for the housing of sensory units for installing and calibrating

Detailed Design

The frame is consisted of three plates. The first one is a 30x30 cm main plate that supports the Ball Se-
lection Unit, the Ball Storage Unit, and Circuits Unit from below. There are two circular openings with
a 63 millimeter diameter for balls to drop through the plate, and proceed to the Ball Dispense Unit. Two
square openings are present for the placements of wires. One big center opening ensures accessibility to the
Circuits Unit from below. There are also multiple holes allocated on the plate for the use of screws. A dent is
designed right below the ball storage unit to prevent balls from uncontrolled rolling before they are dispensed.

21

Figure 8.2: Frame Design

Two side plates are located 80 millimeters below the main plate. There are precise holes for the align-
ments of the four wheels besides holding them in place. Two cuts are made to the forward-facing inner
corners of these plates to avoid collision when approaching canisters. There is a 180 millimeter distance
between the two plates, which gives a 30 millimeter clearance on each side when passing over a canister.
Openings are also made for sensors, Ball Dispensing Units, and wires connecting these components. These
two plates are connected to the main plate by 12 sets of brass pillars, each consists of two 40 millimeter M3
standoffs. These pillars provides the frame with enough vertical strength, as well as resistance for rotation
during motion.

Clearance for Height

To provide the clearance needed for passing over the canisters, the following height calculation is made to
verify the design.

49mm+ 3 ∗ 3.175mm+ 80mm = 138.525mm

with height contribution from moto, side plate, and pillars respectively. This clearance is safe for canisters
which have a 135 millimeter height maximum.

Changes from Proposal

The middle plate as shown in figure 8.3 was designed to provide more flexibility to the placement of sensors.
However, the bottom plate is sufficient for sensors.Thus, the middle plate is removed to further simply the
structure.

More openings are added through the process to hold various functional components mentioned above,
and make the Circuits Unit above more accessible.

22

Figure 8.3: Frame Design from Proposal

8.3.2 Ball Storage Unit
Assessment of the Problem

The main objectives of the Ball Storage Unit are as follows:

• Provide space for 20 balls

• Prevent balls from falling from the machine when moving

• Reliably feed balls to the Ball Selection Unit

• Prevent balls from jamming

• Keep weight low

• Allow accessible loading and unloading of the balls

Detailed Design

An extendable 3 inch diameter aluminum duct with a maximum length of 8 feet (2438 millimeter) is used
as the Ball Storage Unit along with a few pieces for structural support.The output end is located above the
Ball Selection Unit with a clearance of 60 millimeters. This clearance allows for easy access for unloading
balls, and the other end allows for loading.The all-around tube is able to securely store the balls, and its
flexibility allows for gently curved path, which avoids balls from jamming within the storage unit.

Length Verification

To store 20 balls in the machine, the tube must fit 19 balls while 1 is in the clearance space. The minimum
length required for 19 balls with 63 millimeter diameter is 19 ∗ 63mm = 1197mm, which is well under the
maximum length such tube can extend to.

Changes from Proposal

The design has changed completely since the proposal. This is due to the fact that the balls can easily get
jammed in a rigid container like the one shown in figure 8.5. Preventing jamming without greatly modifying
the design would require adding an actuator or adding some rapid motion to the system, which would add
greatly to the complexity of the system. To align with the MISS design principle, the original design is
replaced with the tube.

23

Figure 8.4: Ball Storage Unit Detailed Design

Figure 8.5: Ball Storage Unit Design from Proposal

Potential Improvements

As an off-the-shelf item, the Ball Storage Unit has a great potential for improvements. One of the most
important factor is the occupied volume. There is a lot of extra space unused because the tube’s diameter
is a lot larger than the balls. A narrower tube can be made as a replacement unit, and will reduce the space
occupancy significantly.

24

8.3.3 Ball Selection Unit
Assessment of the Problem

The main objectives of the Ball Selection Unit are as follows:

• Receive one ball from the Ball Storage Unit at a time

• Move that ball towards either left or right part of the Ball Dispensing Unit

• Avoid jamming

• Prevent uncontrolled movement of the taken ball

• Prevent other balls from entering this unit

Figure 8.6: Ball Selection Unit Detailed Design

Detailed Design

The Ball Selection Unit is a block that slides left and right between the two circular openings on the main
plate. If the unit is instructed to push one ball to the right, it would first shift all the way to the left, letting
one ball drop down on the dent on the main plate. Then, it would start to shift back and push the ball to
the right. Other balls would be blocked above the unit by either the ball or the sliding block. After the ball
is pushed to the opening, the sliding block will return to its default position, which is the centre, and wait
for the next run.

25

The motion of this unit is powered by a Nema 42 stepper motor and a lead screw, which is widely used as
the method of actuation for 3-D printers. Such method of actuation has the advantage of being very precise,
and a stepper motor is easy to control with a stepper driver board installed.

Changes from Proposal

The concept of the unit remains unchanged. The proposed rack and pinion system is exchanged to a lead
screw unit for easier and more precise control. A few other details are also adjusted to accommodate the
change of the Ball Storage Unit. Since the aluminum duct significantly reduces jamming, the slide for shaking
balls is removed.

Figure 8.7: Ball Selection Unit Design from Proposal

Potential Improvements

The Ball Selecting Unit demonstrated reliable performance during public demo. However, a few rollers can
be added to the sliding block to reduce its friction with structures around. Reduced friction can further
enhance the performance of the unit, and also reduce noise.

8.3.4 Ball Dispense Unit
Assessment of Problem

The main objectives of the Ball Dispense Unit is as follows:

• Receive one ball from the Ball Selection Unit

• Transfer the ball down towards the opening of the canister

• Let the ball to be fully inside the canisters

• Consistent performance

Detailed Design

The Ball Dispensing Unit has two sub units on both sides of the machine towards the back. They are
essentially two "boxes" with tilted bottom plates to guide the balls towards the canisters. They are fitted
between the main plate and the side plates of the mechanical frame through designed openings. This adds
to the overall strength of the structure, which increases reliability.

26

Figure 8.8: Ball Dispense Unit Detailed Design

Changes from Proposal

While the main idea behind the unit remained unchanged, the structure is made with MDF board instead
of metal tubes. Laser cut MDF provides greater flexibility over the shape. Purchased metal tubes only have
limited degrees of freedom, and generally occupies larger volume compared to the current solution.

Figure 8.9: Ball Dispense Unit Design from Proposal

27

8.3.5 Mass Budget
The overall mass of the machine is constrained to be below 8 kilogram. The mass calculation is shown in
Table 8.1. The total mass is expected to be 4.5 kilogram.

Table 8.1: Mass Budget Calculation
Components Individual Weight (g) Amount Combined Weight (g)
12V DC Motor 145 4 580
Mecanum Wheels 87.5 4 350
PIC Devbugger Board 295 1 295
Aluminum Duct 360 1 260
Stepper Motor 250 1 250
Battery Unit 200 1 200
Lead Screw - 230mm 180 1 180
DC TT Motor 30 1 30
Emergency Stop Button 25 1 25
MDF Boards - - 1250*
Standoffs - - 450*
Sensors and other Electrical Components - - 450*
Screws and Nuts - - 200*
Total 4520
*Include multiple components

8.3.6 Mobility Unit
Assessment of the Problem

The main objectives we expect from the mobility unit is as follows:

• Forward and Backward motion in straight lines

• Able to shift to the left or right without significant tilt

• Able to support the machine during operation

Detailed Design

The Mobility Unit is composed of four Mecanum wheels each powered by a 12 V DC motor.They are strictly
aligned to ensure expected performance.

Torque Calculation

As calculated in the Mass Budget section, the machine has a weight of 4.520 kilogram. This means each
wheel experience a normal force of 11.0853 N. Taking the kinetic coefficient of friction as 0.5, a friction force
of 5.504 N, which require a torque of 1.83 N/cm. The purchased DC motor have a torque of 9.8 N/cm
(Appendix A.1). The selection of motor leaves a very big safety margin, which is necessary for omni-wheels
since part of the force generated by the wheels get cancel out during operation.

28

Figure 8.10: Bottom View of the Mobility Unit

Changes from Proposal

The wheels are originally designed in a different orientation to maximize compactness. However, that orien-
tation is found to be ineffective during the integration process, so the new orientation is used for the machine.
More details regarding the integration process around the Mobility Unit can be found in section 9.2.

Figure 8.11: Wheel Orientation from Proposal

29

8.3.7 Circuits and Microcontroller Housing
As shown in figure 8.12 and figure 8.13, most of the circuits components are integrated on to the deck above
the main plate, and the microcontroller component is integrated on the top deck for easy access.

Figure 8.12: Circuit Housing

Figure 8.13: Microcontroller Housing

30

8.3.8 Sensors Housing
There are 4 IR sensors and 1 US sensor in total on this machine, and they are located at different parts of
the machine to achieve their functionalities. Figure 8.14 demonstrate their specific locations on the machine.

Figure 8.14: Sensor Housing on the Electromechanical Frame

8.3.9 Material Selection
All the plates in the electromechanical system are laser cut with 1/8 inch MDF (Medium Density Fibreboard).
Firstly, MDF is produced with recycled wood, which reduces robot’s ecological footprint. Secondly, MDF is
an economic choice in terms of availability and cost. Last but least, MDF have the advantages of uniform
property and more resistant to heat and humidity compared to wood.

31

8.4 Circuits and Sensors
Assessment of the Problems Circuits connect all electronic components together, from separate circuit
boards, sensors, and actuators to a whole circuitry, as well as delivering sufficient power to ensure that the
machine works sustainably at least during its operating time. Sensors are used to grant the machine its
sensibility which enables it to detect canisters and balls. In addition, circuits also need to provide passages
for signal transmissions, both sending signals from microcontroller end and giving feedback from sensors to
microcontroller. Basically, the above describes the responsibility along with the problem that the circuit
member needs to solve.

In the following subsections, a complete circuit schematic is shown below, and every major circuit com-
ponents will be described in detail. The solution to the problems will come along within the subsections.

32

8.4.1 Circuitry Design

Figure 8.15: complete circuit schematic

33

The above circuit schematic shows all the connections of the circuits of the machine. All Vcc symbols are
representing the same point, as well as ground and Vsupply symbols. In addition, the components arrangement
of this schematic approximately matches the placements of each components inside the machine. This
illustration can help distinguish IR sensors and motors, also assist the visual understanding of the entire
circuitry. One power supply supplies entire circuitry including the microcontrollers, PIC and Arduino. An
emergency stop button is placed right after the positive side of the power supply. All grounds of each
components are connected together. Vcc is supplied directly from the PIC board.

Components controlled by each microcontroller is listed below:

• PIC: IR sensors, Ultrasonic sensor, stepper motor signal, one encoder

• Arduino: Motors, encoders

Note: Pin assignments will be shown in microcontroller section.

8.4.2 Sensors
Ultrasonic Sensor (HC-SR04) One is placed near the front of the machine and is used to detect

canisters including a distance value plus their opening directions (left/right). The one we used requires
inputs from PIC (Trig) sending waves out, and gives feedback to PIC (Echo) by receiving the reflected waves.
We programmed the US sensor so that it will be triggered after each echo. The Distance is proportional to
the pulse width of the signal and can be calculated using equation[]. Fortunately, noises were not an issue
for the US sensor, thus, there would not be signal filtering for this part.

Infrared Sensors (EK1254x5C) One is placed near the front bottom of the machine and another one
near the middle bottom of the machine. This positioning synergies with the ball dispensing position well
since it allows the machine to scan the entire canister before it dispenses balls. There is one IR emitter and
one IR receiver on the sensor. Basically, it works similar to the US sensor for proximity purposes. Their job is
simply detecting yellow balls inside canisters. Feedback signal will be generated if it senses a contrast inside
the brown canister. In addition to these two, there are two more placed at the front of the machine both
pointing downwards. These two additional IR sensors are responsible for avoiding collisions with the canister
since the machine cannot drive in a perfect straight line. If either of these IR detects a closed-up canister,
the machine will shift horizontally left or right accordingly. Noise cancelling is done on the microcontroller
end as it is not the noise created in IR itself but the detecting conditions.

Hall Effect Encoder Each DC motor has two encoder channels, A and B. From reading both channels,
one could tell the direction of the rotation of the motor from the phase shift between two signals and compute
the number of turns from the number of pulses [6]. Due to the insufficient pins that Arduino Nano provides,
we have decided to take only one channel from each motor, ignoring the direction of rotation because the
machine will mostly be running in one direction. There are a couple of reasons for using encoders:

• Distance computation: refer to the equation(distance = encoder count/encoder resolution*pi*wheel
diameter)

• PD motor control computes PWM output values from comparing the four encoder inputs (see section
something) for detailed illustration of PD motor control)

Changes from Proposal We used only one ultrasonic sensor whereas the proposal said that we wanted
to implement two. The reason behind this is that we could actually use just one US sensor to detect the
openings of the canisters simply based on the distance acquired. Then, we realized that two US sensor are
redundant. Thus, using only one US sensor is a better alternative.

34

8.4.3 Motor Driver Boards
L298N H-Bridge Driver Board Two are used for controlling four motors, the mobility of the machine.
There are six signal input pins, which can control two DC motors separately (three pins for each motor),
on each board. Out of the three pins, two are responsible for directions of rotation plus one responsible for
PWM control. These driver boards are directly supplied by the power supply.

Figure 8.16: L298N H-Bridge Driver Board

A4988 Stepper Driver Board Only one is required for our machine. This special driver board allows
us to minimize the pin needed for a stepper motor, as well as making the microcontroller end less complicate.
It required at least two input pins, direction and step, to run a stepper. But we also added another pin
which tells the board to enable/disable the stepper, so that the stepper would not ”hold” its position when
it is unnecessary. This can save some power as the machine operates.

Figure 8.17: A4988 Stepper Motor Driver Board

NPN Transistor One is used as a switch to control a DC motor in one direction rotation. When signal
from PIC flowing to the base of this NPN transistor, it enables current flowing from power supply to the
DC motor. Thus, whenever the machine detects a canister, the DC motor will rotate for a short moment
sending out a visible signal to the user.

35

Figure 8.18: NPN Transistor DC Motor Controller

Changes from Proposal For our final design, we added the A4988 Stepper Driver Board to simplify both
circuitry and microcontroller ends. It allows us to make the stepper programming a lot easier as well as less
pins are needed to be soldered. In addition, we chose the NPN Transistor controlled motor to be our open
circuit, which we did not mention in the proposal, as per the requirement of the course. More importantly,
we ended up using all four encoders on the motors instead of just one as stated in our proposal. The machine
driving straightly using PD control would not be possible without any of the encoders.

36

8.4.4 Power Delivering

Table 8.2: Power Estimation
Components Power Required (P=VI)
PIC Board and Arduino 16V x 500mA = 6W [ref]
Motor 1 4.32W [Appendix]
Motor 2 4.32W [Appendix]
Motor 3 4.32W [Appendix]
Motor 4 4.32W [Appendix]
Encoder 1 0.75W (estimated)
Encoder 2 0.75W (estimated)
Encoder 3 0.75W (estimated)
Encoder 4 0.75W (estimated)
Motor Driver 1 16V x 22mA = 0.352W [Appendix]
Motor Driver 2 16V x 22mA = 0.352W [Appendix]
Stepper Motor 16V x 1.2A = 19.2W [Appendix]
Stepper Motor Driver Board 5V x 1.2A = 6W [Appendix]
Ultrasonic Sensor 5V x 15mA = 0.075W [Appendix]
Flag Indicator Motor 16V x 0.2A = 3.2W [Appendix]
IR sensor 1 5V x 43mA = 0.215W [Appendix]
IR sensor 2 5V x 43mA = 0.215W [Appendix]
IR sensor 3 5V x 43mA = 0.215W [Appendix]
IR sensor 4 5V x 43mA = 0.215W [Appendix]
Total Power 56.319W
Total Current 3.52A
Total Power without Stepper 31.119W
Total Current without Stepper 1.94A

37

For our final design, the power required to run every components on machine at the same time is similar
compare to the power calculation performed above in the table 8.2. However, the machine was designed so
that the stepper will not consume power when the machine is driving, using a simple stepper board enable
pin.

We tested our machine using a DC power supply which can tell the current as the machine operates. We
found that the machine needs less than 2A to work with the stepper disabled. Also, from the data sheet, we
know that the stepper also needs around 1.2A to work. Hence, our power supply choice is very important
in terms of delivering power and having a higher capacity.

18650 Type Batteries are the chosen power supply for the final design. We used four of these on the
machine. Each one has 3.7v regularly and 4.2v when fully charged. They can support maximum 2.6A of
current and each one has a capacity of 2600mAh.

All components except Vcc are directly supplied by the power supply which is around 16.8V when fully
charged (normally tested at 16V). The LM338 voltage regulator on the PIC board is enough to handle this
power supply. Although, an unregulated voltage would cause the motors, which are responsible for mobility,
to perform inconsistently, we used PD control to encounter this problem, and it was quite successful.

8.4.5 Future Improvements for this subsystem
Overall circuit did a decent job on soldering since there was few circuit bugs throughout the course of the
project. However, the circuit planning and the wire managing need improvements.

Circuit Planning should be more clear and well-thought. This can prevent the problem of circuit com-
ponents over-heating themselves. More examples can be, do I really need a voltage regulator to regulate the
input voltage for the entire system, or do I soldered the bus connector in the right way?

Wire managing The labelling is well done. However, the wire length as well as the well organization
is pulled up poorly. The improvements can be done by thorough discussion with electromech member to
confirm more details on the wire length and organize the wire path prior to housing the boards.

8.5 Microcontroller
The microcontroller system of the project is responsible for handling logical programming control of the

machine. The control unit takes signals from input sensors and devices, makes decisions according to the
programmed code, and changes the states of the output components, such as, motors and LCD displays. The
main program has been divided into the following subroutines: user interface, mobility, canister recognition,
ball dispensing, RTC (Real Time Clock), permanent log, and remote control. The following flowchart
summarizes the logical flow of the program, connecting each subroutine together to perform the task.

38

Figure 8.19: Logic Flow of the Programming Code

8.5.1 Choice of Microcontroller
This project uses the PIC DevBugger Development board with two microcontrollers, PIC18F4620 and

Arduino Nano. The chosen board suits the needs of this project well with its pre-designed modules, such
as keypad, LCD display, and RTC. For example, the LCD display has already been connected to PORT D
of the PIC18F4620 chip. In additional, another important feature of this development board is its debug
module, which contains a matrix of LEDs representing the state of the I/O ports (LED on when the pin
is high and off when the pin is low). The switches besides LEDs could also simulate the input and output
values for quick debugging. The board is powered by the female barrel jack using a DC supply between 8 to
15 volts [7].

The PIC18F4620 chip is the main control unit of this project. It is programmed with C language using
MPLAB X IDE via PICkit 3. The PIC chip is responsible for the following tasks:

• User Interface: collect user inputs from keypad and output results on LCD display

• Permanent Log: EEPROM stores the operating log of previous four tasks

• RTC: communicate with DS1307 via I2C to acquire current time

39

Figure 8.20: PIC DevBugger Development Board Top View[7]

• Control Arduino: send commands to Arduino to turn the DC motors (wheels) on or off

• Control Sensor: read signals from US and IR sensors to determine the orientation of the canister and
the presence of ball

• Ball Dispensing: drive stepper motor to dispense the ball to left or right according to the orientation
of canister

Due to the insufficient PWM pins from PIC18F4620, the project uses an additional microcontroller,
Arduino Nano to control the mobility of the machine. The Arduino Nano board is programmed in C
language using the Arduino IDE. The PIC and Arduino communicate using I2C where PIC is the master
device and Arduino is the slave. The following list summarizes the tasks operated by Arduino Nano:

• Encoder Reading: use interrupt to keep reading encoder values and use for PD output computation

• PD DC Motor Control: Arduino is in a loop of computing the best PWM duty cycle for the wheels
from the encoder reading as the feedback input

• Remote Control: Arduino receives the signal via IR receiver sensor to start and stop the machine

• PIC Communication: Arduino sends the distance data from encoder to the PIC whenever PIC requests
the information

40

Changes from Proposal According to the initial proposal, the machine will only be equipped with the
PIC microcontroller to perform all the tasks. During the integration phase of the project, our team realized
the mobility of the machine could not be fully controlled unless each of the 4 DC motors is assigned a
PWM output pin. This could not be possibly done without the help from an additional microcontroller
after consulting with Professor Emami. In addition, the choice of using the DevBugger Development board
allows the team to add an Arduino Nano board to the design with a low cost due to its pre-designed Arduino
module. Challenges faced while adding the new Arduino board will be discussed in detail in section 9.1.2.

8.5.2 User Interface
The user interface (UI) of the machine consists of the data structure created for data storage, LCD display,
remote control operation, and the PC interface. We have applied the principles of design for usability to
ensure the UI is easily understandable to the general public.

Data Structure

In order to store all of the relevant data during the operation and return them back to user once the task is
over, three data structures are created for this project (figure 8.21).

Figure 8.21: Data Structure

41

LCD Display

LCD display is used for delivering operation information to the user before and after the task. In particular,
the LCD displays the real time clock once the machine is turned on and the user could choose to start the
operation by pressing ’*’ on the keypad. Furthermore, the user could retrieve the operation information by
pressing ’A’ on the same page. The detailed illustration of the LCD display is summarized in the following
table.

Table 8.3: LCD Display

Main Menu
This is displayed when the machine is turned on.
Real time clock is displayed on the screen. While
in this state, the machine could be retrieved data
about the previous operations if the user presses ’A’
on the keypad. Meanwhile, the operation could be
started if the user presses and holds ’*’ key.

Task Completion Message
This is similar to the display before the operation
but with a task completion message. The machine
is now ready to provide the information about the
last run as well as all of the previous operations.

General Operation Information
This screen displays the month, date, hour, and
minute that the task takes place in order to dis-
tinguish it from other operations. In addition, other
relevant information, such as, the operating duration
and the number of balls supplied by the machine and
left in stock will also be provided to the user.

Detailed Canister Information
Each visited canister will have its own screen for
displaying detailed information as required in RFP
[1]. The user could access these pages by pressing
the corresponding number key while in theGeneral
Operation Information Page. (e.g. press ’1’ for
canister #1).

Unrecognized Input Error Message
If the user inputs something that the machine does
not recognize during data retrieval, it will quickly
display the error message screen and switch back
the most recent display and ask the user to input
the request again.

42

Remote Control

The machine is equipped with a remote control where the user could start the operation by pressing the
"play/pause" button and stop the task by pressing the same button again. In addition, the user could offload
balls by pressing ’»|’ or ’|«’ key to drive the stepper rightwards or leftwards respectively.

Changes from Proposal This is an additional feature to the initial proposed design. Adding this feature
allows the user to have access to the control of the machine when he/she is nearby. Most importantly, this
is designed for safety as the user could terminate the operation by pressing the "play/pause" button.

Suggested Future Improvements The remote control could be extended to a variety of functionality.
Currently, remote control only supports starting and stopping the operation by turning on and turning off
DC motors and offloading balls. However, the design could be improved by adding remote control during the
autonomous operation. If anything unexpected happens during the operation, the manual inputs could take
over the control and drive the robot. Furthermore, the range of the remote control could also be improved
to maximize the convenience of using this functionality. According to the data sheet of the IR receiver, the
range could be up to 15 m; however, various testing results show that the remote control is only reliable
within 4 metres, and the controller has to be in front of the IR receiver in order for the device to receive
the signal. This is possibly caused by interference with other sensors. These issues could be addressed by
having an IR receiver module with an ideal position.

PC Interface

The machine’s operation log could also be accessible when connected to a PC. This feature is achieved by
reading EEPROM of PIC via MPLAB X IDE in hexadecimal and the encoded data will be processed by a
Python program (full code attached in section G). Then the user could read or print out the log sheet which
contains all information which has a similar template to the one provided by the LCD display on the PIC
board.

43

Figure 8.22: Sample log sheet from PC interface

Changes from Proposal The newest version of the machine is equipped with PC interface, which has
not been introduced in the proposal. Adding this feature has applied the principles of design for usability
and accessibility. The user could view the log sheet on a PC and is free to share and store it anywhere. In
addition, this feature also makes the machine more accessible in a way that the operation data on PC could
be processed with the help of "text-to-speech" feature.

Suggested Improvements The PC Interface could be improved by having a designated application for
the machine. The usability of the robot will be significantly improved if the user could have an PC application
for viewing its operation information.

8.5.3 Permanent Log
The PIC contains 1024 bytes of EEPROM and part of it will be used for storing permanent operation logs.
It is designed for remembering five operations in total and the earliest operation log will be overwritten once

44

the new task is complete. The following table illustrates how EEPROM is designed for storing all relevant
information.

Table 8.4: EEPROM Data Interpretation
Bits 7 6 5 4 3 2 1 0

General
Information

Operated Month
Operated Date
Operated Hour
Operated Minute

Duration in Seconds
Number of Supplied Balls

Canister #1
Information

Unused Distance MSB Received Ball Full Exist
Distance Lower Bits

Canister #n
Information

...
...

Changes from Proposal Having a permanent log storage is an additional feature from the proposed
design. Since the PIC has its own EEPROM, this feature could be added with no extra cost. User could
benefit from this feature because it allows users to compare the results of the previous operations

Suggested Future Improvements The permanent log feature could be improved by writing these op-
eration information to a portable storage unit, such as a flash drive or SD card. In this way, data could
not only be permanently stored but also transferred to be loaded to other devices for viewing or processing.
Moreover, EEPROM of the microcontroller is limited. In particular, the PIC has 1024 bytes available. Once
all of the space are filled, the old data has to be erased in order for the new data to be added. On the other
hand, users could choose to replace a new portable data drive once the old one is full to avoid any data
overwritten if the log is written to a SD card.

8.5.4 Communication between PIC and Arduino
Arduino acts as a slave device to the PIC via I2C communication and controls the four DC motors. To

start off, the communication could be divided into 2 parts: PIC sending data to Arduino and PIC requesting
data from Arduino. The following table summarizes the encoding commands:

Table 8.5: Summary of encoded commands received by Arduino from PIC
Encoded Commands

Sent from PIC Functionality

0 Stop All 4 DC Motors
1 Start All 4 DC Motors Running Forward
2 Start All 4 DC Motors Running Backward
3 Shift Right
4 Shift Left
5 Terminate All Motors Immediately

In addition, PIC will request information from the Arduino at the beginning and ending of the operation.
In particular, Arduino is capable of receiving remote-control signals, which are required to be sent to the
main controller, PIC for further processing. For instance, the machine is able to off-load balls by remote

45

control via an IR receiver on Arduino. Then the stepper motor that is controlled by the PIC will rotate to
perform this task when the signal is transferred from Arduino via I2C. The following table lists all of the
decoding commands sent by Arduino:

Table 8.6: List of Decoded commands sent from Arduino to PIC
Decoded Commands
Sent from Arduino Functionality

2 Move Stepper Motor to Right Side (Ball Off-loading)
3 Move Stepper Motor to Left Side (Ball Off-loading)
253 Remote Start Operation
254 Task Complete

Changes from Proposal The I2C communication between PIC and Arduino is introduced after the
implementation of the Arduino to control PWM outputs. As described in the proposal, the only device that
uses I2C is the real time clock. However, one must be careful of using the Arduino since it shares the I2C
bus with other slave devices like the real time clock. One has a high chance of burning the real time clock
chip when finish uploading the code with the PIC board power on. Therefore, the user must turn off the
PIC board while uploading the code in order to prevent any damages to the real time clock module of the
board.

8.5.5 Mobility
Setup As mentioned before, Arduino Nano is responsible for controlling the mobility of the machine.
It controls four DC motors with 12 output pins including 4 PWM outputs and 8 digital pins. When the
Arduino is initialized, it will set up the four encoder pins as external interrupts and ready to count the pulses.
PD computations are initialized with proportional coefficient 0.06 and derivative coefficient 0.2. The above
coefficients are obtained from numerous testings introduced in PID Tuning Technical Support. Meanwhile,
the four DC motors are in idle states where the forward signals are set but PWM enables are null. Once the
Arduino receives the flag from the PIC via I2C, it will starting running the main loop.

Main Loop The duties of the main loop in the Arduino program are summarized as the following: The
target encoder counts are increased by a fixed number in the loop. Adding a larger number each loop will
make the motors turn in a larger speed. PD motor controls will then collect input information from the
four encoders and compute the optimal PWM output values to enable the four DC motors by matching all
encoder counts to the target encoder values mentioned above. In this way, the four DC motors will ensure
the four wheels are running at the same speed; therefore, the machine will travel in a straight line. At the
same time, the I2C interrupts are running in background to receive the signal of disabling and enabling DC
motors from the PIC.

Suggested Future Improvements The mobility of the robot could be improved by attaching all 8
channels of the 4 encoders to the microcontroller for more accurate and precise reading. The algorithm of
the current design turns on the encoder interrupt when the wheel moves forward and turn off when it moves
backwards. This will generate some error in the reading due to the process time of the code. This error
could be reduced by having both channel A and B attached, so the microcontroller would be able to tell if
the motor is running in a CW or CCW direction. A more accurate reading of the encoder will definitely
improve the mobility of the machine because the input of PD motor control highly depends on the reading
of encoders.

8.5.6 Canister Detection
As mentioned earlier, the canister detection routine is performed by the PIC. When the machine travels

along the row of canisters, the program keeps tracking the distance value acquired from the US sensor. The

46

US sensor is installed at the front left of the machine facing rightwards. If there is object detected within
a range of 30 cm, the machine will notify the user that there is a canister in range. Meanwhile, the arrival
distance from the start line will be recorded. Then the sensor will grab 2 more distance values and take the
median to determine the direction of opening of the canister. Then the 2 IR proximity contrast sensors will
be activated to see if there is a ball in the canister. The machine will be stopped if the canister is empty and
the distance from the previous canister is greater than 30 cm. Otherwise, the robot will continue to move
forward while recording the information to its operation data.

Suggested Future Improvements (US Sensor) The US sensor may not output a correct distance if
the machine is slightly tilted. This may eventually affect the determination of the direction of opening. This
issue could be resolved by adding more US sensors. For instance, one choice is to add another US sensor right
after the current one. In this way, we could compare the distances given by these two sensors to determine
if the canister is angled. If it is recognized to be angled, a new model should be applied to determine its
direction of opening.

Suggested Future Improvements (IR Sensor) In addition, the sensor to determine if there is a ball
could also be problematic in different light settings. Since the sensor we chose to detect balls is a digital
IR sensor, which outputs high voltage if nothing detected and low voltage if something is in range. This
contrast sensor would be able to detect a ball in range but not the canister if it is appropriately calibrated.
In this design, we used a accumulator to count how many times that the sensor detects something in range
while scanning through one particular canister. If the accumulator is relatively large, it is determined to
contain a ball in canister; otherwise, it is empty. The accumulator of the sensor between the case of ball in
canister and no ball in canister could be ambiguous due to the light setting of the surroundings because the
floor could reflect light which has a significant interference with the IR sensor. This issue could be resolved
by replacing it with an analog IR sensor. Instead of giving a binary answer of yes or no, the analog IR sensor
will output the distance to the detected object. Then, two models could be set up using supervised learning
algorithms, and the machine could be trained to classify if the canister contains a ball or not. Particularly,
the case with a ball would have a distribution like a mountain valley because the middle of the ball will be
the closest to the sensor with the smallest distance. On the other hand, the case without a ball would have
a uniform "mountain hill" distribution where the detected object is the base of the canister.

8.5.7 Ball Dispensing
Ball dispensing action will be triggered by the PIC sending signals to the Arduino, making a stop at the

canister by turning off the 4 DC motors. Then the PIC will determine if the machine should be shifted
horizontally to move closer to the canister depending on the position reported by the US sensor. The
position of the canister will be categorized into the following 6 groups and appropriate actions will be taken
correspondingly.

Table 8.7: Left/Right Shift in Ball Dispensing
Distance Reported from US Sensor Actions

Facing Left
17.5cm <Distance <25cm N/A
25cm <Distance <27.5cm Shift Right ONCE
27.5cm <Distance <30cm Shift Right TWICE

Facing Right
13cm <Distance <17.5cm N/A
10.5cm <Distance <13cm Shift Left ONCE
0cm <Distance <10.5cm Shift Left TWICE

Changes from Proposal Despite the decision of changing the orientation of the wheels from the one
described in the proposal, the programming codes do not need to be changed significantly thanks to the PD

47

motor control algorithm.

Suggested Future Improvements The shift motion of the machine highly depends on the status of the
battery supply and the floor condition; therefore, the performance of the horizontal shift is not 100% reliable.
In particular, the biggest issue is that the horizontal movement shifts the machine at a different distance that
is not constantly the same during each run. For instance, during the first run of the public demonstration,
the machine accidentally hits the canister while shifting itself towards one way in order to dispense the ball.
As a future improvement, we could try to use high torque DC motors with no-slipping Mecanum wheels. In
this way, we could try to ensure all 4 wheels are rotating the same number of turns with PD motor control.
As a result, the left and right shift motion will be more reliable.

8.5.8 Pin Assignments
PIC Pin Assignments

Table 8.8: PIC Pin Assignment Diagram
Pin Function Pin Function
GND / GND /
KPD Connected to RC7 RC7 KPD disable
RC6 IR signal left RC5 IR signal right
RC4 RTC (internal) RC3 RTC (internal)
RC2 N.C. RC1 N.C.
RC0 N.C. GND /
RE2 N.C. VCC /
RE1 IR FRONT RE0 IR FRONT
RA7 PIC (internal) RA6 PIC (internal)
RA5 Stepper Enable RA4 Flag signal (canister detected)
RA3 Stepper Step RA2 N.C.
RA1 Stepper Dir RA0 N.C.
RD7 LCD (internal) RD6 LCD (internal)
RD5 LCD (internal) RD4 LCD (internal)
RD3 LCD (internal) RD2 LCD (internal)
RD1 N.C. RD0 N.C.
RB7 Keypad | side US Trig RB6 Keypad
RB5 Keypad | side US Echo RB4 Keypad
RB3 N.C. RB2 N.C.
RB1 Keypad Interrupt RB0 ENCODER

48

Arduino Pin Assignments

Table 8.9: Arduino Nano Pin Assignment Diagram

Pin Function Pin Function
TX1 N.C. VIN N.C.
RX0 N.C. GND /
RST N.C. RST N.C.
GND / 5V /
D2 Encoder Front Right A7 N.C.
D3 Encoder Back Left A6 N.C.
D4 Back Right Motor + A5 I2C
D5 Front Right PWM Enable A4 12C
D6 Back Right PWM Enable A3 Encoder Back Right
D7 IR Receiver Input A2 Encoder Front Left
D8 Back Left Motor + A1 Front Right Motor -
D9 Front Left PWM Enable A0 Front Right Motor+
D10 Back Left PWM Enable REF N.C.
D11 Back Left Motor - 3V3 N.C.
D12 Front Left Motor + D13 Back Right Motor -

49

Chapter 9

Integration

The integration of the 3 subsystems have started since week 8 of the project. The stages of the integration
could be categorized as the following two stages: physical integration and functionality integration.

The Physical Integration includes the following tasks and took the team 5 days to complete:

• All circuit boards are attached stably onto the structure.

• The US sensor and IR sensors are screwed into the appropriate positions.

• The PIC board is installed on the top board for the user to press keypad and view the LCD display.

• The battery holder is placed on the top board for easier

• Wires are braided to take less space and avoid any interference.

The Functionality Integration is much more complicated and involves calibration that may change the
physical structure of the robot. Therefore, the team went through countless cycles of small modification to
the physical structure, such as the position of the sensors and adding additional sensors to ensure the full
functionality of the machine. During the two stages of integration, the team faced several major challenges
and the solutions to each challenges will be described below.

In the sections, we will also discuss the problems that came up during and after the integration as well as
how we solve these issues.

9.1 Mobility
The mobility of the machine has been improving with various modifications during integration. The process
of the mobility improvement includes the initial planning of having 2 PWM pins for controlling 4 DC motors
on PIC, additional Arduino Nano board to control 4 motors with 4 PWM pins, and the final design using
PD motor feedback loop.

9.1.1 4WD Calibration with 2 PWM Pins from PIC
After completing the physical integration, we started to calibrate the 4 motors. Initially, we thought that,
since the diagonal wheels rotates in the same direction, diagonal motors shared the same PWM. We have
mistakenly relied too much on the fact that they are "exactly same" motor with same manufacture companies.
However, the fact is that motors with same PWM value will not have the same output in real life.

50

9.1.2 Additional Arduino Nano to Control 4 DC Motors
The mobility of the design introduced in the proposal is extremely limited due to the share of PWM pins
between 2 DC motors. Due to the insufficient PWM pins from the PIC, the Arduino Nano was added to the
design, controlling four DC motors with 4 PWM outputs and 8 digital outputs to allow the machine to move
in any direction. However, this approach requires a very consistent voltage from the power supply, whereas,
the reality is always not ideal. This means that if we set a fixed PWM value or a range, the motors will
definitely perform differently when powered from an inconsistent power supply (e.g. different output voltage,
voltage changes as the operation is in progress). Meanwhile, the voltage regulator was removed in the design
due to its overheating issue (details discussed in section 9.2). As a result, the PWM outputs would not be
consistent because they highly depend on the status of the battery supply. This would be very problematic
if the team chose to use a single PWM duty cycle for each of the four DC motors throughout the operation.
Thus, a feedback loop is needed to constantly changing the PWM duty cycles in order for the machine to
perform basic mobility functionality.

9.1.3 Change Direction of the Motors
After week 12 functionality evaluation, our machine still could not move in a straight line. We spent almost

two weeks to calibrate the 4WD. Prof. Emami suggested us to switch the direction of the motors so that
the machine will drive in its primary direction (i.e. in the direction as a normal car would drive). We had
to make this major change at that stage since we only had two weeks left for debugging and repeatablility
testing. We had to make our robot drive straight in order to proceed the further testings. This forced us to
give up our compactness feature (i.e. we must make the machine bigger to allow it to go over canisters). On
the other hand, we could add the extendability feature.

Like we always did, we rebuilt this machine very quickly in just one day. The direction of the wheels are
changed, as well as the upper deck design is changed along with the ball storage unit installed. As what we
expected, we successfully calibrated the motors in just one day using PD control.

9.1.4 PID Motor Control
PD Motor Control Based on the failure from previous approaches, we have self-taught PID motor
control. The method could allow the machine to make its own adjusting, telling itself how much its PWM
values should change instead of we giving it a fixed range. In order to make this happen, we introduced four
encoders to be the input, target encoder counts to be the set point, and adjusted PWM values to be the
output.

9.2 Power Source
It is very important to have a reliable power supply for this machine. The power supply ensure that the

machine could draw enough current from the source to perform appropriate actions without compromising
the rated voltage.

9.2.1 Voltage Regulator
We added a LM338 to regulate the voltage for the entire circuitry, which means that all the input voltage for
motors and PIC is at around 12V. We thought it could act as a protection as well as allowing the machine
to work under a consistent condition. However, as we were doing further motor calibrations, the voltage
regulator started to overheat itself leading to system shut downs. We were not sure about this problem. It
might be that the LM338 is broken, needed a bigger heat sink, or the entire system require a lot of current.
After we consulted with Prof. Emami, the current flowing through the system is at a safe value, 1A, yet,
this voltage regulator still heat up very quickly. Thus, we decided to remove it. Due to the fact that the
PIC board is able to handle the power supply (around 16V), we were safe to remove the voltage regulator
we soldered before.

51

9.2.2 Battery Supply
A fully charged battery supply is a critical component to ensure a bug-free machine. Several unexpected
behaviours observed during the integration phase:

• PIC resets unexpectedly without pressing any keys.

• Motors are not running with high-duty-cycle PWM outputs.

• Tasks could only perform properly if the microcontroller is connected to the PC with USB.

The above problems that we faced were all caused by a battery supply with low power and a non-functioning
battery charger. As a result, these challenges were overcome with the help of a more advanced battery
charger that shows the battery power.

9.2.3 Debugging
The following table summarizes the major problems with the project during integration and the appropriate
solutions for solving them.

Table 9.1: Summary of Major Bugs with Solutions
Bugs Solutions

Cannot detect openings correctly Adjusting the boundary distance for
distinguish left and right

Will not stop at the right place Adjust distance needed to travel after
detected a canister

Return right after 10 canisters are detected Fix the logic
Front IR sensor detects balls inside canister,
which it is not supposed to do so Adjust its position, re-calibrate

PIC reset by itself Power is not enough
Remote Control Switch the IR receive pin to another one
RTC Works randomly The RTC chip is broken
H-Bridge over heating Bus was inserted reversely
Voltage regulator over heated Remove the voltage regulator

52

Chapter 10

Project Execution

In this section, we will present our project management technique throughout this project timeline. The first
approach we took at the beginning is to create a Gantt Chart which outlines all the tasks and milestones.
This Gantt Chart acts as the planned guide to the team while the project is in progress.

10.1 Initial Gantt Chart

53

4 7 14 21 28 4 11 18 25 4 11 18 25 1 8
1/19 2/19 3/19 4/19

AER201
 Overall Design Beforehand
 Specify design requirements
 Conduct background research
 Break down each part and brainstorm
 Select sensors, materials
 Finalize design and Proposal Writing
 Proposal due

 Subsystem: Microcontroller member
 Basic learning about PIC
 Sample code understanding
 Create user interface using keypad and LCD
 Write pseudo code of the operating robot
 User interface and final pseudo code complete
 Code Analog to Digital Converter
 Code real time clock
 Code other subroutines
 Finalize code and Debug
 Final code complete

 Subsystem: Circuits & Sensors member
 Circuit Planning
 Making circuit schematics
 Circuit planning is finished
 Purchasing Components: First Round
 Testing Components: motors and sensors
 Circuit Building on breadboards
 Circuits first version completed on breadboards
 Replace breadboards and soldering on protoboards
 Completely soldered all sub-circuits
 Circuit Debugging
 Circuits functionality achieved requirements

 Subsystem: Electromech Member
 Mobility Mechanism Survey and Brainstorming
 Ball Dispensing Mechanism Survey and Brainstorming

AER201

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Thomas Li
Thomas Li

Thomas Li
Thomas Li
Thomas Li

Thomas Li
Thomas Li

Thomas Li
Thomas Li

Thomas Li

Sky Hou
Sky Hou

Sky Hou
Sky Hou
Sky Hou
Sky Hou

Sky Hou

Sky Hou
Sky Hou

Chengnan Shentu
Chengnan Shentu

54

4 7 14 21 28 4 11 18 25 4 11 18 25 1 8
1/19 2/19 3/19 4/19

 Prototyping and Testing of Ball Dispensing Mechanism
 Finalizing Mobile Base design, order wheels/motors, prototyping
 Finalizing Overall Structure, integrating housings for sensors into design
 Order any other parts needed
 Calculations (ex. Moment of Inertia)
 CAD modelling of final design
 Mobile Base Complete
 Fabrication of Final Structure
 Electromech Subsystem Functionality Achieved

 Integration
 Prototype stage 1 (mobility & calibration)
 Able to move forward, backward, left, right
 Prototype stage 2 (sensing)
 Able to detect canister with direction of opening
 Prototype stage 3 (ball dispensing)
 Able to dispense ball into the canister
 Repeat testing
 Evaluation before public demo
 Debug
 Public Demo

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li

Powered by TCPDF (www.tcpdf.org)

55

The above Gantt chart illustrates our team’s initial planning for this project, from the design conceptual-
ization to final prototype. The entire project is divided into three subsystems in the first half of the project
planning. Each member would finish their subsystem on date and begin the integration at the start of the
second half, while leaving about two weeks to debug (aiming for full functionality) and another two weeks
to perform repeatablility testings. If the team met the milestones on time, the machine should have a great
performance on the Demo day.

10.2 Final Gantt Chart

56

4 7 14 21 28 4 11 18 25 4 11 18 25 1 8
1/19 2/19 3/19 4/19

AER201 start end 0h 0%

 Overall Design Beforehand 07/01/19 30/01/19 0h 0%
 Specify design requirements 07/01 11/01 0 0%
 Conduct background research 14/01 18/01 0 0%
 Break down each part and brainstorm 21/01 25/01 0 0%
 Select sensors, materials 21/01 25/01 0 0%
 Finalize design and Proposal Writing 21/01 30/01 0 0%
 Proposal due 30/01 30/01 0 0%

 Subsystem: Microcontroller member 07/01/19 08/04/19 0h 0%
 Basic learning about PIC 07/01 11/01 0 0%
 Sample code understanding 14/01 18/01 0 0%
 Create user interface using keypad and LCD 21/01 29/01 0 0%
 Write pseudo code of the operating robot 28/01 05/02 0 0%
 User interface and final pseudo code complete 06/02 06/02 0 0%
 Code real time clock 11/02 15/02 0 0%
 Code other subroutines 18/02 22/02 0 0%
 Finalize code and Debug 18/02 27/02 0 0%
 Final code complete 27/02 27/02 0 0%
 Remote Control 05/04 05/04 0 0%
 PC interface 08/04 08/04 0 0%
 Microcontroller Extra Features Completed 08/04 08/04 0 0%

 Subsystem: Circuits & Sensors member 16/01/19 05/04/19 0h 0%
 Circuit Planning 16/01 30/01 0 0%
 Making circuit schematics First version 23/01 30/01 0 0%
 Circuit planning is finished 30/01 30/01 0 0%
 Purchasing Components: First Round 28/01 01/02 0 0%
 Testing Components: motors and sensors 30/01 06/02 0 0%
 Circuit Building on breadboards 30/01 06/02 0 0%
 Circuits first version completed on breadboards 06/02 06/02 0 0%
 Replace breadboards and soldering on protoboards 06/02 20/02 0 0%
 Completely soldered all sub-circuits 20/02 20/02 0 0%
 Circuit Debugging 20/02 06/03 0 0%
 Circuits functionality achieved requirements 06/03 06/03 0 0%
 Add Arduino nano, conneting required wires 20/03 22/03 0 0%
 Solder all the encoders 22/03 25/03 0 0%
 Add new IR sensor 1 28/03 28/03 0 0%
 Add new IR sensor 2 05/04 05/04 0 0%
 All circuit components finished 05/04 05/04 0 0%

 Subsystem: Electromech Member 14/01/19 08/04/19 0h 0%
 Mobility Mechanism Survey and Brainstorming 14/01 18/01 0 0%
 Ball Dispensing Mechanism Survey and Brainstorming 14/01 18/01 0 0%
 Order any other parts needed 31/01 06/02 0 0%
 Prototyping and Testing of Ball Dispensing Mechanism 21/01 08/02 0 0%
 Change Storage design to tube 11/02 15/02 0 0%
 Finalizing Mobile Base design, order wheels/motors, prototyping 21/01 15/02 0 0%

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Thomas Li
Thomas Li

Thomas Li
Thomas Li

Thomas Li
Thomas Li

Thomas Li
Thomas Li

Thomas Li

Sky Hou
Sky Hou

Sky Hou
Sky Hou
Sky Hou
Sky Hou

Sky Hou

Sky Hou
Sky Hou

Sky Hou
Sky Hou

Sky Hou
Sky Hou
Sky Hou

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu

57

4 7 14 21 28 4 11 18 25 4 11 18 25 1 8
1/19 2/19 3/19 4/19

 Calculations (ex. Moment of Inertia) 31/01 06/02 0 0%
 Mobile Base Complete 06/02 06/02 0 0%
 Finalizing Overall Structure, integrating housings for sensors into design 13/02 22/02 0 0%
 Fabrication of Final Structure 11/02 27/02 0 0%
 Electromech Subsystem Functionality Achieved 27/02 27/02 0 0%
 Wheel Orientation Modification 27/03 28/03 0 0%
 Top Deck Modification 28/03 04/04 0 0%
 Front IR Housing Added 05/04 08/04 0 0%
 CAD modelling of final design 08/04 08/04 0 0%

 Integration 06/03/19 10/04/19 0h 0%
 Physical integrating process 06/03 08/03 0 0%
 Physical integration completed 08/03 08/03 0 0%
 Prototype stage 1 (mobility & calibration) 11/03 27/03 0 0%
 Unable to move in a straight line, change the motor direction 27/03 27/03 0 0%
 Re-calibrate 4WD 28/03 29/03 0 0%
 Able to move in a straight line 29/03 29/03 0 0%
 Prototype stage 2 (sensing) 29/03 03/04 0 0%
 Able to detect canister with direction of opening while operating 03/04 03/04 0 0%
 Prototype stage 3 (ball dispensing) 29/03 05/04 0 0%
 Able to dispense ball into the canister 05/04 05/04 0 0%
 Repeat testing 04/04 09/04 0 0%
 Week 12 Evaluation before public demo 27/03 27/03 0 0%
 Debug 28/03 09/04 0 0%
 Lock the machine in locker 09/04 09/04 0 0%
 Public Demo 10/04 10/04 0 0%

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu
Chengnan Shentu

Chengnan Shentu

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Chengnan Shentu, Sky Hou, Thomas Li
Chengnan Shentu, Sky Hou, Thomas Li

Powered by TCPDF (www.tcpdf.org)

58

Change From the Plan As the above Gantt chart shows, our executions were not exactly match what
we had planned at the first stage of this project. The Gantt chart shows clearly that we spent a lot of
time on calibrating motors making the machine drive in a straight line. What was worse is that we still
could not make it happen. Thus, this led to a project delay since driving straight should be on the critical
path of this project. We worked so hard to make up the wasted time later in the progress. Every member
worked together to make important decisions such as switching the direction of the wheels and adding two
IR sensors at the front of the machine. There two changes could be considered as a huge change during the
last two weeks of the project, and that situation probably should never happen in the real world industry.
Fortunately, we made it happen. It was all about our hard works and brave decisions.

59

Chapter 11

Conclusions

This report outlines the detailed design and integration of the machine, Ball Ball U. The project is firstly
divided into three subsystems, electromech, circuits and sensors, and microcontroller sections. Three mem-
bers of the design team focused on developing the design solution from three different perspectives at the
beginning 7 weeks of the project.

11.1 Bottlenecks
At the end of this report, we want to point out the bottlenecks our team had been through. As the report
mentioned earlier, we spent almost two weeks on calibrating the 4WD system using only manual adjusting.
Even though, we started to embrace the power of PID control, we were still unprepared to make our initial
design drive straight. Due to the time issue, we had to give up the initial design and move onto a new wheel
configuration. Fortunately, we were able to pull this huge change up based on our previous experience with
our machine, as well as the design feature which is really simple to be manufactured. Thus, we would say
that making the machine driving straight is our biggest bottleneck during this project.

11.2 Future Improvements
Based on the machine’s performance and our understanding of our machine, we would like to point out a few
improvements which could potential make the machine better in terms of operation as well as user interface
?.

Operation Improvements If we had more time, we would want to make the driving more straight. Cali-
brations do needs time. Also, we should probably make our sensors detecting balls more reliable since there
are sometimes that the sensors (IR and US) could make mis-detections. We probably should think about
whether we should calibrate the existing ones or using better proximity sensors. User Interface User Interface
could be improved by making a designated application on the PC for operating this machine. Meanwhile,
this would make the robot much more marketable as computer application is very popular to the general
public. In this way, people could also transfer the operating data much more easily with the help of PC.
The permanent log could also be stored in the PC instead of the EEPROM of the microcontroller. This will
also be much more reliable as it will not erase the previous operations once the storage is full.

In Conclusion Overall, our machine is really promising in terms of its performance on the Demo day. We
were proud of ourselves that we actually pulled this up. Great team works have been done, and unforgettable
friendships have been built up. "An Almost professional team" is said from Prof.Emami; we always came
with problems to him, asked the right questions at the right time as well as making the significant decision
which led to the reborn of our machine.

60

Bibliography

[1] M. Emami, Multidisciplinary Engineering Design from theory to practice. University of Toronto, 2019.

[2] E. X. Li, C. Hou, and C. Shentu, Ball Ball U.

[3] “What is a pid controller?” [Online]. Available: https://www.omega.com/prodinfo/pid-controllers.html

[4] “Arduino pid autotune.” [Online]. Available: https://playground.arduino.cc/Code/PIDAutotuneLibrary/

[5] [Online]. Available: http://support.motioneng.com/downloads-notes/tuning/pid_overshoot.htm

[6] “Encoder measurements: How-to guide,” national instruments. [Online]. Available: http://www.ni.com/
tutorial/7109/en/

[7] DevBugger User Manual, Personal Mechatronics Lab, 2019.

61

https://www.omega.com/prodinfo/pid-controllers.html
https://playground.arduino.cc/Code/PIDAutotuneLibrary/
http://support.motioneng.com/downloads-notes/tuning/pid_overshoot.htm
http://www.ni.com/tutorial/7109/en/
http://www.ni.com/tutorial/7109/en/

Appendix A

Datasheets

A.1 DC Motor with Encoder Data Sheet

62

63

A.2 US Sensor HC-SR04 Data Sheet

64

65

66

A.3 IR Receiver VS1838 Data Sheet

67

Infrared Receiver Module Ä�@34I

".: VS1838B

1. !"

●#$%&；

●()*+ IC；

●,-./01234；

●56789:；

●8;<=>?@67；

●ABCDE；

2. F+:

■GHIJ(KL,BG,MNO,PO)

■Q+BI (RIO,BST,BU)

■VWX@BIYZ[\；

!"#$%&'()*

3. F+B��：

4. ���：

68

Infrared Receiver Module Ä�@34I

".: VS1838B

?B]^(T=25℃ Vcc=5v f0=38KHZ)

]^ _` abcd Min Typ Mnx ef

DEBC Vcc 2.7 5.5 V

3412 L
L5IR=300MA

(abg`)
18 20 M

hijk f0 38K HZ

34-. 01/2 12lm 1/2 +/-45 Deg

BMP ,. FBW -3Db andwidth 2 3.3 5 kHz

noBp Icc Xg`qrs ---- 0.4 1.5 mA

ABtqu VOL Vin=0V Vcc=5V 0.2 0.4 V

vBtqu VOH Vcc=5V 4.5 V

TPWL Vin=500μVp-p※ 500 600 700 μsquwx

, . TPWH Vin=50mVp-p※ 500 600 700 μs

※?yzab,{,.| 600/900μs|}~wx,� 5CM �34��(,� 50�34wx�t��

5.abi$:

6.��]^:

+, -. /0 12

3456 Vcc 6.0 v

789: Topr -20-85 ℃

;<9: Tstg -40-125 ℃

=>9: Tsol 240 ℃

69

Infrared Receiver Module Ä�@34I

".: VS1838B

7.34-.：

8.���+cd：

�� _` Min Typ Mnx ef

DEBC Vcc 2.7 ----- 5.5 V

qrjk FM 38 kHz

DE�. Topr -20 25 80 ℃

9.�+��

1) �X����C9/NL\��=>���/�+；

2) �X� "¡¢£¤S（¦§¨）�=>���/�+；

3) �Aª.=>���/�+；

4) �«¬�cd�3®@¯°，3²，³´µ��9；

5) ³´¶·¸[\，�+¹，³º+nB»¼E½¾/B¿ÀÁ3ÂÃ@；

70

A.4 L298N H-Bridge Driver Board Data Sheet

71

72

73

74

A.5 Nema 42 Stepper Motor Data Sheet

75

76

A.6 A4988 Stepper Driver Board Data Sheet

77

RB-Pol-176

Pololu 8-35V 2A Single Bipolar Stepper Motor Driver A4988

A4988

Stepper Motor Driver Carrier
The A4988 stepper motor driver carrier is a breakout board for Allegro’s easy-to-use A4988
microstepping bipolar stepper motor driver and is a drop-in replacement for the A4983
stepper motor driver carrier. The driver features adjustable current limiting, overcurrent
protection, and five different microstep resolutions. It operates from 8 – 35 V and can deliver
up to 2 A per coil.

Note: This board is a drop-in replacement for the original A4983 stepper motor driver carrier.
The newer A4988 offers overcurrent protection and has an internal 100k pull-down on the
MS1 microstep selection pin, but it is otherwise virtually identical to the A4983.

78

Description

Overview

This product is a carrier board or breakout board for Allegro’s A4988 DMOS
Microstepping Driver with Translator and Overcurrent Protection; we therefore
recommend careful reading of the A4988 datasheet (380k pdf) before using this
product. This stepper motor driver lets you control one bipolar stepper motor at up to
2 A output current per coil (see the Power Dissipation Considerations section below for
more information). Here are some of the driver’s key features:

•Simple step and direction control interface

•Five different step resolutions: full-step, half-step, quarter-step, eighth-step, and
sixteenth-step

•Adjustable current control lets you set the maximum current output with a
potentiometer, which lets you use voltages above your stepper motor’s rated voltage to
achieve higher step rates

•Intelligent chopping control that automatically selects the correct current decay mode
(fast decay or slow decay)

•Over-temperature thermal shutdown, under-voltage lockout, and crossover-current
protection

•Short-to-ground and shorted-load protection (this feature is not available on
the A4983)

Like nearly all our other carrier boards, this product ships with all surface-mount components
—including the A4988 driver IC—installed as shown in the product picture.

We also sell a larger version of the A4988 carrier that has reverse power protection on the
main power input and built-in 5 V and 3.3 V voltage regulators that eliminate the need for
separate logic and motor supplies.

Included hardware
The A4988 stepper motor driver carrier comes with one 1×16-pin breakaway 0.1" male
header. The headers can be soldered in for use with solderless breadboards or 0.1" female
connectors. You can also solder your motor leads and other connections directly to the board.

79

Using the driver

Minimal wiring diagram for connecting a microcontroller to an A4988 stepper motor driver
carrier (full-step mode).

Power connections

The driver requires a logic supply voltage (3 – 5.5 V) to be connected across the VDD and
GND pins and a motor supply voltage of (8 – 35 V) to be connected across VMOT and GND.
These supplies should have appropriate decoupling capacitors close to the board, and they
should be capable of delivering the expected currents (peaks up to 4 A for the motor supply).

80

Motor connections

Four, six, and eight-wire stepper motors can be driven by the A4988 if they are properly
connected; a FAQ answer explains the proper wirings in detail.
Warning: Connecting or disconnecting a stepper motor while the driver is powered can
destroy the driver. (More generally, rewiring anything while it is powered is asking for trouble.)

Warning: Connecting or disconnecting a stepper motor while the driver is powered can
destroy the driver. (More generally, rewiring anything while it is powered is asking for trouble.)

Step (and microstep) size

Stepper motors typically have a step size specification (e.g. 1.8° or 200 steps per revolution),
which applies to full steps. A microstepping driver such as the A4988 allows higher resolutions
by allowing intermediate step locations, which are achieved by energizing the coils with
intermediate current levels. For instance, driving a motor in quarter-step mode will give the
200-step-per-revolution motor 800 microsteps per revolution by using four different current
levels.

The resolution (step size) selector inputs (MS1, MS2, MS3) enable selection from the five
step resolutions according to the table below. MS1 and MS3 have internal 100kΩ pull-down
resistors and MS2 has an internal 50kΩ pull-down resistor, so leaving these three microstep
selection pins disconnected results in full-step mode. For the microstep modes to function
correctly, the current limit must be set low enough (see below) so that current limiting gets
engaged. Otherwise, the intermediate current levels will not be correctly maintained, and the
motor will effectively operate in a full-step mode.

MS1 MS2 MS3 Microstep Resolution
Low Low Low Full step
High Low Low Half step
Low High Low Quarter step
High High Low Eighth step
High High High Sixteenth step

Control inputs

Each pulse to the STEP input corresponds to one microstep of the stepper motor in the
direction selected by the DIR pin. Note that the STEP and DIR pins are not pulled to any
particular voltage internally, so you should not leave either of these pins floating in your
application. If you just want rotation in a single direction, you can tie DIR directly to VCC or

81

GND. The chip has three different inputs for controlling its many power states: RST, SLP,
and EN. For details about these power states, see the datasheet. Please note that
the RST pin is floating; if you are not using the pin, you can connect it to the adjacent SLP pin
on the PCB.

Current limiting

To achieve high step rates, the motor supply is typically much higher than would be
permissible without active current limiting. For instance, a typical stepper motor might have a
maximum current rating of 1 A with a 5Ω coil resistance, which would indicate a maximum
motor supply of 5 V. Using such a motor with 12 V would allow higher step rates, but the
current must actively be limited to under 1 A to prevent damage to the motor.

The A4988 supports such active current limiting, and the trimmer potentiometer on the board
can be used to set the current limit. One way to set the current limit is to put the driver into
full-step mode and to measure the current running through a single motor coil without clocking
the STEP input. The measured current will be 0.7 times the current limit (since both coils are
always on and limited to 70% in full-step mode). Please note that the current limit is
dependent on the Vdd voltage.

Another way to set the current limit is to measure the voltage on the “ref” pin and to calculate
the resulting current limit (the current sense resistors are 0.05Ω). The ref pin voltage is
accessible on a via that is circled on the bottom silkscreen of the circuit board. See the A4988
datasheet for more information.

Power dissipation considerations
The A4988 driver IC has a maximum current rating of 2 A per coil, but the actual current you
can deliver depends on how well you can keep the IC cool. The carrier’s printed circuit board
is designed to draw heat out of the IC, but to supply more than approximately 1 A per coil, a
heat sink or other cooling method is required.

This product can get hot enough to burn you long before the chip overheats. Take care when
handling this product and other components connected to it.

Please note that measuring the current draw at the power supply does not necessarily
provide an accurate measure of the coil current. Since the input voltage to the driver can be
significantly higher than the coil voltage, the measured current on the power supply can be
quite a bit lower than the coil current (the driver and coil basically act like a switching step-
down power supply). Also, if the supply voltage is very high compared to what the motor
needs to achieve the set current, the duty cycle will be very low, which also leads to
significant differences between average and RMS currents.

82

Schematic diagram

Schematic diagram of the md09b A4988 stepper motor driver carrier.

83

A.7 IR Proximity Sensor Data Sheet

84

Arduino IR Infrared Obstacle Avoidance Sensor Module

The sensor module adaptable to ambient light, having a pair of infrared emitting and
receiving tubes, transmitting tubes emit infrared certain frequency, when the direction of an
obstacle is detected (reflection surface), the infrared reflected is received by the reception
tube, After a comparator circuit processing, the green light is on, but the signal output
interface output digital signal (a low-level signal), you can adjust the detection distance knob
potentiometer, the effective distance range of 2 ~ 30cm, the working voltage of 3.3V- 5V.
Detection range of the sensor can be obtained by adjusting potentiometer, with little
interference, easy to assemble, easy to use features, can be widely used in robot obstacle
avoidance, avoidance car, line count, and black and white line tracking and many other
occasions.

Specification

1. When the module detects an obstacle in front of the signal, the green indicator lights
on the board level, while the OUT port sustained low signal output, the module
detects the distance 2 ~ 30cm, detection angle 35 °, the distance can detect potential is
adjusted clockwise adjustment potentiometer, detects the distance increases; counter
clockwise adjustment potentiometer, reducing detection distance.

2. The sensor active infrared reflection detection, target reflectivity and therefore the
shape is critical detection distance. Where the minimum detection distance black,
white, maximum; small objects away from a small area, a large area from the Grand.

3. The sensor module output port OUT port can be directly connected to the
microcontroller IO can also be directly drive a 5V relay; Connection: VCC-VCC;
GND-GND; OUT-IO

4. Comparators LM393, stable;

85

5. The module can be 3-5V DC power supply. When the power is turned on, the red
power indicator lights;

6. With the screw holes 3mm, easy fixed installation;

7. Board size: 3.2CM * 1.4CM

8. Each module has been shipped threshold comparator voltage adjusted by
potentiometer good, non-special case, do not adjustable potentiometer.

Module Interface Description

1. VCC : 3.3V-5V external voltage (can be directly connected to 5v and 3.3v

MCU)

2. GND : GND External

3. OUT : small board digital output interface (0 and 1)

86

Appendix B

PIC Microcontroller Main Program

// eeprom modify, 5 runs
#include <xc.h>
#include <stdio.h>
#include <stdbool.h>
#include "configBits.h"
#include "lcd.h"
#include "I2C.h"

typedef struct data {
bool exist;
bool full;
bool received_ball;
unsigned int distance_from_start;

} data;

typedef struct rtc {
unsigned char year;
unsigned char month;
unsigned char day;
unsigned char hour;
unsigned char minute;
unsigned char second;

} rtc;

typedef struct general {
rtc timing;
unsigned char op_time;
unsigned char num_canister;
unsigned char supplied_balls;

} general;

const char keys[] = "123A456B789C*0#D";
const int total_balls = 10;
const char time_setting[7] = {

0x00, // Seconds
0x52, // Minutes
0x20, // Hour
0x00, // Wed

87

0x07, // Date
0x04, // Month
0x19 // Year

};

void __interrupt() pic_isr(void);
unsigned int encoder_to_distance(void);

//EEPROM READING/WRITING
unsigned char EEPROM_ReadByte(unsigned short address);
void EEPROM_WriteByte(unsigned short address, unsigned char data);
void ReadLog();
void WriteLog(rtc start_time, unsigned int op_time);
void Push_Back(rtc start_time, unsigned int op_time);

//MOTOR CONTROL
void stepperON(unsigned int n);
void stepperClockWise(void);
void stepperCounterClockWise(void);
void ball_to_right(void);
void ball_to_left(void);
void stepper_left(void);
void stepper_right(void);

//USER INTERFACE
int retrieve_data(int idx);
void interface(bool begin);
int main_menu(bool begin);
void invalid(void);
void no_such_canister(void);

//REAL TIME CLOCK
void getTime(void);
void rtc_set_time(void);

//operation
float side_us_sensor_distance_output(void);
void canister_operation(unsigned int position, float side_us_distance, bool left_ball,

↪→ bool right_ball, unsigned int arduino_distance);
void ball_dispensing(bool facing_left);
void go_back(void);
unsigned int operation_time(rtc start_time);

float median(float *list);

rtc rtc_time; //store RTC
data history_info[5 * 10]; //store detailed canister data of last 5 runs
data canister_info[10]; //store data of current operation
general history_general[5]; //store general information of last 5 runs
volatile unsigned long encoder_count;
bool left_right = false;

88

void main(void) {
//acquire data from EEPROM
ReadLog();
TRISA = 0x00;
TRISEbits.RE0 = 1;
TRISEbits.RE1 = 1;
TRISC = 0b01111000;
TRISD = 0x00; //LCD
LATD = 0x00;
LATCbits.LATC7 = 0;
LATAbits.LATA4 = 0;
LATAbits.LATA5 = 1; //stepper driver board disabled
// Set all A/D ports to digital (pg. 222)
ADCON1 = 0b00001111;

//set up Arduino
I2C_Master_Init(100000);
I2C_Master_Start();
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Stop();

//set up RTC
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b11010000); // 7 bit RTC address + Write
I2C_Master_Write(0x00); // Set memory pointer to seconds
I2C_Master_Stop(); // Stop condition

///
//initialize variables

unsigned int op_time = 30;
unsigned int num_canister = 5;
unsigned int supplied_balls = 2;
unsigned int balls_left = total_balls - supplied_balls;
unsigned int position = 0;

//rtc_set_time();
bool before_operation = true;
interface(before_operation);
//set port B output and input after user interface
TRISB = 0b00110011;
rtc start_time = rtc_time;

// Set timer 2 prescaler to 16
T2CKPS0 = 1;
T2CKPS1 = 1;

// Enable timer 2
TMR2ON = 1;

89

lcd_clear();
printf("Operating...");
//keypad disable
LATCbits.LATC7 = 1;

//main loop
float ai_distance = 0;
unsigned int counter = 0;
bool left_ball = false;
bool right_ball = false;
unsigned char arduino_data = 0x00;
lcd_clear();

bool start_motor = true;

unsigned int accumulated_distance = 0;
float list[3];

RBPU = 0; // enable weak pullups
INTEDG0 = 1; // interrupt on rising edge
// enable INT0,INT1 interrupts
IPEN = 0;
INT0IF = 0;
INT0IE = 1;
PEIE = 1;
GIE = 1;

bool terminate = false;

while (1) {

if (start_motor) {
arduino_data = 1; //all forward
// }
//send data to arduino to move forward

I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data); // Write key press data
I2C_Master_Stop();
start_motor = false;

}
//get distance to the next canister from front US sensor

//if (!shifted) {
if (counter == 0) {

while (!PORTEbits.RE0) { //green
left_right = true;
arduino_data = 0b00000000; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

90

__delay_ms(100);

arduino_data = 3; //shift right
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

__delay_ms(100);

arduino_data = 5; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(200);

}
while (!PORTEbits.RE1) {//yellow

left_right = true;
arduino_data = 0b00000000; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(100);

arduino_data = 4; //shift right
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

__delay_ms(100);

arduino_data = 5; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(200);

//shifted = true;
}

}
if (left_right) {

arduino_data = 1;
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data); // Write key press data
I2C_Master_Stop();

91

left_right = false;
}

//}

float side_us_distance = side_us_sensor_distance_output();
// if (!PORTCbits.RC5) { //right
// right_ball = true;
// }
//lcd_clear();
//printf("D = %f cm", side_us_distance);

//break main loop if 10 canisters visited
if (operation_time(start_time) >= 170) {

arduino_data = 0b00000000; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
printf("time");
terminate = true;
break;

} else if (accumulated_distance >= 430) {
printf("dis");
__delay_ms(100);

break; //break if travel more than 400 cm
//go back

} else if ((side_us_distance <= 30) && (side_us_distance > 0)) { //canister in
↪→ range detected

list[counter] = side_us_distance;
counter = counter + 1;

if (counter >= 3) {
//request distance at arrival
unsigned int arrival_distance = encoder_to_distance();
//spin flag
LATAbits.LATA4 = 1;
bool flag_on = true;
counter = 0;
float mean_distance = median(list);
unsigned int right_ball_count = 0;
unsigned int left_ball_count = 0;
while (1) {

unsigned int moving_distance = encoder_to_distance();
// lcd_clear();
// printf("MD = %d",moving_distance);
if (position == 0) {

if ((moving_distance - arrival_distance) >= 25) {
break;

92

}
} else {

if ((moving_distance - arrival_distance) >= 24) {
break;

}
}
if ((moving_distance - arrival_distance) >= 15 && flag_on) {

LATAbits.LATA4 = 0;
flag_on = false;

}

if (!PORTCbits.RC5) { //right
//left_ball = true;
right_ball_count++;

}

if (!PORTCbits.RC6) { //left
//left_ball = true;
left_ball_count++;

}

}

if (left_ball_count >= 150) {
left_ball = true;

} else {
left_ball = false;

}

if (right_ball_count >= 200) {
right_ball = true;

} else {
right_ball = false;

}
//LATBbits.LATB1 = 1;

arduino_data = 0b00000000; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

// lcd_clear();
// lcd_set_ddram_addr(LCD_LINE3_ADDR);
// //printf("found!!!");
// printf("L count = %d", left_ball_count);
// lcd_set_ddram_addr(LCD_LINE4_ADDR);
// printf("R count = %d", right_ball_count);

__delay_ms(100);

canister_operation(position, mean_distance, left_ball, right_ball,
↪→ arrival_distance);

lcd_clear();

93

position = position + 1;
left_ball = false;
right_ball = false;
start_motor = true;

}

}

//request data from arduino to get distance travelled
accumulated_distance = encoder_to_distance();

// lcd_set_ddram_addr(LCD_LINE4_ADDR);
//
// printf("TD: %d", accumulated_distance);

}

printf("exit");

if (!terminate) {
go_back();

}

//write canister doesn’t exist to the rest of memory
while (1) {

if (position >= 10) {
break;

}
canister_info[position].exist = false;
position = position + 1;

}
lcd_clear();
//
//the end
LATCbits.LATC7 = 0; //keypad enable

op_time = operation_time(start_time);
WriteLog(start_time, op_time);
TRISB = 0xFF;
Push_Back(start_time, op_time);
interface(!before_operation);
lcd_clear();
printf("Bye␣Bye");
while (1);

}

void __interrupt() pic_isr(void) {

94

if (INT0IF) {
INT0IF = 0;
// toggle active edge
//volatile ++
if (!left_right) {

encoder_count++;
}

}

}

unsigned int encoder_to_distance(void) {
return encoder_count / 20.907;

}

//EEPROM READ/WRITE

unsigned char EEPROM_ReadByte(unsigned short address) {
//set address of EEPROM
EEADRH = address >> 8;
EEADR = address;

EECON1bits.EEPGD = 0; //select data
EECON1bits.CFGS = 0; //access
EECON1bits.RD = 1; //start reading

while (EECON1bits.RD == 1);

return EEDATA; //return data
}

void EEPROM_WriteByte(unsigned short address, unsigned char data) {

while (EECON1bits.WR); // Waits Until Last Attempt To Write Is Finished
EEADRH = address >> 8;
EEADR = address;

EEDATA = data; //write data to EEDATA
EECON1bits.EEPGD = 0; // Cleared To Point To EEPROM Not The Program Memory
EECON1bits.WREN = 1; // Enable The Operation !
INTCONbits.GIE = 0; // Disable All Interrupts Untill Writting Data Is Done
EECON2 = 0x55; // Part Of Writing Mechanism..
EECON2 = 0xAA; // Part Of Writing Mechanism..
EECON1bits.WR = 1; // Part Of Writing Mechanism..
INTCONbits.GIE = 1; // Re-Enable Interrupts
EECON1bits.WREN = 0; // Disable The Operation
EECON1bits.WR = 0; // Ready For Next Writting Operation

}

void ReadLog() {
//oldest operation (0)

95

//line 1: month
//line 2: date
//line 3: hour
//line 4: minute
//line 5: duration in seconds
//line 6: balls supplied
//line 7: canister 1 information
// bit 0: exist(1) not exist(0)
// bit 1: full(1) empty(0)
// bit 2: ball received(1) not received(0)
// bit 3: distance highest bit
// bit 4-7: unused
//line 8: distance
//line 9,10: canister 2 information
//line 11,12: canister 3 information
//...
//line 25,26: canister 10 information

//line 27-52: operation 1
//line 53-78: operation 2
//line 79-104: operation 3
//line 105-130: operation 4
int i = 0;
for (i = 0; i < 5; i = i + 1) {

history_general[i].timing.month = EEPROM_ReadByte(i * 26 + 1);
history_general[i].timing.day = EEPROM_ReadByte(i * 26 + 2);
history_general[i].timing.hour = EEPROM_ReadByte(i * 26 + 3);
history_general[i].timing.minute = EEPROM_ReadByte(i * 26 + 4);
history_general[i].op_time = EEPROM_ReadByte(i * 26 + 5);
history_general[i].supplied_balls = EEPROM_ReadByte(i * 26 + 6);
int j = (26 * i) + 7;
int canister_num = 0;
for (; j <= 26 * (i + 1); j = j + 2) {

unsigned char basic = EEPROM_ReadByte(j);
unsigned char dist = EEPROM_ReadByte(j + 1);
history_info[i * 10 + canister_num].exist = (basic & (0x01));
history_info[i * 10 + canister_num].full = ((basic >> 1)&(0x01));
history_info[i * 10 + canister_num].received_ball = ((basic >> 2)&(0x01));
unsigned int full_distance = basic & (0b00001000);
full_distance = (full_distance << 5) | dist;
history_info[i * 10 + canister_num].distance_from_start = full_distance;
canister_num = canister_num + 1;

}

}
}

void WriteLog(rtc start_time, unsigned int op_time) {
//delete the earliest entry and move the other three forward
int i = 0;
int j = 0;

for (i = 0; i < 4; i = i + 1) {
EEPROM_WriteByte(i * 26 + 1, history_general[i + 1].timing.month);

96

EEPROM_WriteByte(i * 26 + 2, history_general[i + 1].timing.day);
EEPROM_WriteByte(i * 26 + 3, history_general[i + 1].timing.hour);
EEPROM_WriteByte(i * 26 + 4, history_general[i + 1].timing.minute);
EEPROM_WriteByte(i * 26 + 5, history_general[i + 1].op_time);
EEPROM_WriteByte(i * 26 + 6, history_general[i + 1].supplied_balls);
j = (26 * i) + 7;
unsigned int canister_num = 0;
for (; j <= 26 * (i + 1); j = j + 2) {

unsigned int full_distance = canister_info[(i + 1)*10 + canister_num].
↪→ distance_from_start;

full_distance = full_distance >> 8;
unsigned char basic = history_info[(i + 1)*10 + canister_num].exist |

↪→ canister_info[(i + 1)*10 + canister_num].full << 1 | canister_info[(i +
↪→ 1)*10 + canister_num].received_ball << 2 | full_distance << 3;

EEPROM_WriteByte(j, basic);
EEPROM_WriteByte(j + 1, history_info[(i + 1)*10 + canister_num].

↪→ distance_from_start);
canister_num++;

}
}

// for (i = 0; i < 3; i = i + 1) {
// for (j = 1; j <= 26; j = j + 1) {
// EEPROM_WriteByte(i * 26 + j, EEPROM_ReadByte((i + 1)*26 + j));
// }
// }

//determine supplied balls
unsigned char supplied = 0;
for (i = 0; i < 10; i = i + 1) {

if (canister_info[i].exist) {
if (canister_info[i].received_ball) {

supplied = supplied + 1;
}

} else {
break;

}
}

EEPROM_WriteByte(4 * 26 + 1, start_time.month);
EEPROM_WriteByte(4 * 26 + 2, start_time.day);
EEPROM_WriteByte(4 * 26 + 3, start_time.hour);
EEPROM_WriteByte(4 * 26 + 4, start_time.minute);
EEPROM_WriteByte(4 * 26 + 5, op_time);
EEPROM_WriteByte(4 * 26 + 6, supplied);
j = 0;
for (i = 4 * 26 + 7; i <= 26 * 5; i = i + 2) {

unsigned int full_distance = canister_info[j].distance_from_start;
full_distance = full_distance >> 8;
unsigned char basic = canister_info[j].exist | canister_info[j].full << 1 |

↪→ canister_info[j].received_ball << 2 | full_distance << 3;
EEPROM_WriteByte(i, basic);
EEPROM_WriteByte(i + 1, canister_info[j].distance_from_start);

97

j = j + 1;
}

}

void Push_Back(rtc start_time, unsigned int op_time) {
for (int i = 0; i < 4; i++) {

history_general[i] = history_general[i + 1];
for (int j = 0; j < 10; j++) {

history_info[i * 10 + j] = history_info[(i + 1)*10 + j];
}

}

unsigned char supplied = 0;
for (int i = 0; i < 10; i = i + 1) {

if (canister_info[i].exist) {
if (canister_info[i].received_ball) {

supplied = supplied + 1;
}

} else {
break;

}
}

history_general[4].op_time = op_time;
history_general[4].supplied_balls = supplied;
history_general[4].timing = start_time;

for (int i = 0; i < 10; i++) {
history_info[40 + i] = canister_info[i];

}

}

//MOTOR CONTROL

void stepperON(unsigned int n) {

for (unsigned int i = 0; i < n; i = i + 1) {
LATAbits.LA3 = 1;
__delay_ms(0.7);
LATAbits.LA3 = 0;
__delay_ms(0.7);

}
}

void stepperClockWise(void) {
LATAbits.LA1 = 1;

}

void stepperCounterClockWise(void) {
LATAbits.LA1 = 0;

}

98

void ball_to_right(void) {
LATAbits.LATA5 = 0; //stepper enabled
stepperCounterClockWise(); //ground is left
stepperON(1950);
__delay_ms(800);
stepperClockWise();
stepperON(2650);
__delay_ms(200);
stepperCounterClockWise();
stepperON(700);
LATAbits.LATA5 = 1;

}

void ball_to_left(void) {
LATAbits.LATA5 = 0; //stepper enabled
stepperClockWise();
stepperON(1950);
__delay_ms(800);
stepperCounterClockWise();
stepperON(2650);
__delay_ms(200);
stepperClockWise();
stepperON(700);
LATAbits.LATA5 = 1;

}

void stepper_left(void) {
LATAbits.LATA5 = 0; //stepper enabled
stepperClockWise();
stepperON(1950);
LATAbits.LATA5 = 1;

}

void stepper_right(void) {
LATAbits.LATA5 = 0; //stepper enabled
stepperCounterClockWise();
stepperON(1950);
LATAbits.LATA5 = 1;

}

//USER INTERFACE

void invalid(void) {
lcd_clear();
printf("Invalid␣Input");
__delay_ms(1000);

}

void no_such_canister(void) {
lcd_clear();
printf("␣␣␣␣NO␣SUCH");
lcd_set_ddram_addr(LCD_LINE2_ADDR);
printf("␣␣␣CANISTER");

99

__delay_ms(1000);

lcd_clear();
printf("USE␣KEYPAD␣TO");
lcd_set_ddram_addr(LCD_LINE2_ADDR);
printf("SELECT␣SPECIFIC␣");
lcd_set_ddram_addr(LCD_LINE3_ADDR);
printf("CANISTER");

}

void interface(bool before_operation) {
int idx = 4;
int direction = 0;
int status = main_menu(before_operation); //acquire status from main menu
while (1) {

if (status == 0) {
//if status is false, retrieve the data from log
direction = retrieve_data(idx); //direction determines scrolling left or right
if (direction == 1) { //if direction is 1, go left

idx = idx - 1;
if (idx < 0) {

invalid();
idx = idx + 1;

} else {
lcd_clear();

lcd_set_ddram_addr(LCD_LINE2_ADDR);
printf("␣␣<-------");
__delay_ms(500);

}

} else if (direction == 0) { //if direction is 0, go right
idx = idx + 1;
if (idx >= 5) {

invalid();
idx = idx - 1;

} else {
lcd_clear();

lcd_set_ddram_addr(LCD_LINE2_ADDR);
printf("␣␣------->");
__delay_ms(500);

}

} else if (direction == 2) {
continue;

} else if (direction == 3) { //if direction is 3, exit detailed data and go
↪→ back to main menu
status = main_menu(before_operation);

}

} else if (status == 1) {
lcd_clear();

100

// exit interface to run the operation when status is true
break;

}
}

}

int retrieve_data(int idx) {
int direction = 0;

while (1) {
lcd_clear();
//print the time
printf("%d.␣%02x/%02x␣␣%02x:%02x", idx, history_general[idx].timing.month,

↪→ history_general[idx].timing.day, history_general[idx].timing.hour,
↪→ history_general[idx].timing.minute);

lcd_set_ddram_addr(LCD_LINE2_ADDR);
printf("%ds␣OPERATED", history_general[idx].op_time);
lcd_set_ddram_addr(LCD_LINE3_ADDR);
printf("%d␣BALLS␣SUPPLIED", history_general[idx].supplied_balls);
lcd_set_ddram_addr(LCD_LINE4_ADDR);
printf("%d␣BALLS␣LEFT", 10 - history_general[idx].supplied_balls);

//read keypad
while (PORTBbits.RB1 == 0) {

continue;
}
unsigned char keypress = (PORTB & 0xF0) >> 4;
while (PORTBbits.RB1 == 1) {

continue;
}

//Nop(); // Apply breakpoint here to prevent compiler optimizations

unsigned char temp = keys[keypress];

int selected = temp - ’0’;
if (temp == ’A’) {

continue;
} else if (temp == ’D’) {//going back

return 3;
} else if (temp == ’B’) { //b is scrolling left

if ((idx - 1) < 0) {
invalid();

} else {
return 1;

}
} else if (temp == ’C’) { //c is scrolling right

if ((idx + 1) >= 5) {
invalid();

} else {
return 0;

}
} else if (temp == ’#’) { // view detailed info

lcd_clear();

101

printf("USE␣KEYPAD␣TO");
lcd_set_ddram_addr(LCD_LINE2_ADDR);
printf("SELECT␣SPECIFIC␣");
lcd_set_ddram_addr(LCD_LINE3_ADDR);
printf("CANISTER");

while (1) {
//read keypad
while (PORTBbits.RB1 == 0) {

continue;
}
keypress = (PORTB & 0xF0) >> 4;

while (PORTBbits.RB1 == 1) {
continue;

}

Nop(); // Apply breakpoint here to prevent compiler optimizations

temp = keys[keypress];
selected = temp - ’0’;
if (selected == 0) {

if (!history_info[idx * 10 + 9].exist) {
no_such_canister();

} else {
lcd_clear();
printf("CANISTER␣10");
lcd_set_ddram_addr(LCD_LINE2_ADDR);
if (!history_info[idx * 10 + 9].full) {

printf("Empty␣Canister");
} else {

printf("Full␣Canister");
}
lcd_set_ddram_addr(LCD_LINE3_ADDR);
if (history_info[idx * 10 + 9].received_ball) {

printf("Ball␣Received");
} else {

printf("Not␣Supplied");
}
lcd_set_ddram_addr(LCD_LINE4_ADDR);
printf("Distance:␣%d␣cm", (history_info[idx * 10 + 9].

↪→ distance_from_start));
}

} else if ((selected >= 1)&&(selected <= 9)) {
if (!history_info[idx * 10 + (selected - 1)].exist) {

no_such_canister();
} else {

lcd_clear();
printf("CANISTER␣#%d", selected);
lcd_set_ddram_addr(LCD_LINE2_ADDR);
if (!history_info[idx * 10 + (selected - 1)].full) {

printf("Empty␣Canister");
} else {

printf("Full␣Canister");

102

}
lcd_set_ddram_addr(LCD_LINE3_ADDR);
if (history_info[idx * 10 + (selected - 1)].received_ball) {

printf("Ball␣Received");
} else {

printf("Not␣Supplied");
}
lcd_set_ddram_addr(LCD_LINE4_ADDR);
printf("Distance:␣%d␣cm", (history_info[idx * 10 + selected - 1].

↪→ distance_from_start));
}

} else if (temp == ’D’) {//going back
return 2;

}

}
} else {

invalid();

}

}
return direction;

}

int main_menu(bool begin) {
int status = 0;
initLCD();

// Main loop
while (1) {

lcd_clear();
printf("␣␣␣BALL␣BALL␣U");
lcd_set_ddram_addr(LCD_LINE2_ADDR);
if (begin) {

printf("PRESS␣*␣TO␣START");
} else {

printf("␣TASK␣COMPLETE");
}
lcd_set_ddram_addr(LCD_LINE3_ADDR);
printf("␣␣␣␣");
getTime();
//print current time
printf("%02x/", rtc_time.year);

printf("%02x/", rtc_time.month);

printf("%02x", rtc_time.day);
lcd_set_ddram_addr(LCD_LINE4_ADDR);
printf("␣␣␣␣");

103

printf("%02x:", rtc_time.hour);

printf("%02x:", rtc_time.minute);

printf("%02x", rtc_time.second);

__delay_ms(1000);

unsigned char keypress;

I2C_Master_Start();
I2C_Master_Write(0b00010001); // 7-bit Arduino slave address + Read
unsigned char flag = I2C_Master_Read(NACK); // Read one char only
I2C_Master_Stop();

if (begin) {

if (flag == 254) {
status = 1;
break;

}

}
if (flag == 2) {

stepper_right();
} else if (flag == 3) {

stepper_left();
}

if (PORTBbits.RB1) {
keypress = (PORTB & 0xF0) >> 4;
unsigned char temp = keys[keypress];
if (temp == ’*’) {

status = 1;
break;

} else if (temp == ’A’) {
status = 0;
break;

} else {
continue;

}
}

}
return status;

}

//REAL TIME CLOCK

void getTime(void) {
unsigned char time[7];

I2C_Master_Start(); // Start condition

104

I2C_Master_Write(0b11010000); // 7 bit RTC address + Write
I2C_Master_Write(0x00); // Set memory pointer to seconds
I2C_Master_Stop(); // Stop condition

// Read current time
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b11010001); // 7 bit RTC address + Read
for (unsigned char i = 0; i < 6; i++) {

time[i] = I2C_Master_Read(ACK); // Read with ACK to continue reading

}

time[6] = I2C_Master_Read(NACK); // Final Read with NACK

I2C_Master_Stop();

rtc_time.year = time[6];
rtc_time.month = time[5];
rtc_time.day = time[4];

rtc_time.hour = time[2];
rtc_time.minute = time[1];
rtc_time.second = time[0];

}

void rtc_set_time(void) {
//this function is to set real time clock to current time
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b11010000); //7 bit RTC address + Write
I2C_Master_Write(0x00); // Set memory pointer to seconds

// Write array
for (char i = 0; i < 7; i++) {

I2C_Master_Write(time_setting[i]);
}

I2C_Master_Stop(); //Stop condition
}

//OPERATION

float side_us_sensor_distance_output(void) {
lcd_set_ddram_addr(LCD_LINE2_ADDR);

TMR1H = 0; //Sets the Initial Value of Timer
TMR1L = 0; //Sets the Initial Value of Timer
LATBbits.LATB7 = 1; //TRIGGER HIGH
__delay_us(10);
LATBbits.LATB7 = 0; //TRIGGER LOW

while (!PORTBbits.RB5);

105

TMR1ON = 1;
//Waiting for Echo
//Timer Starts
while (PORTBbits.RB5);

TMR1ON = 0;
//Waiting for Echo goes LOW
//Timer Stops

float front_us_distance = (TMR1L | (TMR1H << 8)); //Reads Timer Value
front_us_distance = front_us_distance / 58.82; //Converts Time to Distance
front_us_distance = front_us_distance / 2;
return front_us_distance;

}

void canister_operation(unsigned int position, float side_us_distance, bool left_ball,
↪→ bool right_ball, unsigned int arduino_distance) {

unsigned char arduino_data = 0;
//1: adjust to left
//2: adjust to right

bool supplied_ball = false;
bool canister_full = false;
bool facing_left = true;

//spin flag to indicate canister found

//__delay_ms(1000);

canister_info[position].exist = true;

canister_info[position].distance_from_start = arduino_distance;
// if (position == 0) {
// canister_info[position].distance_from_start = arduino_distance;
// } else {
// canister_info[position].distance_from_start = (arduino_distance / 2) - 2;
// }

//calculate distance from encoder

// lcd_clear();
// printf("US = %f cm", side_us_distance);
// lcd_set_ddram_addr(LCD_LINE2_ADDR);
// printf("DIST = %d cm", arduino_distance);
// lcd_set_ddram_addr(LCD_LINE3_ADDR);
// printf("LEFT = %d ", left_ball);
// lcd_set_ddram_addr(LCD_LINE4_ADDR);
// printf("RIGHT = %d", right_ball);
// __delay_ms(1000);

unsigned int distance_between = 0;

106

if (position == 0) {
distance_between = 50;

} else {
distance_between = arduino_distance - (canister_info[position - 1].

↪→ distance_from_start);
}

// determine the opening of canister
//lcd_clear();
if (side_us_distance > 17.5) { //open oppposite sensor (left)

//printf("facing left");
facing_left = true;
//__delay_ms(500);
//check left IR
if (left_ball) {

//there is ball already
canister_full = true;

} else {
if (distance_between >= 30) {

canister_full = true;
supplied_ball = true;
//ready to supply ball

//shift right
if (side_us_distance >= 25) {

left_right = true;
arduino_data = 3; //shift right
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

__delay_ms(100);

arduino_data = 5; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(200);

}
if (side_us_distance >= 27.5) {

left_right = true;
arduino_data = 3; //shift right
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

107

__delay_ms(100);

arduino_data = 5; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(200);

}

ball_dispensing(facing_left);
}

}
} else { //open towards to sensor (right)

//printf("facing right");
facing_left = false;
//__delay_ms(500);
//check right IR
if (right_ball) {

//there is ball already
canister_full = true;

} else {
if (distance_between >= 30) {

canister_full = true;
supplied_ball = true;
//ready to supply ball
//shift left
if (side_us_distance <= 13) {

left_right = true;
arduino_data = 4; //shift left
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

__delay_ms(100);

arduino_data = 5; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(200);

}
if (side_us_distance <= 10.5) {

left_right = true;
arduino_data = 4; //shift left
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();

108

__delay_ms(100);

arduino_data = 5; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data);
I2C_Master_Stop();
__delay_ms(200);

}

ball_dispensing(facing_left);

}
}

}
canister_info[position].full = canister_full;
canister_info[position].received_ball = supplied_ball;

left_right = false;

}

void ball_dispensing(bool facing_left) {

//lcd_clear();
//printf("Stepper ON");
//__delay_ms(100);

if (!facing_left) {
ball_to_left();

} else {
ball_to_right();

}
}

unsigned int operation_time(rtc start_time) {
int accumulated_seconds = 0;

unsigned int start_second = ((start_time.second & 0b01110000) >> 4)*10 + ((start_time
↪→ .second)&0x0F);

unsigned int start_minute = (start_time.minute >> 4)*10 + ((start_time.minute)&0x0F);
unsigned int start_hour = ((start_time.hour & 0b00110000) >> 4)*10 + ((start_time.

↪→ hour)&0x0F);

getTime();

unsigned int current_second = ((rtc_time.second & 0b01110000) >> 4)*10 + ((rtc_time.
↪→ second)&0x0F);

unsigned int current_minute = (rtc_time.minute >> 4)*10 + ((rtc_time.minute)&0x0F);

109

unsigned int current_hour = ((rtc_time.hour & 0b00110000) >> 4)*10 + ((rtc_time.hour)
↪→ &0x0F);

accumulated_seconds = (current_hour - start_hour)*3600 + (current_minute -
↪→ start_minute)*60 + (current_second - start_second);

return accumulated_seconds;
}

void go_back(void) {
//send data to arduino to move back
unsigned char arduino_data = 2; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data); // Write key press data
I2C_Master_Stop();

while (1) {
I2C_Master_Start();
I2C_Master_Write(0b00010001); // 7-bit Arduino slave address + Read
unsigned char flag = I2C_Master_Read(NACK); // Read one char only
I2C_Master_Stop();
if (flag == 253) {

break;
}

}

arduino_data = 0; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data); // Write key press data
I2C_Master_Stop();
__delay_ms(1000);
arduino_data = 6; //stop
I2C_Master_Start(); // Start condition
I2C_Master_Write(0b00010000); // 7-bit Arduino slave address + write
I2C_Master_Write(arduino_data); // Write key press data
I2C_Master_Stop();
__delay_ms(600);

}

float median(float *list) {
unsigned int n = 3;
for (int i = 0; i < n; i++) //Loop for ascending ordering
{

for (int j = 0; j < n; j++) //Loop for comparing other values
{

if (list[j] > list[i]) //Comparing other array elements
{

float tmp = list[i]; //Using temporary variable for storing last value
list[i] = list[j]; //replacing value
list[j] = tmp; //storing last value

110

}
}

}
return list[1];

}

111

Appendix C

PIC Microcontroller I2C Program

/**
* @file
* @author Michael Ding
* @author Tyler Gamvrelis
*
* Created on August 4, 2016, 3:22 PM
*
* @ingroup I2C
*/

/********************************* Includes **********************************/
#include "I2C.h"

/***************************** Private Functions *****************************/
/**
* @brief Private function used to poll the MSSP module status. This function
* exits when the I2C module is idle.
* @details The static keyword makes it so that files besides I2C.c cannot
* "see" this function
*/
static inline void I2C_Master_Wait(){

// Wait while:
// 1. A transmit is in progress (SSPSTAT & 0x04)
// 2. A Start/Repeated Start/Stop/Acknowledge sequence has not yet been
// cleared by hardware
while ((SSPSTAT & 0x04) || (SSPCON2 & 0x1F)){

continue;
}

}

/***************************** Public Functions ******************************/
void I2C_Master_Init(const unsigned long clockFreq){

// Disable the MSSP module
SSPCON1bits.SSPEN = 0;

// Force data and clock pin data directions
TRISCbits.TRISC3 = 1; // SCL (clock) pin
TRISCbits.TRISC4 = 1; // SDA (data) pin

112

// See section 17.4.6 in the PIC18F4620 datasheet for master mode details.
// Below, the baud rate is configured by writing to the SSPADD<6:0>
// according to the formula given on page 172
SSPADD = (_XTAL_FREQ / (4 * clockFreq)) - 1;

// See PIC18F4620 datasheet, section 17.4 for I2C configuration
SSPSTAT = 0b10000000; // Disable slew rate control for cleaner signals

// Clear errors & enable the serial port in master mode
SSPCON1 = 0b00101000;

// Set entire I2C operation to idle
SSPCON2 = 0b00000000;

}

void I2C_Master_Start(void){
I2C_Master_Wait(); // Ensure I2C module is idle
SSPCON2bits.SEN = 1; // Initiate Start condition

}

void I2C_Master_RepeatedStart(void){
I2C_Master_Wait(); // Ensure I2C module is idle
SSPCON2bits.RSEN = 1; // Initiate Repeated Start condition

}

void I2C_Master_Stop(void){
I2C_Master_Wait(); // Ensure I2C module is idle
SSPCON2bits.PEN = 1; // Initiate Stop condition

}

void I2C_Master_Write(unsigned byteToWrite){
I2C_Master_Wait(); // Ensure I2C module is idle

// Write byte to the serial port buffer for transmission
SSPBUF = byteToWrite;

}

unsigned char I2C_Master_Read(unsigned char ackBit){
I2C_Master_Wait(); // Ensure I2C module is idle
SSPCON2bits.RCEN = 1; // Enable receive mode for I2C module

I2C_Master_Wait(); // Wait until receive buffer is full

// Read received byte from the serial port buffer
unsigned char receivedByte = SSPBUF;

I2C_Master_Wait(); // Ensure I2C module is idle
SSPCON2bits.ACKDT = ackBit; // Acknowledge data bit
SSPCON2bits.ACKEN = 1; // Initiate acknowledge bit transmission sequence

return receivedByte;
}

113

Appendix D

PIC Microcontroller LCD Program

/**
* @file
* @author Michael Ding
* @author Tyler Gamvrelis
*
* Created on July 18, 2016, 12:11 PM
* @ingroup CharacterLCD
*/

/********************************* Includes **********************************/
#include "lcd.h"

/******************************** Constants **********************************/
const unsigned char LCD_SIZE_HORZ = 16;
const unsigned char LCD_SIZE_VERT = 4;

const unsigned char LCD_LINE1_ADDR = 0;
const unsigned char LCD_LINE2_ADDR = 64;
const unsigned char LCD_LINE3_ADDR = 16;
const unsigned char LCD_LINE4_ADDR = 80;

/***************************** Private Functions *****************************/
/**
* @brief Pulses the LCD register enable signal, which causes the LCD to latch
* the data on LATD. Interrupts are disabled during this pulse to
* guarantee that the timing requirements of the LCD’s protocol are met
*/
static inline void pulse_e(void){

unsigned char interruptState = INTCONbits.GIE;
di();
E = 1;
// This first delay only needs to be 1 microsecond in theory, but 25 was
// selected experimentally to be safe
__delay_us(25);
E = 0;
__delay_us(100);
INTCONbits.GIE = interruptState;

}

114

/**
* @brief Low-level function to send 4 bits to the display
* @param data The byte whose 4 least-significant bits are to be sent to the LCD
*/
static void send_nibble(unsigned char data){

// Send the 4 least-significant bits
LATD = (unsigned char)(LATD & 0x0F); // Clear LATD[7:4]
LATD = (unsigned char)((data << 4) | LATD); // Write data[3:0] to LATD[7:4]
pulse_e();

}

/**
* @brief Low-level function to send a byte to the display
* @param data The byte to be sent
*/
static void send_byte(unsigned char data){

// Send the 4 most-significant bits
send_nibble(data >> 4);

// Send the 4 least-significant bits
send_nibble(data);

}

/***************************** Public Functions ******************************/
void lcdInst(char data){

RS = 0;
send_byte(data);

}

void initLCD(void){
__delay_ms(15);

RS = 0;
// Set interface length to 4 bits wide
send_nibble(0b0011);
__delay_ms(5);
send_nibble(0b0011);
__delay_us(150);
send_byte(0b00110010);

send_byte(0b00101000); // Set N = number of lines (1 or 2) and F = font
send_byte(0b00001000); // Display off
send_byte(0b00000001); // Display clear
__delay_ms(5);
send_byte(0b00000110); // Entry mode set

// Enforce on: display, cursor, and cursor blinking
lcd_display_control(true, true, true);

}

void lcd_shift_cursor(unsigned char numChars, lcd_direction_e direction){
for(unsigned char n = numChars; n > 0; n--){

lcdInst((unsigned char)(0x10 | (direction << 2)));
}

115

}

void lcd_shift_display(unsigned char numChars, lcd_direction_e direction){
for(unsigned char n = numChars; n > 0; n--){

lcdInst((unsigned char)(0x18 | (direction << 2)));
}

}

void putch(char data){
RS = 1;
send_byte((unsigned char)data);

}

116

Appendix E

PIC Microcontroller Configuration Bits

#ifndef CONFIG_BITS_H
#define CONFIG_BITS_H

// CONFIG1H
#pragma config OSC = HS // Oscillator Selection bits (HS oscillator)
#pragma config FCMEN = OFF // Fail-Safe Clock Monitor Enable bit (Fail-Safe Clock Monitor

↪→ disabled)
#pragma config IESO = OFF // Internal/External Oscillator Switchover bit (Oscillator

↪→ Switchover mode disabled)

// CONFIG2L
#pragma config PWRT = OFF // Power-up Timer Enable bit (PWRT disabled)
#pragma config BOREN = OFF // Brown-out Reset Enable bits (Brown-out Reset enabled in

↪→ hardware only (SBOREN is disabled))
#pragma config BORV = 3 // Brown Out Reset Voltage bits (Minimum setting)

// CONFIG2H

#pragma config WDT = OFF // Watchdog Timer Enable bit (WDT disabled (control is placed on
↪→ the SWDTEN bit))

#pragma config WDTPS = 32768 // Watchdog Timer Postscale Select bits (1:32768)

// CONFIG3H
#pragma config CCP2MX = PORTC // CCP2 MUX bit (CCP2 input/output is multiplexed with RC1)
#pragma config PBADEN = ON // PORTB A/D Enable bit (PORTB<4:0> pins are configured as

↪→ analog input channels on Reset)
#pragma config LPT1OSC = OFF // Low-Power Timer1 Oscillator Enable bit (Timer1 configured

↪→ for higher power operation)
#pragma config MCLRE = ON // MCLR Pin Enable bit (MCLR pin enabled; RE3 input pin

↪→ disabled)

// CONFIG4L
#pragma config STVREN = ON // Stack Full/Underflow Reset Enable bit (Stack full/underflow

↪→ will cause Reset)
#pragma config LVP = OFF // Single-Supply ICSP Enable bit (Single-Supply ICSP disabled)
#pragma config XINST = OFF // Extended Instruction Set Enable bit (Instruction set

↪→ extension and Indexed Addressing mode disabled (Legacy mode))

117

// CONFIG5L
#pragma config CP0 = OFF // Code Protection bit (Block 0 (000800-003FFFh) not code-

↪→ protected)
#pragma config CP1 = OFF // Code Protection bit (Block 1 (004000-007FFFh) not code-

↪→ protected)
#pragma config CP2 = OFF // Code Protection bit (Block 2 (008000-00BFFFh) not code-

↪→ protected)
#pragma config CP3 = OFF // Code Protection bit (Block 3 (00C000-00FFFFh) not code-

↪→ protected)

// CONFIG5H
#pragma config CPB = OFF // Boot Block Code Protection bit (Boot block (000000-0007FFh)

↪→ not code-protected)
#pragma config CPD = OFF // Data EEPROM Code Protection bit (Data EEPROM not code-

↪→ protected)

// CONFIG6L
#pragma config WRT0 = OFF // Write Protection bit (Block 0 (000800-003FFFh) not write-

↪→ protected)
#pragma config WRT1 = OFF // Write Protection bit (Block 1 (004000-007FFFh) not write-

↪→ protected)
#pragma config WRT2 = OFF // Write Protection bit (Block 2 (008000-00BFFFh) not write-

↪→ protected)
#pragma config WRT3 = OFF // Write Protection bit (Block 3 (00C000-00FFFFh) not write-

↪→ protected)

// CONFIG6H
#pragma config WRTC = OFF // Configuration Register Write Protection bit (Configuration

↪→ registers (300000-3000FFh) not write-protected)
#pragma config WRTB = OFF // Boot Block Write Protection bit (Boot Block (000000-0007FFh)

↪→ not write-protected)
#pragma config WRTD = OFF // Data EEPROM Write Protection bit (Data EEPROM not write-

↪→ protected)

// CONFIG7L
#pragma config EBTR0 = OFF // Table Read Protection bit (Block 0 (000800-003FFFh) not

↪→ protected from table reads executed in other blocks)
#pragma config EBTR1 = OFF // Table Read Protection bit (Block 1 (004000-007FFFh) not

↪→ protected from table reads executed in other blocks)
#pragma config EBTR2 = OFF // Table Read Protection bit (Block 2 (008000-00BFFFh) not

↪→ protected from table reads executed in other blocks)
#pragma config EBTR3 = OFF // Table Read Protection bit (Block 3 (00C000-00FFFFh) not

↪→ protected from table reads executed in other blocks)

// CONFIG7H
#pragma config EBTRB = OFF // Boot Block Table Read Protection bit (Boot Block

↪→ (000000-0007FFh) not protected from table reads executed in other blocks)

// #pragma config statements should precede project file includes.
// Use project enums instead of #define for ON and OFF.

#include <xc.h>

118

#define _XTAL_FREQ 10000000 // Define osc freq for use in delay macros

#endif /* CONFIG_BITS_H */

119

Appendix F

Arduino Microcontroller Main Program

#include <PID_v1.h>
#include <Wire.h>
#include <PinChangeInt.h>
#include <IRremote.h>

IRrecv irrecv(7);
decode_results results;
//unsigned long key_value = 0;

bool left = false;
bool right = false;
bool start = true;
bool back = false;
bool adjust_left = false;
bool adjust_right = false;
bool remote_start = false;
bool remote_stop = false;
bool pid_back = false;
unsigned long recorded_encoder = 0xFFFF;
bool back_to_line = false;
bool remote_stepper_left = false;
bool remote_stepper_right = false;

const int encoder_back_right = A3; //back right 160
const int encoder_back_left = 3; //back left 127
const int encoder_front_left = A2;
const int encoder_front_right = 2;

const int front_left = 0;
const int front_right = 3;
const int back_left = 2;
const int back_right = 1;

const int pwm[4] = {9, 6, 10, 5};//11
const int motor_positive[4] = {12, 4, 8, A0};
const int motor_negative[4] = {13, 13, 11, A1};

120

volatile unsigned int encoder_count_back_right = 0;
volatile unsigned int encoder_count_back_left = 0;
volatile unsigned int encoder_count_front_right = 0;
volatile unsigned int encoder_count_front_left = 0;

volatile unsigned long encoder_br_shift = 0;
volatile unsigned long encoder_bl_shift = 0;
volatile unsigned long encoder_fr_shift = 0;
volatile unsigned long encoder_fl_shift = 0;

//
//PID setup

double setpoint = 0;
//double setpoint_fl = 0;

double input_front_right = 0;
double input_back_right = 0;
double input_front_left = 0;
double input_back_left = 0;

double output_front_right = 61; //60
double output_back_right = 61; //61
double output_front_left = 34; //40
double output_back_left = 42; //42

double kp = 0.06;//0.05
double ki = 0;
double kd = 0.2;//0.2

PID PID_front_right(&input_front_right, &output_front_right, &setpoint, kp, ki, kd,
↪→ DIRECT);

PID PID_back_right(&input_back_right, &output_back_right, &setpoint, kp, ki, kd, DIRECT);
PID PID_front_left(&input_front_left, &output_front_left, &setpoint, kp, ki, kd, DIRECT);
PID PID_back_left(&input_back_left, &output_back_left, &setpoint, kp, ki, kd, DIRECT);

volatile unsigned char distance_data = 0;
volatile unsigned int non_erased_count = 0;
volatile bool enable = false;

void setup() {
irrecv.enableIRIn();

Wire.begin(8); // Join I2C bus with address 8

// Register callback functions
Wire.onReceive(receiveEvent); // Called when this slave device receives a data

↪→ transmission from master

121

Wire.onRequest(requestEvent); // Called when master requests data from this slave
↪→ device

for (int i = 0; i < 4; i++) {
pinMode(pwm[i], OUTPUT);
pinMode(motor_positive[i], OUTPUT);
pinMode(motor_negative[i], OUTPUT);

}

pinMode(encoder_back_right, INPUT);
pinMode(encoder_back_left, INPUT);
pinMode(encoder_front_right, INPUT);
pinMode(encoder_front_left, INPUT);

digitalWrite(encoder_back_right, HIGH); // turn on pull-up resistor
digitalWrite(encoder_back_left, HIGH); // turn on pull-up resistor
digitalWrite(encoder_front_right, HIGH); // turn on pull-up resistor
digitalWrite(encoder_front_left, HIGH); // turn on pull-up resistor

digitalWrite(motor_positive[back_left], LOW);
digitalWrite(motor_negative[back_left], HIGH);

digitalWrite(motor_positive[front_right], LOW);
digitalWrite(motor_negative[front_right], HIGH);

digitalWrite(motor_positive[front_left], HIGH);
digitalWrite(motor_negative[front_left], LOW);

digitalWrite(motor_positive[back_right], HIGH);
digitalWrite(motor_negative[back_right], LOW);

for (int i = 0; i < 4; i++) {

digitalWrite(motor_positive[i], HIGH);
digitalWrite(motor_negative[i], LOW);

}

// D2 interrupt
attachInterrupt(0, do_encoder_front_right, RISING);
// D3 interrupt
attachInterrupt(1, do_encoder_back_left, RISING);

PCintPort::attachInterrupt(encoder_front_left, do_encoder_front_left, RISING);
PCintPort::attachInterrupt(encoder_back_right, do_encoder_back_right, RISING);

PCintPort::attachInterrupt(7, IR, CHANGE);

//Serial.begin(9600);

122

PID_front_right.SetMode(AUTOMATIC);
PID_back_right.SetMode(AUTOMATIC);
PID_front_left.SetMode(AUTOMATIC);

PID_back_left.SetMode(AUTOMATIC);

///////////////////////////////
//remote setup

//FL: 76.18 FR: 92.21 BL: 85.96 BR: 76.28
//
//Index: BR:2842 BL:2720 FR:2763 FL:2842
//
//
//FL: 79.18 FR: 89.28 BL: 84.90 BR: 76.16
//
//Index: BR:2894 BL:2768 FR:2815 FL:2892
//
//
//FL: 79.18 FR: 90.24 BL: 88.02 BR: 76.04
//
//Index: BR:2948 BL:2815 FR:2868 FL:2939
//
//
//FL: 82.36 FR: 91.27 BL: 90.26 BR: 72.74
//
//Index: BR:2998 BL:2859 FR:2915 FL:2985
//
//
//FL: 84.66 FR: 94.38 BL: 92.62 BR: 80.92

}

void loop() {

if (left) {
digitalWrite(motor_positive[back_right], LOW);
digitalWrite(motor_negative[back_right], HIGH);

digitalWrite(motor_positive[front_left], LOW);
digitalWrite(motor_negative[front_left], HIGH);

analogWrite(pwm[back_left], 195);
analogWrite(pwm[front_right], 200);
analogWrite(pwm[front_left], 205);
analogWrite(pwm[back_right], 213);

}

123

else if (right) {
digitalWrite(motor_positive[front_right], LOW);
digitalWrite(motor_negative[front_right], HIGH);

digitalWrite(motor_positive[back_left], LOW);
digitalWrite(motor_negative[back_left], HIGH);

analogWrite(pwm[back_left], 225);
analogWrite(pwm[front_right], 200);
analogWrite(pwm[front_left], 185);
analogWrite(pwm[back_right], 185);

}

else if (back) {
for (int i = 0; i < 4; i++) {
if ((i == 0) || (i == 1)) {
digitalWrite(motor_positive[i], HIGH);
digitalWrite(motor_negative[i], LOW);

}
else {
digitalWrite(motor_positive[i], LOW);
digitalWrite(motor_negative[i], HIGH);

}
}
analogWrite(pwm[back_left], 255);
analogWrite(pwm[front_right], 220);
analogWrite(pwm[front_left], 220);
analogWrite(pwm[back_right], 220);
delay(1110);

back = false;

for (int i = 0; i < 4; i++) {
digitalWrite(motor_positive[i], LOW);
digitalWrite(motor_negative[i], HIGH);

}
recorded_encoder = non_erased_count;

pid_back = true;

}

else if (enable) {
setpoint += 0.08;//0.08

input_front_right = encoder_count_front_right * 1.06; //slow down 1.04
input_front_left = encoder_count_front_left*0.98;
input_back_right = encoder_count_back_right * 0.97;
input_back_left = encoder_count_back_left / 2 * 3 * 1.065; //slow down

124

PID_front_right.Compute();
PID_back_right.Compute();
PID_front_left.Compute();
PID_back_left.Compute();

analogWrite(pwm[back_left], output_back_left);
analogWrite(pwm[front_right], output_front_right);
analogWrite(pwm[front_left], output_front_left);
analogWrite(pwm[back_right], output_back_right);

//delay(1);

}
else if (pid_back){
setpoint += 0.9;//0.08
input_front_right = encoder_count_front_right * 1.06; //slow down 1.04
input_front_left = encoder_count_front_left;
input_back_right = encoder_count_back_right * 0.97;
input_back_left = encoder_count_back_left / 2 * 3 * 1.065; //slow down

PID_front_right.Compute();
PID_back_right.Compute();
PID_front_left.Compute();
PID_back_left.Compute();

analogWrite(pwm[back_left], output_back_left);
analogWrite(pwm[front_right], output_front_right);
analogWrite(pwm[front_left], output_front_left);
analogWrite(pwm[back_right], output_back_right);

}

else {
analogWrite(pwm[back_left], 0);
analogWrite(pwm[front_right], 0);
analogWrite(pwm[front_left], 0);
analogWrite(pwm[back_right], 0);

}

// Serial.print("FL: ");
// Serial.print(output_front_left);
// Serial.print(" FR: ");
// Serial.print(output_front_right);
// Serial.print(" BL: ");

125

// Serial.print(output_back_left);
//
// Serial.print(" BR: ");
// Serial.println(output_back_right);
// Serial.println();
//
// Serial.print("Index: BR:");
// Serial.print(encoder_count_back_right);
//
// Serial.print(" BL:");
// Serial.print(encoder_count_back_left);
//
//
// Serial.print(" FR:");
// Serial.print(encoder_count_front_right);
//
// Serial.print(" FL:");
// Serial.print(encoder_count_front_left);
// Serial.println();
// Serial.println();
// Serial.println();

}

uint8_t receiveEvent(void) {
uint8_t x = Wire.read(); // Receive byte
//Serial.println(x, BIN);
if (x == 0) {
pid_back = false;
left = false;
right = false;
back = false;
enable = false;
setpoint -= 1;

analogWrite(pwm[back_left], 0);
analogWrite(pwm[front_right], 0);
analogWrite(pwm[front_left], 0);
analogWrite(pwm[back_right], 0);

}
if (x == 1) {//start motor
for (int i = 0; i < 4; i++) {
digitalWrite(motor_positive[i], HIGH);
digitalWrite(motor_negative[i], LOW);

}
output_front_right = 63; //118
output_back_right = 63; //133
output_front_left = 34; //75
output_back_left = 42; //110
enable = true;

}

126

else if (x == 2) {
enable = false;
back = true;
//front left, back right

}
else if (x == 4) {
//adjust to left
left = true;
back = false;
enable = false;

}
else if (x == 3) {
//adjust to right
//adjust_right = true;
right = true;
back = false;
enable = false;

}

else if (x == 5) {
analogWrite(pwm[back_left], 0);
analogWrite(pwm[front_right], 0);
analogWrite(pwm[front_left], 0);
analogWrite(pwm[back_right], 0);

left = false;
right = false;
back = false;
enable = false;
setpoint -= 1;

}

else if (x==6){
back_to_line = true;

}

else {
//stop motor
left = false;
right = false;
back = false;

127

enable = false;
setpoint -= 1;

}

//Serial.println((char)x); // Print to serial output as char (ASCII representation)
return x;

}
/** @brief Callback for when the master requests data */
void requestEvent(void) {
if (non_erased_count>=(recorded_encoder+9000)){
Wire.write(253);

}
else if (remote_start) {
//remote_start = false;
Wire.write(254);

}
else if (remote_stepper_left){
remote_stepper_left = false;
Wire.write(3);

}
else if (remote_stepper_right){
remote_stepper_right = false;
Wire.write(2);

}
else {
Wire.write(1);

}

}
unsigned char encoder_to_distance(void) {
return non_erased_count / 20.907 * 0.5;

}

void do_encoder_back_right() {
if ((!left) && (!right) && (!back)) {
encoder_count_back_right++;

}

}

void do_encoder_back_left() {
if ((!left) && (!right) && (!back)) {
encoder_count_back_left++;

}
}

128

void do_encoder_front_right() {
if ((!left) && (!right) && (!back)) {
non_erased_count++;
encoder_count_front_right++;

}
}

void do_encoder_front_left() {
if ((!left) && (!right) && (!back)) {
encoder_count_front_left++;

}
}

void IR() {
if (irrecv.decode(&results)) {

if (results.value == 0xFFC23D) {

if (!remote_start) {
remote_start = true;

}
else {
analogWrite(pwm[back_left], 0);
analogWrite(pwm[front_right], 0);
analogWrite(pwm[front_left], 0);
analogWrite(pwm[back_right], 0);
remote_stop = true;
while (1);

}

}
else if (results.value == 0xFF22DD){
remote_stepper_left = true;

}
else if (results.value == 0xFF02FD){
remote_stepper_right = true;

}
irrecv.resume();

}
}

129

Appendix G

PC Interface Main Code

from conversion import *
from structure import *

eeprom_file = open(’EEPROM.txt’,’r’)
content = eeprom_file.read()
eeprom_file.close()

operation_log = []
information = []

i = 0

while 1:
if i>=len(content):

break
[success,converted] = toHex(content[i])
if success:

[second,lower_bit] = toHex(content[i+1])
operation_log = operation_log + [(converted << 4) | lower_bit]
i = i + 2

else:
i = i + 1

for i in range (0,5):
each_trial = operation(operation_log[i*26+1],operation_log[i*26+2],operation_log[i

↪→ *26+3],operation_log[i*26+4],operation_log[i*26+5],operation_log[i*26+6])
j = 0
for j in range(0,20,2):

each_trial.add_canister(operation_log[i*26+7+j],operation_log[i*26+8+j])
information = information + [each_trial]

output = open(’Operation_Log.txt’,’w’)

for i in range (0,5):
timing = hex(information[i].month)[2:].zfill(2) + ’/’ + hex(information[i].day)[2:].

↪→ zfill(2) + ’\t\t’ + hex(information[i].hour)[2:].zfill(2) + ’:’ + hex(
↪→ information[i].minute)[2:].zfill(2) + ’\n’

130

operation_time = str(information[i].duration) + ’s␣OPERATED\n’

balls_supplied = str(information[i].balls_supplied) + ’␣BALLS␣SUPPLIED\n’

balls_left = str(10-information[i].balls_supplied) + ’␣BALLS␣LEFT\n’

canister = []

for j in range(0,information[i].canister_count):
if information[i].list_of_canisters[j].exist:

canister = canister + [’CANISTER␣’+str(j+1)+’\n’]
if (information[i].list_of_canisters[j].full):

canister = canister + [’\tFull␣Canister\n’]
else:

canister = canister + [’\tEmpty␣Canister\n’]
if (information[i].list_of_canisters[j].received_ball):

canister = canister + [’\tBall␣Received\n’]
else:

canister = canister + [’\tNot␣Supplied\n’]
canister = canister + [’Distance:␣’+str(information[i].list_of_canisters[j].

↪→ distance_from_start())+’␣cm\n\n’]

output.write(timing)
output.write(operation_time)
output.write(balls_supplied)
output.write(balls_left)
for j in range(0,len(canister)):

output.write(canister[j])
output.write(’\n\n\n’)

131

Appendix H

PC Interface Data Structure

class operation:
def __init__(self,month,day,hour,minute,duration,balls_supplied):

self.month = month
self.day = day
self.hour = hour
self.minute = minute
self.duration = duration
self.balls_supplied = balls_supplied
self.list_of_canisters = []
self.canister_count = 0

def month(self):
return self.month

def day(self):
return self.day

def hour(self):
return self.hour

def minute(self):
return self.minute

def duration(self):
return self.duration

def balls_supplied(self):
return self.balls_supplied

def add_canister(self,basic,distance_LB):
self.canister_count = self.canister_count + 1
self.list_of_canisters = self.list_of_canisters + [canister_info(basic,distance_LB

↪→)]
return True

def canister_count(self):
return self.canister_count

132

class canister_info:
#this provides information of individual canister
#bit 0: exist
#bit 1: full, empty
#bit 2: ball received or not
#bit 3: distance MSB
#second line: distance lower bits
def __init__(self,basic,distance_LB):

self.exist = basic & (0x01);
self.full = (basic>>1) & (0x01)
self.received_ball = (basic>>2)&(0x01);
self.distance = ((basic & 0b00001000)<<5)|distance_LB;

def distance_from_start(self):
return self.distance

def exist(self):
return self.exist

def full(self):
return self.full

def received_ball(self):
return self.received_ball

133

Appendix I

Laser Cut Files

134

BALLBALLU

A
E

R
2

0
1

2
0

1
9

135

136

137

138

Appendix J

3D Print File

Figure J.1: G-code Analyze

The complete g-code could be accessed here: https://drive.google.com/open?id=1wZj97RG71Zv5yH7114fS4ONFAxXBb1J

139

	Acknowledgements
	Abstract
	Abbreviation
	Introduction
	Statement of Need
	Background
	Motivation

	Project Concept and Design Parameters
	Perspective
	Theory and History
	Background Surveys
	Literature Survey
	Market Survey
	Idea Survey

	Design Overview
	Stakeholders
	Objectives
	Requirements
	Budget

	Detailed Design
	Standard Operating Procedure
	Problem Division
	Electromechanical Subsystem
	Mechanical Frame
	Ball Storage Unit
	Ball Selection Unit
	Ball Dispense Unit
	Mass Budget
	Mobility Unit
	Circuits and Microcontroller Housing
	Sensors Housing
	Material Selection

	Circuits and Sensors
	Circuitry Design
	Sensors
	Motor Driver Boards
	Power Delivering
	Future Improvements for this subsystem

	Microcontroller
	Choice of Microcontroller
	User Interface
	Permanent Log
	Communication between PIC and Arduino
	Mobility
	Canister Detection
	Ball Dispensing
	Pin Assignments

	Integration
	Mobility
	4WD Calibration with 2 PWM Pins from PIC
	Additional Arduino Nano to Control 4 DC Motors
	Change Direction of the Motors
	PID Motor Control

	Power Source
	Voltage Regulator
	Battery Supply
	Debugging

	Project Execution
	Initial Gantt Chart
	Final Gantt Chart

	Conclusions
	Bottlenecks
	Future Improvements

	Datasheets
	DC Motor with Encoder Data Sheet
	US Sensor HC-SR04 Data Sheet
	IR Receiver VS1838 Data Sheet
	L298N H-Bridge Driver Board Data Sheet
	Nema 42 Stepper Motor Data Sheet
	A4988 Stepper Driver Board Data Sheet
	IR Proximity Sensor Data Sheet

	PIC Microcontroller Main Program
	PIC Microcontroller I2C Program
	PIC Microcontroller LCD Program
	PIC Microcontroller Configuration Bits
	Arduino Microcontroller Main Program
	PC Interface Main Code
	PC Interface Data Structure
	Laser Cut Files
	3D Print File

