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The use of voting schemes based on rankings of alternatives to solve social choice problems 
can often impose significant burden on voters, both in terms of communication and 
cognitive requirements. In this paper, we develop techniques for preference elicitation 
in voting settings (i.e., vote elicitation) that can alleviate this burden by minimizing the 
amount of preference information needed to find (approximately or exactly) optimal 
outcomes. We first describe robust optimization techniques for determining winning 
alternatives given partial preference information (i.e., partial rankings) using the notion 
of minimax regret. We show that the corresponding computational problem is tractable 
for some important voting rules, and intractable for others. We then use the solution to 
the minimax-regret optimization as the basis for vote elicitation schemes that determine 
appropriate preference queries for voters to quickly reduce potential regret. We apply these 
techniques to multi-winner social choice problems as well, in which a slate of alternatives 
must be selected, developing both exact and greedy robust optimization procedures. 
Empirical results on several data sets validate the effectiveness of our techniques.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Effective schemes for the aggregation of user preferences are critical in settings where decisions must be made for 
a group of agents. Methods for preference aggregation have been widely studied under the guise of social choice within 
the realm of economics, political science, operations research and other areas, and have been gaining increasing attention 
within artificial intelligence. Indeed, the availability of data about the preferences of millions of individuals—afforded by 
recommender systems and product review sites, social media, e-commerce platforms that record consumer choice behavior, 
and related mechanisms—has made the practical solution to preference aggregation all the more pressing.

In social choice, voting rules of various sorts are commonly used for aggregating user preferences. While exceptions 
exist (e.g., simple methods like plurality and approval voting), most voting schemes make strong assumptions about the 
preferences provided by voters, in particular, assuming that each voter (or user) provides a complete preference ranking of 
all alternatives under consideration. While this requirement may be reasonable in some domains (e.g., high-stakes settings 
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such as political elections), social choice is increasingly being applied to lower-stakes, higher frequency domains, such as 
web search, product recommendation, meeting scheduling, and others. Insisting on complete preference information in such 
settings is often undesirable, since the number of options that need to be rated or ranked is often extremely large (and may 
be combinatorial in nature). As such, the cognitive and communication burden imposed by insisting on complete preference 
rankings may not be warranted given the stakes involved.

This suggests that making decisions with partial information about voter preferences may be desirable in many settings. 
First, it will often be the case that an optimal (group) decision, or implementation of the appropriate social choice function, 
can be realized with only partial preference information. Second, it may be acceptable to provide an approximate solution if 
it relieves the burden of preference specification, even when, in principle, full preferences could be determined or elicited. 
Finally, in certain situations, we may be unable to obtain complete preferences; e.g., in consumer choice settings, preference 
information is often limited to revealed choice data (e.g., which products have been purchased) or surveys, in which case 
complete preference information may simply be unavailable.

In this work, we address the problem of group decision making or preference aggregation with partial preferences. We 
consider both single-winner problems—in which a single consensus outcome or alternative is to be chosen for a group 
of users or voter population—and multi-winner problems—in which a set or slate of alternatives of some fixed size can 
be selected. While in general, the outcomes of many voting schemes cannot be determined without a large amount of 
information in the worst case [33,34], this does not diminish the practical imperative to minimize the amount of information 
elicited from voters in real-world settings.

We consider two key issues. First we consider the following problem: given partial information about voter preferences, 
how does one choose a suitable outcome or winning alternative?2 Since we generally cannot guarantee that any alterna-
tive is the true winner given partial preferences, we propose the use of maximum regret to quantify the worst-case error 
of any selected alternative over possible realizations of voters’ complete preferences. We then use minimax regret as our 
selection criterion, choosing as a winner the alternative that minimizes this error or maximum regret. This provides us 
with a form of robust optimization, and determines the alternative with the tightest quality guarantees given our uncertainty 
about true/complete voter preferences. We describe algorithms for computing minimax regret and robust outcome selection 
for several common voting rules (including Borda, Bucklin, maximin, and egalitarian3) in single-winner settings. We also 
describe exact and approximate algorithms for multi-winner settings, focusing on robust optimization for the Chamberlin-
Courant scheme [26].

We emphasize that our framework deals with informational approximation. This stands in contrast to the large body of 
work on computational approximation of voting schemes given full preference information. Our approach shares much com-
mon ground with research on possible and necessary winners [56,96], as we discuss in depth below. Unlike this work, however, 
we propose a fairly general technique by which one actually chooses an outcome in settings with partial preferences.

The second issue we address is incremental vote elicitation. If the available voter preference information is limited, we 
will not generally be able to determine the true winning outcome; furthermore, the worst-case error associated with the 
robust winner (i.e., its max regret) may be larger than one is willing to allow. In such a case, additional preference informa-
tion is required to improve decision quality. In this work, we show how to use our regret-based decision criterion to drive 
the process of preference (or vote) elicitation. Specifically, we use the solution to the robust optimization problem to choose 
which queries to ask of which voters. We develop a distribution-free heuristic called the current solution strategy that allows one 
to determine queries that quickly reduce minimax regret in practice. Experimental results on randomly-generated and real-
world data sets—in both single- and multi-winner domains—show that high-quality, and in many cases optimal, outcomes 
can be determined even when voters express a relatively small proportion of their preferences.

The remainder of the paper is organized as follows. We review relevant background and related work in Section 2. In 
Section 3, we define minimax regret for single-winner voting models, and provide some theoretical observations of the 
concept. This includes demonstrating the intractability of computing minimax regret for several voting rules (e.g., Copeland 
and ranked pairs). In Section 4 we present polynomial time algorithms to compute the minimax regret for several common 
voting rules including positional scoring, maximin, Bucklin, and egalitarian voting rules. We discuss preference elicitation 
for single-winner problems in Section 5. We develop a meta-strategy called the current solution strategy—which uses the 
solutions provided by our robust optimization methods to determine which queries to ask—and describe its instantiation 
for two voting rules. We also demonstrate its effectiveness with computational experiments on several data sets. We extend 
our robust optimization approach to multi-winner problems in Section 6, providing both exact and greedy algorithms for 
the slate optimization problem, while in Section 7 we extend the current solution strategy to elicitation in multi-winner 
problems. We conclude in Section 8 with a discussion of possible extensions of this work.

2. Preliminaries and related work

In this section, we describe necessary background and required concepts, and provide a brief overview of related work. 
We begin by outlining the basic model of (single-winner) social choice used in this work. We then describe the form of 

2 In multi-winner settings, an outcome consists of a set of alternatives. We ignore this distinction in the remainder of this section, understanding that a 
single alternative must be replaced by a slate in multi-winner problems.

3 We explain the choice of name for the egalitarian rule below.
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partial preferences assumed, and continue by specifying the multi-winner social choice framework we analyze. We conclude 
with a discussion of related work on winner selection with partial information, vote elicitation, and the communication 
complexity of voting rules.

2.1. Preferences and voting rules

We begin with a review of basic concepts from social choice theory and describe several common voting schemes. In 
this section we focus on single-winner problems, deferring a discussion of multi-winner problems to Section 2.3. We refer 
the reader to [46,73] for further background on social choice and voting rules.

We assume a set of agents, or voters, N = {1, . . . , n} and a set of candidates or alternatives A = {a1, . . . , am}. Alternatives 
can represent any outcome space over which the voters have preferences (e.g., product configurations, restaurant dishes, 
candidates for a political office, public projects, etc.) and for which a single collective choice must be made. We refer 
to this problem in general terms as the outcome selection problem, and in the case of single-winner problems as winner 
determination.

We assume voter preferences for alternatives take the form of a total order or linear ranking of A. Let � be the set of 
rankings (or votes) over A (i.e., permutations over A), or equivalently, the set of bijections of the form v : A → {1, . . . , m}. Let 
vk ∈ � denote voter k’s preference ranking. Let vk(a) denote the rank of a in vk . We say k prefers ai to a j , written ai �k a j

(or ai � a j when k is clear from context), if vk(ai) < vk(a j). We refer to a collection of votes v = 〈v1, . . . , vn〉 ∈ �n as a 
preference (or vote) profile. Let V be the set of all such profiles.

Given a preference profile, we consider the problem of selecting a consensus alternative, requiring the design of a social 
choice function or voting rule r : V → A which selects a “winner” given voter rankings/votes.4 Certain voting rules require a 
tie-breaking mechanism because more than one alternative may have the same optimum “score” (as we discuss below in 
the case of specific rules). In such cases we use r(v) to represent both: (a) the winning alternative once the tie-breaking 
mechanism is applied; and (b) the set of co-winners generated prior to tie-breaking, in which case we write a ∈ r(v) to 
indicate a is a co-winner. The usage will be clear from context.

We now outline several widely used and studied voting rules. Plurality is one of the most common rules: the alternative 
with the greatest number of “first place votes” wins (various tie-breaking schemes can be adopted). Plurality does not 
require that voters provide rankings; however, this “elicitation advantage” means that it fails to account for relative voter 
preferences for any alternative other than its top choice. The other schemes described below are more sensitive to relative 
preferences.

• Positional scoring rules: Assume a positional scoring function (PSF) α, where α(1), . . . , α(m) assigns a scalar value to each rank position, 
with α(i) ≥ α(i + 1) for all i ≥ 1. The score of a is sα(a, v) = ∑

k α(vk(a)). The winner is the alternative with the greatest score. 
We write αk(a) = α(vk(a)) which can be interpreted as a measure of k’s satisfaction with alternative a. The well-known Borda count
is a positional rule with α(i) = m − i. Plurality (with α(1) = 1 and α(i) = 0 for i > 1), k-approval (with α(i) = 1 if i ≤ k, α(i) = 0
otherwise), k-veto (α(i) = 1 if i ≤ m − k, α(i) = 0 otherwise) are also positional rules.

• Egalitarian (maxmin fairness): Let s f (a, v) = min{m − vk(a) : k ∈ N}. The winner is the alternative with maximum score (i.e., the 
alternative whose worst rank position over all voters is the highest) [30].5

• Copeland: Define W (ai, a j; v) to be 1 if more voters prefer ai to a j , 0.5 if tied, and 0 otherwise. Let sc(ai) = ∑
j 
=i W (ai, a j; v). The 

alternative a with highest score sc(a) wins.
• Maximin: Let N(ai, a j; v) = |{vk : vk(ai) < vk(a j), k ∈ N}| be the number of voters who prefer ai to a j . Let sm(ai, v) = min j 
=i N(ai, a j; v). 

The a with highest score sm(a, v) wins.
• Bucklin: The Bucklin score sB (a, v) is the smallest k ∈ {1, . . . , m} such that more than half of all voters rank a above position k. The 

winner is the alternative with smallest Bucklin score.6

We occasionally mention other voting rules below without defining them.
Notice that all of these voting schemes explicitly score alternatives w.r.t. voter preferences, implicitly defining some form 

of “societal utility,” “degree of societal acceptance” or aggregate quality measure for each alternative. Indeed, this is true of 
many (though not all) voting schemes. In the sequel, we assume the existence of a scoring function s(a, v) that measures 
the quality of any candidate given a preference profile v. Specifically, consider some voting rule r : V → A. We say a scoring 
function s is consistent with rule r iff r(v) ∈ argmaxa∈A s(a, v) for all v ∈ V . This is, of course a minimal requirement, 

4 Consensus rankings [3] could also be considered. The consensus ranking can be used for many purposes; e.g., the top-ranked alternative can be taken 
as the consensus winner, or we might select the top k alternatives in the consensus ranking in settings where multiple candidates can be chosen (say, 
parliamentary seats, or web search results [42]). Thus, consensus rankings can be used as a means of selecting winning sets.

5 This voting rule seems not to have a well-established name. Congar and Merlin [30] call this rule “maximin,” but this conflicts with the much-more 
established use of that name for the rule that follows in this list. Maxmin fairness is a natural name, but also not well-established. The term egalitarian 
social welfare is used commonly in the social choice literature (see, e.g., [6,28,83]) and reflects precisely the criterion adopted in this rule. Given that we 
adopt a “social welfare” perspective later in this paper, we adopt the term egalitarian voting rule in our work. We note that the rule bears some connection 
to the threshold aggregation scheme [2], but the latter actually is a lexicographic (leximin) criterion.

6 This is sometimes known as “simplified Bucklin”. In another variation, the alternative with the highest k-approval score wins, where k is the simplified 
Bucklin score.
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since any voting rule can be defined using an indicator function as the score. However, all rules discussed above have 
“natural” scoring functions. Our approach to robust optimization will exploit this fact. When there are ties among the 
highest scoring candidates, usually some form of tie-breaking is used. None of our results are tied critically to any specific 
form of tie-breaking.

2.2. Partial preferences

One obstacle to the widespread use of voting schemes based on full preference rankings is the informational and cog-
nitive burden imposed on voters, and concomitant ballot complexity. This partly explains the popularity of plurality voting 
in many jurisdictions [73], and the fact that much advocacy of more expressive methods (e.g., approval voting [20]) often 
falls short of proposing the use of full rankings. Elicitation of sufficient, but partial information about voter rankings could 
alleviate some of these concerns by reducing this burden. At the same time, as discussed above, there are settings where 
we might be unable to access complete vote profiles (e.g., when using consumer choice data), or when the stakes involved 
do not warrant the cost of eliciting full rankings.

For these reasons, we consider below winner determination with partial preferences. We assume that the partial ranking
of a voter k takes a very general form, namely, a partially ordered set over domain A, or equivalently (the transitive closure 
of) a consistent collection of pairwise comparisons of the form ai � a j .7 Most natural constraints on preferences, including 
the responses to natural queries (e.g., pairwise comparison, positional, top-t , and other queries) can be represented in this 
way.8

Let pk be the partial ranking of voter k. A completion of pk is any vote vk that extends pk . Let C(pk) denote the set of 
completions of pk , that is, the set of all (complete) votes vk that extend pk . We introduce the following notation:

• Neck(a � b) iff a � b in all completions of pk; i.e., a is necessarily preferred to b by k.
• Posk(a � b) iff a � b in some completion of pk; i.e., a is possibly preferred to b by k.
• Inck(a, b) iff Posk(a � b) and Posk(b � a); i.e., neither a nor b is known to be preferred to the other by k, so they are 

“incomparable” given the knowledge of k’s preferences encoded by pk .

A partial profile is a collection of partial votes p = 〈p1, . . . , pn〉. Let C(p) = C(p1) × . . . × C(pn) be the set of completions of p.
For time-complexity analysis of the algorithms in this paper, we assume that the representation of a voter k’s partial 

preference ranking is such that assessment (e.g., look up) and addition of any pairwise preference a �k b takes O (1) time. 
This enhances readability and is reasonable in many practical situations where the number of alternatives m is a small 
constant. Partial preferences may be represented using set membership data structures. For any partial preference p, we 
maintain two set membership data structures, ancestor and descendant where a ∈ ancestor[b] if a � b and a ∈
descendant[b] if b � a. Adding a pairwise comparison to p may result in additional implied comparisons via transitive 
closure, hence an addition operation can be called multiple times. Set membership data structures can be implemented in 
a variety of ways, for example, using red-black trees where look up queries take O (log m) time.

2.3. Multi-winner models

While considerable research in computational social choice has focused on single-winner choice problems, only recently 
has much attention been paid to the algorithmic aspects of multi-winner choice problems [13,62,67,71,77,78,87]. Multi-winner 
problems are of critical importance in many settings. The canonical example is that of electing a legislature or committees 
using proportional representation [26,72]. However, multi-winner models are also appropriate for resource allocation, prod-
uct recommendation, multiple facility location problems, consumer segmentation and a variety of other problems where 
either: (a) a limited number of options can be offered; (b) budget constraints preclude personalized recommendations; or 
(c) budget can be traded off against group satisfaction [55,62].

Multi-winner problems deal with the selection of a set or slate of alternatives ā ⊆ A. A voter’s satisfaction with a slate 
is a function of their satisfaction with the options in the selected slate, and constraints are generally placed on the set of 
feasible slates. In this work, we focus on one of the conceptually simplest such multi-winner models: (i) we assume that 
voter satisfaction with candidates is given by some scoring function (e.g., the Borda PSF) induced by their ranking, and that 
a voter’s satisfaction with the slate is given by the score of their most preferred alternative on the slate; and (ii) feasible 
slates are those with size |ā| ≤ K . In other words, we can select up to K candidates and each voter derives benefit from 
their most preferred candidate.

More formally, given a preference profile v, we define the score S(ā, v) of a K -set ā ⊆ A and the optimal K -set ā∗
v as 

follows:

7 A set of comparisons is consistent if its transitive closure is anti-reflexive. Unless otherwise stated, we assume all sets of pairwise comparisons describ-
ing a single (partial) vote are consistent.

8 One exception involves constraints that are naturally disjunctive; e.g., a response to the question “What alternative is ranked tth ?” cannot be mapped 
to a set of pairwise preferences unless the positions t are queried in ascending or descending order.
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S(ā,v) =
∑
i∈N

Si(ā) where Si(ā) = max
a∈ā

αi(a), (1)

ā∗
v = argmax

|ā|≤K
S(ā,v). (2)

(We suppress dependence of S on α since the PSF will be fixed and clear from context.) Note that we use the term K -set 
to refer to sets of size at most K rather than exactly K for brevity. In most settings below, sets of size less than K may be 
optimal and might be preferred for tie-breaking, though an optimal set of size K always exists.

When α is the Borda PSF, this corresponds to the Chamberlin-Courant rule [26].9 This slate optimization problem can be 
viewed as a segmentation problem [55]; and it is also a special case of budgeted social choice, specifically, the limited choice
form of the problem [62]. More general forms of the Chamberlin-Courant rule [72] and budgeted social choice [62] allow for 
assignment functions that map voters to specific options (e.g., to ensure balanced representation, or budget feasibility); but 
here we assume that the only constraint is on the number of options selected. Sets of size less than K offer no advantage 
over those of size K in this case.

2.4. Related work

In this section, we provide a brief overview of work in computational social choice, specifically in voting settings, that 
addresses issues of partial information and preference elicitation. In some cases, we defer a deeper discussion to later 
sections, where we draw explicit comparisons to our own approach.

Voting and social choice. We have provided a brief discussion of various voting rules above, specifically focused on some 
of the rules we examine in our work. There are many excellent overviews of social choice and voting to which we refer 
the interested reader for more background, including general overviews [46,73] as well as material with a more specific 
computational focus [21,27,32].

Multi-winner social choice. Below we focus on preference elicitation and robust optimization for multi-winner problems 
that correspond to the Chamberlin-Courant [26] scheme as defined above. An important variant proposed by Monroe [72]
requires the use of an assignment function—that associates each voter with a specific winner—so that candidates each 
represent an equal number of voters.

These problems can be viewed as instances of segmentation problems [55], in which one must solve an optimization 
problem for a number of different “customers,” each of whom has a different objective function, hence different values for 
a given solution. Full personalization corresponds to selecting an optimal solution for each customer given her objective 
(or preferences), but this is often not feasible due to budget, capacity or other constraints on the collective solution. Partial 
personalization can be realized by segmenting customers into groups, and determining the best solution for each group. 
Kleinberg et al. [55] consider problems in which at most K solutions can be selected from a set, corresponding to the 
multiple winner problem we consider (if customer objectives are given by positional satisfaction), as well as problems 
in which K is variable, and each solution incurs a fixed cost γ (and the aim is to find the solution with greatest net 
return).

Lu and Boutilier [62] generalize this problem somewhat further, developing a budgeted social choice model, of which 
the specialization corresponding to the simple multi-winner problem with positional satisfaction—which they dub limited 
choice—is also considered. They show that the limited choice problem is NP-hard, but present a greedy algorithm that has 
a 1 − 1

e approximation ratio (and performs well in practice). Skowron et al. [88] provide a stronger PTAS for this problem. 
Procaccia et al. [78] prove NP-hardness of a variant of the Chamberlin-Courant scheme, while Potthoff and Brams [77]
provide an integer programming formulation of Chamberlin-Courant (limited choice).

Skowron et al. [88] address the complexity of approximate winner determination for both the Chamberlin-Courant and 
Monroe schemes (analyzing satisfaction, dissatisfaction and egalitarian variants). They show hardness of approximation in 
some cases, and provide approximation schemes (including the PTAS mentioned above) for others. Skowron et al. [87]
analyze some of these algorithms empirically. Oren and Lucier [67] analyze the regret of online variants of the budgeted 
social choice problem.

Facility location [48] and maximum coverage problems [29] all bear close connection to these problems as well. For 
instance, Skowron and Faliszewski [85] draw a connection between maximum coverage with “bounded frequencies” and 
an approval variant of Chamberlin-Courant, and derive approximation schemes for several versions of this problem. We are 
unaware of any work that considers either robust optimization of slates in multi-winner problems in the presence of an 
incomplete preference profile, nor any work that considers the incremental elicitation of voter preferences in such a setting.

Of course, a variety of other multi-winner voting rules and social choice problems have been considered in the literature 
(e.g., [5,7,24,43,44,86]), more than can be surveyed here.

9 Note that Chamberlin-Courant [26] specify their model in terms of misrepresentation and attempt to minimize total degree of misrepresentation rather 
than maximize total satisfaction; but the notions are equivalent for determining an optimal slate.
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Voting and partial information. Determining the winners of elections under partial information is a problem that has received 
significant attention. Among the most important concepts when dealing with partial information are possible and necessary 
winners [56]. We say a is a possible winner under p if and only if there is some v ∈ C(p) such that r(v) = a; and a is a 
necessary winner under p iff r(v) = a for all v ∈ C(p). Computationally, the possible winner question is often quite difficult 
(NP-complete), while necessary winner computation can be easy (polynomial time) or difficult (co-NP-complete) depending 
on the rule [56,96]. Considerable additional work has addressed the complexity of possible and necessary winner determi-
nation, in both unweighted and weighted voting (e.g., [10,12,33,58,93]).

Possible and necessary winners are purely epistemic notions—they do not prescribe a method for actually choosing win-
ners in general under partial profiles (a point to which we return below). If one has some prior distribution over voter 
preferences, winners can be estimated probabilistically given a partial vote profile. Bachrach et al. [8] consider a (restricted) 
probabilistic analog of the possible winner problem, and show that counting the number of completions in C(p) of partial 
profile p is #P-hard, but provide a polynomial time (randomized) approximation algorithm for the problem. Hazon et al. [49]
consider a model that allows for arbitrary (i.i.d.) preference distributions and develop a dynamic programming method to 
compute the probability that a candidate a wins under several different voting rules.

Preference elicitation and communication. The elicitation question has been studied from a theoretical perspective, addressing 
whether winners for some voting rules can be determined with partial voter preferences (rankings). Unfortunately, worst-
case results are generally discouraging. Conitzer and Sandholm [34] demonstrate that the communication complexity of 
several common voting protocols, such as Borda and Copeland, is �(nm log m), essentially requiring communication of full 
voter preferences in the worst-case. Indeed, determining which votes to elicit to determine a winner is NP-hard in many 
schemes (e.g., Borda) [33,94]. We refer the reader to Boutilier and Rosenschein [18] for a survey of the information and 
communication requirements of various voting rules.

Despite the theoretical complexity of partial elicitation, practical means of eliciting partial rankings and making decisions 
with partial preferences are vital. This is precisely the problem we address in this work. Kalech et al. [53] were among the 
first to consider practical vote elicitation schemes for several different score-based voting rules (e.g., Borda, range voting). 
They propose two elicitation schemes using specific query types, and adopt possible and necessary winners as their primary 
solution concept. Their iterative voting method determines a true winner (with no approximation) and proceeds in rounds.10

At each round, voters are queried for their next best candidate (and by round t have answered the equivalent of a top-t
query, as defined below). At the end of each round, necessary and possible winners are computed with respect to the 
current partial vote profile: if every possible winner is a necessary (co-)winner, the process stops and returns the set of 
necessary winners. (The algorithm could also be terminated once any necessary winner is found.) On small random and 
real-world vote profiles (up to 30 voters and 50 alternatives), this scheme can reduce the number of alternatives ranked by 
voters by up to 10–40%, with the larger gains possible when user preferences are more uniform.

Kalech et al. [53] also propose greedy voting, which proceeds for a fixed number of rounds t . Given the current partial 
profile pt at round t , the minimal and maximal possible scores s(a, r), over all completions r of pt , of each candidate a are 
computed. Then each voter ranks the set of q alternatives with the largest minimum scores (maximum scores are used to 
break ties), for some small q. Since termination must occur after t rounds, necessary winners may not result, so possible 
winners are returned. This scheme cannot guarantee winner optimality, nor any bounds on quality. Kalech et al. show 
empirically that the (post hoc) quality of the resulting winners in small domains is reasonably high and, of course, improves 
with the number of rounds permitted. We contrast these methods with our techniques below.

Subsequent work on elicitation has focused on several rather distinct approaches. These include the use of approximation 
(to select alternatives that are “close” to winning—as we do in this work—or selecting the true winner with high proba-
bility). Some of these methods exploit probabilistic models of voter preferences, while others are distribution free, and are 
sometimes designed with specific voting rules in mind. The use of machine learning methods to predict missing preferences 
is also commonplace. We discuss such approaches here.

Lu and Boutilier [64] propose the use of sampled vote profiles—from historical data or from some known or learned 
probability distribution over voter preferences—to determine the value of k required so that top-k voting yields an (approx-
imate) winners with high probability, providing PAC-based sample complexity results on the number of profiles needed. 
Oren et al. [45,74] consider the use of top-k voting to determine winners with high probability, for positional scoring rules 
(and Copeland). They provide lower and upper bounds on the k required for various distributional models of preferences 
(e.g., impartial culture and Mallows) and scoring rules. They also consider “zero-elicitation” protocols (effectively, k = 0).11

Lee et al. [60] shows how winner approximation with high probability allows one to circumvent general lower bounds 
on exact winner determination for both Borda and the Condorcet winner. Specifically, only a logarithmic (in the number of 
alternatives and the approximation terms) number of pairwise comparisons are needed, which is independent of the number 
of voters. (Note this work makes no assumptions about preference distributions.) In a related vein, Dey and Bhattacharyya 
[36] consider sampling the (complete) rankings of a subset of voters and derive upper and lower bounds on the sample 

10 This is distinct from iterative voting schemes in which voters change their votes in response to the current vote profile, which go by the same name 
(e.g., [61,70,82].)
11 Baumeister et al. [9] analyze top-k voting schemes, but from the perspective of campaign design and possible winner determination.
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complexity for a large number of voting rules required to ensure an approximate winner is discovered with high probability. 
In terms of strategyproof elicitation, Lee [59] describes a technique to efficiently elicit ε-approximate winners that applies 
to all tournament voting rules that is ε-strategyproof and also preserves a form of voter privacy.

Azari Soufiani et al. [90] exploit a probabilistic model of voter utilities given attributes of both voters and candidates, 
and apply a Bayesian experiment design approach to elicit full rankings. However, their scheme is not directly driven by a 
specific decision criterion such as minimax regret, but rather emphasizes maximum likelihood estimation (MLE). Caragiannis 
et al. [25] also consider the design of voting rules under distributional assumptions (e.g., Mallows) for the purposes of 
maximizing likelihood with respect to some underlying true ranking.

An alternative way of exploiting probabilistic information is to use it as the basis for predicting missing preferences. 
Doucette et al. [40] use classification to predict missing preferences in voter ballots and run voting rules on these imputed
ballots. They provide no theoretical guarantees for this approach (though do analyze the impact of classifier performance), 
but analyze the method experimentally on a variety of data sets.

Other work on vote elicitation considers several tasks related to determining the minimal information required to select 
a winner, in both general cases, and under assumptions of the structure of voter preferences. Ding and Lin [39] analyze the 
computation of a “deciding set” of queries for a particular candidate—these are queries where any consistent set of responses 
will fully determine whether a candidate must be a winner or loser. However, this cannot be construed as an interactive 
elicitation scheme. Dery et al. [35] develop practical elicitation heuristics for range voting [89] that exploit a probabilistic 
model of voter preferences, and consider both entropy reduction and alternatives with highest posterior winning probability 
to generate queries. This probabilistic model is updated in a manner akin to collaborative filtering in recommender systems 
and is shown to offer significant reductions in queries needed in several practical group recommendation tasks.

Zhao et al. [97] develop techniques for group elicitation under randomized voting (including Borda and plurality) assum-
ing a Plackett-Luce probabilistic model of user preferences, and consider a fairly broad class of queries—specifically, which k
of a set of l alternatives are most preferred, which includes pairwise comparisons as a special case—as well as alternatives 
characterized by a set of features.

Conitzer [31] was among the first to demonstrate that structural assumptions on preferences can make elicitation easier 
than the general case: he shows that single-peaked preferences (under certain knowledge assumptions) can be elicited with 
a linear number of comparison queries per agent (and this serves as a lower bound on the number of queries needed 
for aggregate ranking). Dey and Misra [37,38] analyze additional structural assumptions on voter preferences (respectively, 
single-crossing preferences and single-peaked preferences on trees for various tree parameters) and provide upper and lower 
bounds on query complexity for a several restricted elicitation modalities. Another form of structure on preferences is related 
to the multi-attribute (or feature) structure of the alternatives themselves. The work of Zhao et al. [97] mentioned above 
uses feature structure; Benabbou et al. [11] extend the minimax-regret approach we develop here to multi-attribute domains 
using linear programming. We note that minimax regret has been used for multi-attribute optimization and preference 
elicitation in a variety of single-agent (non-aggregate) settings, as discussed below.

Other uses of minimax regret for preference elicitation. Finally, we note that minimax regret—the robustness criterion we adapt 
to the problem of winner determination under partial profiles and to drive our elicitation process—has been used rather 
widely for the same purposes in single-agent decision making and preference/utility elicitation. This includes work on multi-
attribute optimization problems [15–17,19,22,23,84,95], combinatorial optimization of item slates [92], and Markov decision 
processes [79,80]. It has also been used in (multi-agent) mechanism design to minimize the amount of utility function in-
formation revealed to direct mechanisms such as the VCG mechanism [50–52]. Boutilier [14] provides an overview of such 
techniques. We also note that minimax regret has been used as a robustness criterion for optimization problems (e.g., linear 
programs) in which there is data or objective function uncertainty [1,4,57].

3. Robust winner determination: the single-winner case

In this section, we consider single-winner voting problems, and address the question of robust winner determination given 
partial information about voter preferences. We introduce the notion of minimax regret as a robustness criterion for such 
problems in Section 3.1. We discuss the relationship of minimax regret with the notions of possible and necessary winners 
in Section 3.2, and use this relationship to show that computing minimax regret is computationally intractable for certain 
voting rules (e.g., Copeland, ranked pairs). In the following section, Section 4, we investigate the computation of minimax 
regret, developing polynomial time algorithms for various voting rules, including Borda, maximin, Bucklin and egalitarian, 
based on the construction of worst-case completions of partial profiles.

3.1. Minimax regret

Let r be a voting rule, defined using some natural scoring function s(a, v) such that r(v) ∈ argmaxa∈A s(a, v) as described 
above.

Suppose we have a partial profile p and we are forced to make a decision in the face of this incomplete information. We 
distinguish our partial information setting from the question of aggregating preferences of voters whose preferences reflect 
genuine incomparability (see, e.g., [75])—as mentioned above, we view two alternatives as incomparable with respect to the 
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information encoded in a voter’s partial preference if it does not allow one to conclude that either is preferred to the other. 
Unfortunately, the notions of necessary and possible winners do not resolve this issue satisfactorily: necessary winners are 
not guaranteed to even exist given arbitrary partial profiles; and possible winners can only be used to narrow the set 
of options rather than to prescribe an actual winner. Here we propose the use of the minimax regret solution concept. This 
concept has been used for robust decision making, and for driving preference elicitation, in a variety of single-agent domains 
[16,19,23] and in mechanism design [51]; but our work is the first application of the notion to voting and (rank-based) social 
choice.

Intuitively, we measure the quality of any proposed winner a given p by considering how far from optimal a could be in 
the worst case (i.e., given any completion of p). The minimax optimal solution is any alternative that is nearest to optimal 
in the worst case. More formally, we define:

Regret(a,v) = max
a′∈A

s(a′,v) − s(a,v) (3)

= s(r(v),v) − s(a,v)

PMR(a,a′,p) = max
v∈C(p)

s(a′,v) − s(a,v) (4)

MR(a,p) = max
v∈C(p)

Regret(a,v)

= max
a′∈A

PMR(a,a′,p) (5)

MMR(p) = min
a∈A

MR(a,p) (6)

a∗
p ∈ argmin

a∈A
MR(a,p) (7)

Regret(a, v) is the loss (or regret) of selecting a as a winner, given true vote profile v, instead of choosing the optimal 
alternative under rule r (equivalently, under scoring function s).12 PMR(a, a′, p) denotes the pairwise max regret of a relative 
to a′ given partial profile p. This is simply the worst-case loss—over all possible complete realizations, C(p), of a partial 
profile—of selecting alternative a rather than a′ . Notice that pairwise max regret can be negative. MR(a, p) is the maximum 
regret (or max regret) of a, in other words, the worst-case loss associated with selecting a rather that selecting a true 
(score-maximizing) winner. We can view this as adversarial selection of a complete profile v to maximize the loss between 
our chosen alternative a and the true winner under v. Our aim is to choose the alternative a with minimum max regret: 
MMR(p) denotes minimax regret under partial profile p, while a∗

p denotes the minimax optimal alternative.13 This gives us 
a form of robustness in the face of vote uncertainty: every alternative has worst-case error at least as great as that of a∗

p .

3.2. Relationship to possible and necessary winners

All voting rules discussed above have natural scoring functions (this fact is exploited in the algorithms for necessary win-
ner determination developed by Xia and Conitzer [96]). The notions of possible and necessary winners can be generalized 
to allow for ties when scores are used: a necessary co-winner is a candidate with maximum score in all possible completions 
of a partial profile (hence, even if the tie-breaking rule used by r goes against it, a is still “as good” a candidate as any 
winner actually selected by r); possible co-winners are defined similarly [96].

Notice that if MMR(p) = 0, then the minimax winner a∗
p has the same score or utility as the winner in any completion 

v ∈ C(p); i.e., a∗
p is guaranteed to be optimal. While this does not imply there is a necessary winner under p (due to 

tie-breaking), MMR(p) = 0 iff there is a necessary co-winner. Thus for any rule r we have, by setting ε = 0:

Observation 1. The max regret decision problem for any voting rule r (i.e., does alternative a have MR(a, p) ≤ ε) is at least 
as computationally hard as the necessary co-winner problem for r.

This implies that computing minimax regret is co-NP-hard for the following voting rules [96]: Copeland, ranked pairs, 
(balanced or unbalanced) voting trees, and plurality with runoff. This observation does not imply, however, the easiness 
of either max regret or minimax regret computation when the necessary co-winner problem is easy; but we describe 
polynomial time algorithms to compute minimax regret for several important voting rules in Section 4.

The relationship between max/minimax regret and possible winners is more complicated. For certain scoring rules the 
minimax winner a∗

p must be a possible winner under p. For example, in plurality voting, if we assume each partial vote is 
either empty or lists only the top alternative, the minimax winner is the alternative a with the greatest number of votes 
(which are by assumption “first-place” votes). This a is also a possible winner since we can complete all empty votes by 
placing a at the top. However, in general, we have:

12 See Smith [89] who uses score-based regret to measure the performance of various voting rules, including range voting.
13 We informally write as if the optimal candidate is unique, but there can be several alternatives a that minimize max regret.
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Fig. 1. A partial profile p where the minimax alternative is not a possible winner (under 2-approval). Alternative b has score 2k in every completion. Either 
a or c must be at the top of every vote in set III, so one of them must receive at least k + 1 approval points from set III. Hence max(s(a), s(c)) ≥ 2k + 1, 
and a and c are both possible winners, while b is not. Now, MR(b, p) = k + 1 (a completion that puts a at the top of all votes in set III would give a a score 
of 3k + 1, the maximum possible). But MR(a, p) = 2k + 1: if we select a, the adversary will place c and e above a in each vote in set III, setting s(a) = k
and s(c) = 3k + 1. MR(c, p) = 2k + 1 by similar reasoning.

Observation 2. There are voting rules and partial preference profiles for which the regret-minimizing alternative is not a 
possible winner.

Fig. 1 illustrates this observation, showing a vote profile in which, under the 2-approval voting rule, the alternative 
that minimizes max regret is not a possible winner.14 Both possible winners in this example have a poor 2-approval score 
under some completion of the votes, while a compromise candidate that cannot win under any completion has a much 
higher guaranteed score (i.e., lower max regret) than either possible winner. This suggests that using the notion of possible 
winners to select winners with partial votes can be problematic for some voting rules. Indeed, there would appear to be no 
general way to ensure a possible winner isn’t far from being optimal without using max regret to quantify this risk. The fact 
that the minimax winner a∗

p is not a possible winner is not problematic in our view, but if one insists on selecting from 
the set of possible winners, max regret could at least be used to aid in that selection (i.e., to choose the possible winner 
with least max regret). Still we take max regret to be the more fundamental notion for winner determination with partial 
information.

4. Computing single-winner minimax regret

Minimax regret can often be solved as a mixed integer program (MIP) [16,19] or a search problem [23] in a variety of 
decision problems. In our voting context, a straightforward MIP formulation—with O (|N||A|) integer variables to capture 
rank placement in each vote completion—would be prohibitively expensive to solve (likely beyond the reach of general 
MIP solvers for all but relatively small problems, especially for the types of high-frequency, low-stakes domains described 
in the introduction). However, for certain voting rules and preference constraints, we can greatly simplify minimax regret 
computation by directly considering properties of the worse-case completions of voter profiles without directly computing 
them. We illustrate this for several voting rules in this section. Our constructions are tightly related to those used by Xia 
and Conitzer [96] to demonstrate polynomial time algorithms for necessary winners for the positional scoring, maximin, 
and Bucklin rules. Indeed, their constructions can be viewed as attempting to maximize the difference in score between a 
proposed winner and an “adversarially chosen” alternative. We adapt these ideas to minimax regret, and extend the analysis 
to egalitarian voting.

4.1. Exploiting pairwise max regret

To demonstrate the polynomial time computability of minimax regret for specific voting rules below, we explicitly com-
pute the pairwise max regret PMR(a, w, p) of all m(m−1)

2 ordered pairs of alternatives (a, w) such that a 
= w , where a is a 
proposed winner and w is an adversarial witness. With PMR in hand, we can readily determine minimax regret using Eqs. (5)
and (6). We thus need only show that PMR can be computed in polynomial time.

A scoring function is (additively) decomposable if s(a, v) = ∑
i s(a, vi); i.e., if it is the sum of vote-wise scores. This implies 

that (pairwise) regret is decomposable, since

Regret(a, w,v) = s(w,v) − s(a,v) (8)

=
∑

i

s(w, vi) −
∑

i

s(a, vi) (9)

=
∑

i

[s(w, vi) − s(a, vi)]. (10)

14 In 2-approval, the top two candidates in each voter ranking each receive one point, and the winner is that with highest total approval score.
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Fig. 2. An illustration of the three possible relations between alternative a and adversarial alternative or “witness” w in any partial vote p. Other alternatives 
stand in a specific relation to a and w , with each oval representing one of the possible relationships (see text). To maximize a partial vote’s contribution to 
pairwise max regret PMR(a, w, p), linearizations of p require placing the groups of alternatives indicated by the ovals in specific positions relative to a and 
w in a way that depends on the scoring function.

Given a set of partial votes pi , their completions by an adversary can be undertaken independently, so we can compute 
PMR by independently choosing the completions vi of each pi that maximize vi ’s local regret:

PMR(a, w,p) = max
v∈C(p)

s(w,v) − s(a,v) (11)

=
∑

i

max
vi∈C(pi )

s(w, vi) − s(a, vi). (12)

All positional scoring functions are decomposable in this way.

4.2. Positional scoring rules

We illustrate our constructions by first examining the relatively simple case of computing PMR(a, w, p) for a linear
positional scoring rule, effectively, a positional rule that uses positive affine transformation of the Borda score.15 Since PMR
is decomposable, we determine, for any partial vote p, the completion v with maximum contribution to PMR.

Fig. 2 illustrates the three different cases we need to consider in any partial vote p: (1) p implies Nec(a � w); (2) p
implies Nec(w � a); and (3) p implies Inc(w, a). In each case, the remaining alternatives stand in one of several possible 
relationships with a and w , as indicated by the ovals, each representing the set of alternatives that fall into the following 
categories:

• H : those alternatives that are (known to be) preferred to both a and w in the partial vote p.
• B: those alternatives that are between a and w in p. If Nec(a � w) then these are preferred to w , while a is preferred 

to them. If Nec(w � a) then these are preferred to a, while w is preferred to them. If Inc(w, a), then there are no such 
alternatives.

• L: those alternatives that are dispreferred to both a and w .
• D: those alternatives that are dispreferred to a but incomparable to w . If Nec(w � a), then there are no such alterna-

tives.
• E: those alternatives that are dispreferred to w but incomparable to a. If Nec(a � w), then there are no such alternatives.
• C : those alternatives that are preferred to w but incomparable to a. If Nec(w � a), then there are no such alternatives.
• A: those alternatives that are preferred to a but incomparable to w . If Nec(a � w), then there are no such alternatives.
• U : those alternatives that are incomparable to both a and w .

The lack of preference arrows between certain sets (ovals) does not mean that pairwise preferences are not known between 
elements of some of these pairs. For instance, the preference c � u for some c ∈ C and u ∈ U may be part of the partial 
vote. This relation does not play a role in constructing a completion for PMR below, so it is ignored. Of course, not all such 
pairwise preferences across distinct sets are viable—for instance, it is not possible to have u � c, since this would imply 
u � w , contradicting the definition of U . Similarly, elements within these sets may have known preferences within p, for 
instance, we may know c � c′ for some c, c′ ∈ C . Indeed, we exploit these “internal” known preferences in determining 
queries during preference elicitation (see Section 5.1). We use these categories in analyzing other voting rules below as 
well.

Returning to linear positional scoring rules, in the first case, we have Nec(a � w), so p’s contribution to PMR must be 
negative. It is easy to see that pairwise regret is maximized with a completion v that minimizes the positional gap between 

15 Linear means that an alternative’s score is a linear function of its rank in v , hence the difference in two rank positions uniquely determines their 
difference in score. Such rules are Borda-like for all practical purposes.
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a and w (i.e., maximizing the adversary’s (negative) advantage). To minimize the gap, it suffices to: (i) order set D below 
w , i.e., assume w � d for all d ∈ D; (ii) order set C above a, i.e., assume c � a for all a ∈ A; and (iii) order elements of set 
U either above a or below w . These orderings can be arbitrary (one need only maintain consistency within and across the 
sets in question). This implies that the (negative) contribution to PMR is exactly −(|B| + 1). Note that we needn’t compute 
an actual linearization of p, but simply need to determine the cardinality of the set B .

The second case of Nec(w � a) proceeds similarly (see figure), but instead we maximize the positional gap between w
and a (i.e., maximize the advantage of w over a). This is accomplished by ordering sets E , A and U (arbitrarily) between 
w and a. Hence, the contribution to PMR by p in the second case is |B ∪ F ∪ E ∪ U | + 1 = m − |H ∪ L| − 1. Finally, in the 
third case of Inc(a, w), the (positive) advantage of w over a is maximized by ordering w over a and placing sets E , A and 
U between the two.

Computing PMR thus requires, for each partial vote, categorizing all alternatives as belonging to the relevant sets de-
scribed above as indicated in Fig. 2. This is a simple matter: one compares each alternative a′ to both a and w in the partial 
vote (assuming the transitive closure of p is given), classifying it into the appropriate set, which takes O (m) time. This 
implies that PMR(a, w, p) is computable in O (nm) time for linear scoring rules. With O (m2) pairs, computing MMR(p) (and 
the optimal a∗

p and its witness) takes O (nm3) time. In many practical settings, m can be treated as a small constant relative 
to n, in which case our algorithms scale linearly in n.

With linear positional scoring rules, arbitrary placement of alternatives that do not influence the positional gap between 
w and a (e.g., set U when Nec(a � w)) is allowed. For nonlinear rules, the size of the gap and the position of both a and w
can influence w ’s advantage when Nec(a � w). However, the required placement can be found by simply examining splits 
of the set U of different cardinalities to determine how many to place above a and below w to minimize a’s advantage over 
w—again, this can be accomplished in O (m) time.

More formally for non-linear positional scores, the adversarial completion of a partial vote p when Nec(a � w) requires 
that items from U are placed either above a or below w , since placing these items between a and w results in smaller 
regret. It only matters the number of items k (and not the identity of those items) from U that is placed above a or below 
w to maximize regret—because the regret depends only on the rank positions of a and w . Since there are |U | items, we can 
check how many items k ∈ {0, . . . , |U |} from U should be placed above a with the remainder |U | − k items placed below w
to maximize regret. For each k, we can determine the rank positions of a and w and hence their pairwise regret. As there 
are at most m items in U , there is an additional O (m) computational cost relative to linear positional scoring rules (where 
the choice of k does not change the regret value).

Certain special cases can be treated more efficiently; e.g., if a positional rule has score gaps that are monotonically 
non-increasing (i.e., si − si+1 ≥ si+1 − si+2, satisfying a discrete form of “convexity”) then U is placed above a (and if non-
decreasing, below w). In any case, minimax regret computation remains O (nm3). These observations show that:

Theorem 3. Minimax regret can be computed in O (nm3) time for any positional scoring rule.

4.3. Maximin voting

We now consider pairwise max regret computation for the maximin voting rule, a non-decomposable voting rule that 
requires more intricate computation. However, it is “semi-decomposable” in the sense that we can compute independent 
completions of each partial vote pi , for each of a number of alternatives, and then aggregate the resulting scores.

To compute PMR, we recall the definition of the maximin scoring function, and embed it within the definition of PMR:

PMR(a, w,p) = max
v∈C(p)

sm(w,v) − sm(a,v)

= max
v∈C(p)

[
sm(w,v) − min

a′ 
=a
N(a,a′;v)

]

= max
v∈C(p)

[
sm(w,v) + max

a′ 
=a
(−N(a,a′;v))

]
= max

v∈C(p)
max
a′ 
=a

[
sm(w,v) − N(a,a′;v)

]
= max

a′ 
=a

[
max

v∈C(p)
sm(w,v) − N(a,a′;v)

]
. (13)

Let Ma′ = maxv∈C(p) sm(w, v) − N(a, a′; v) denote the quantity inside the square brackets of Eq. (13). This represents the 
worst-case difference (over completions of p) of the maximin score of w and the number of votes, N(a, a′; v), in which a is 
preferred to a′ .

We proceed by describing an algorithm for computing the pairwise max regret PMR(a, w, p), which can then be used 
for computing the minimax optimal alternative. Given fixed a and w , we must consider all alternatives a′ 
= a in order to 
compute the expression in Eq. (13). We fix such an a′ , and consider worst-case completions of each pi for this a′ .
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• If Neci(w � a) or Inci(a, w), we maximize the advantage of w over a by placing w as high as possible and a as low as 
possible in the worst-case completion of pi , using the techniques described in Section 4.2.

• If Neci(a � w), we consider all other alternatives b (b 
= a, b 
= w):
– if Neci(a � b) and Inci(b, w), we place b below w;
– if Neci(b � w) and Inci(b, a) we place b above a;
– if Inci(b, a) and Inci(b, w), we: (1) place b below w if b 
= a′; or (2) place b above a otherwise;
– otherwise, we place b arbitrarily, subject to the partial preference constraints.

Let v′ be the completion of the partial votes pi in p as specified above. As above, specific completions need not be con-
structed, as the computations below can be largely performed using the cardinality of “sets” of alternatives relating w , 
a and a′ . We compute Ma′ = sm(w, v′) − N(a, a′; v′) for each a′ , and take the largest such Ma′ to be the pairwise max 
regret.

We now argue that this algorithm computes PMR correctly. Assume that we have a worst-case completion v∗ ∈ C(p) that 
is a maximizer of Ma′ (i.e., sm(w, v∗) − N(a, a′; v∗) = Ma′ ). We claim that we can reconfigure v∗ into another completion v′
of p (exactly as described above) such that sm(w, v′) − N(a, a′; v′) = Ma′ . For any v∗

i and its corresponding partial vote pi , 
the reconfiguration is the same as for positional scoring rules in the cases when Neci(w � a) or Inci(a, w)—that is, we place 
w as high as possible and a as low as possible in the resulting ranking.

The case Neci(a � w) is different. For an alternative b such that Neci(a � b) and Inci(b, w), we must place b below w . 
This does not change N(a, a′; {v∗

i }), and does not decrease the maximin score of w , even if b = a′ . If b is such that 
Neci(b � w) and Inci(b, a), then we place b above a: this does not change the maximin score of w and will not increase 
N(a, a′; {v∗

i }), even if b = a′ .
Finally, consider alternatives b where Inci(b, a) and Inci(b, w) (note that for all other cases, b must be placed above a, 

between a and w , or below w). If b 
= a′ , then we place b below w—this will not change N(a, a′; {v∗
i }) and does not decrease 

the maximin score of w . If b = a′ and a′ is not above a in v∗
i , then we move it above a, as this decreases N(a, a′; {v∗

i }) by 
1 and decreases maximin score of w by at most 1, hence their difference can only increase. In all cases above, we can 
reconfigure votes v∗

i into v′ such that N(a, a′; v∗) ≥ N(a, a′; v′) and sm(w, v∗) ≤ sm(w, v′), hence sm(w, v′) − N(a, a′; v′) ≥
sm(w, v∗) − N(a, a′; v∗) = Ma′ . Of course, the construction v′ does not require using v∗ as a starting point—this only serves 
to prove the optimality of v′ as constructed by the algorithm above.

By this method, we see that the relevant completion for a′ given p can be computed in O (nm) time. By Eq. (13), 
pairwise max regret can be computed in time O (nm2), by computing Ma′ for all a′ 
= a and choosing the largest such value. 
Consequently, computing minimax regret using this algorithm takes O (nm4) time:

Theorem 4. Minimax regret can be computed in O (nm4) time for the maximin voting rule.

4.4. Bucklin voting

As with maximin, the Bucklin score of a candidate is not decomposable across voters, so it too requires a more intricate 
approach to constructing profile completions. Since the standard definition of the Bucklin score involves selection of the 
alternative with the smallest Bucklin score, we work with the inverted score b(a, v) = m − sb(a, v) to remain consistent with 
our “score maximizing” definitions.

As above, we wish to compute PMR(a, w, p) with respect to (inverted) Bucklin score b(·, v). To compute PMR, we 
solve the following decision problem, for various values of t: is PMR(a, w, p) > t . The ability to solve this problem ef-
ficiently means we can compute PMR in polynomial time by solving this problem for t = m − 2, m − 3, . . . , 0, in this 
order. PMR(a, w, p) is then the largest t∗ for which PMR(a, w, p) > t∗ − 1. (Note that for Bucklin, PMR must be one of 
{0, . . . , m − 1}).

This decision problem can be further broken down by solving a sequence of sub-problems which asks whether there is 
a completion v ∈ C(p) such that sb(a, v) > k and sb(w, v) ≤ k′ for fixed values k, k′ ∈ {0, . . . , m − 1}. If such a completion 
exists, this implies PMR(a, w, p) > k − k′ . Hence, to solve the PMR decision problem above for any fixed t , we can solve the 
subproblem for all values k ≤ m − 1, with its corresponding k′ = t − k.

To solve the sub-problem, we consider the relevant worst-case completions of each partial vote, based on different 
cases, as we did for positional scoring and maximin voting. If either Neci(w � a) or Inci(a, w) holds, then the worst case 
completion places w as high as possible and a as low as possible in i’s vote, as in the case of positional scoring rules.

If Neci(a � w) holds, then more subtle reasoning is required. First, it is clear that all alternatives in the set D (see Fig. 2, 
a � w) must be placed below w , and those in set C above a. This, of course, only serves to improve w ’s Bucklin score and 
possibly worsen a’s score, which is our aim. At issue, however, is how many alternatives from the set U should be placed 
above a and how many below w , since we have a choice (obviously none should be placed between a and w). Consider the 
following two conditions:

• Condition 1: a is ranked below the kth position.
• Condition 2: w is ranked at or above position k′ .
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Fig. 3. Classifying pi , with Neci(a � w), into one of the five cases, used in answering the sub-problem of whether there exists a completion v such that 
sB (a, v) > k and sB (w, v) ≤ k′ . The decision tree asks whether alternatives in U can be arranged to be placed above a or below w so as to achieve the 
desired rank positions. See Fig. 2 for definition of U .

We consider five distinct cases (in all cases, we assume that all alternatives apart from those in U are now positioned 
appropriately):

1. If pi cannot be arranged such that either Condition 1 or 2 is satisfied (i.e., there are not enough alternatives in U to 
push a below position k or to push w to or above position k′), then we complete pi in arbitrary fashion.

2. If pi can be arranged to simultaneously satisfy both conditions, we use that completion.
3. If pi can be arranged to satisfy Condition 1 but not Condition 2, we use that completion.
4. If pi can be arranged to satisfy Condition 2 but not Condition 1, we use that completion.
5. Otherwise pi can be arranged to satisfy either of Conditions 1 or 2, but not both simultaneously. We tentatively “skip” 

these partial votes and complete them as the last step of the algorithm.

To solve the subproblem, we use two counters: ca keeps track of the number of partial votes that fall into Cases 1–4 
above in which a’s rank is below k; and cw counts the number of partial votes that fall into Cases 1–4 above in which 
w ’s rank is at or above k′ . Notice that partial votes within these first four cases offer no scope to trade off the relative 
position of a and w to satisfy our two conditions. Once these are counted, we need to construct suitable completions of the 
remaining partial votes, all of which fall into Case 5. Specifically, to validate the subproblem, we need �n/2� + 1 − ca of the 
Case 5 votes to be completed in such a way that a’s rank is below k, and �n/2� + 1 − cw votes to be completed so that w ’s 
rank is at or above k′ . Note that these two requirements are exclusive: the completion of a Case 5 partial vote 5 can only 
satisfy one of these two requirements.

Now if the number of partial votes ns satisfying Case 5 is such that ns < 2 �n/2� + 2 − ca − cw , then we cannot construct 
the required number of partial votes to satisfy the Bucklin score requirements, therefore we conclude that answer to the 
sub-problem is false. Otherwise we can satisfy the requirements by configuring �n/2� + 1 − ca of these ns votes so that a’s 
position falls below k (by placing alternatives from U above a), and configuring �n/2� + 1 − cw of the votes so that w ’s 
position is at least in rank k′ or better (by placing U below w).

Testing the five cases to which a particular pi belongs can be done in O (m) time (see Fig. 3): we first check if U is 
large enough to place sufficiently many alternatives above a to make its rank position greater than k. If this is not possible, 
we check whether positioning U below w pushes w to position k′ or above. If this can be achieved, the partial vote falls 
in case 4, if not it falls in case 1. If a can be pushed below position k, then we check whether the remaining alternatives 
in U (i.e., those left after removing just enough alternatives to push down a’s position) can be placed below w to make its 
position at least k′ . If so, then it falls into case 2. If not, we check whether the original set U can be placed below w to 
meet its positional requirement. If so, it falls into case 5, and otherwise it is case 3. Therefore the running time to solve the 
above sub-problem is O (nm). Since we need to solve these sub-problems at most m − 1 times, for each value of t of the 
PMR decision problem, the total time to compute PMR is O (nm3). Consequently, given m2 pairs of alternatives, we have:

Theorem 5. Minimax regret can be computed in O (nm5) time for the Bucklin voting rule.

4.5. Egalitarian voting

We have demonstrated above the rather straightforward computation for PMR and minimax regret using the indepen-
dent completion of the partial votes of each voter for decomposable rules (positional scoring), while non-decomposable 
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rules like maximin and Bucklin require the “coordinated completion” of different voters’ partial votes. However, certain non-
decomposable scoring functions do admit the independent completion of partial votes. Consider the egalitarian voting rule, 
where s(a, v) = mini{m − vi(a)}. While minimizing or maximizing the score of a candidate in partial vote pi is straightfor-
ward, the way in which its adversarial advantage is maximized in pi can depend on other votes. In the cases Neci(w � a)

and Inci(a, w), there is only one way to maximize the local advantage of w over a (see above). But when Neci(a � w), the 
placement of U either above a or below w influences the egalitarian score of a and w in a way that depends on other 
votes. However, one can show that unless PMR(a, w, p) is negative, then advantage is maximized by ordering U below w . 
Informally, placing U below w can improve the minimum score of both a and w . However, this placement can only improve 
the minimum score of a if vote vi gives a its minimum score over all pi , in which case the minimum score of w is strictly 
less than that of a, and PMR(a, w, p) is negative. Since max regret can never be negative, the pair (a, w) cannot define a’s 
max regret. This lets us prove that, unless PMR is negative, PMR(a, w, p) is maximized by ordering U below w in any pi
where Neci(a � w). The running time for PMR is O (nm) and for MMR is O (nm3), as in the case of positional scoring rules, 
since we only need to identify the relevant sets in Fig. 2.

Theorem 6. Minimax regret can be computed in O (nm3) time for egalitarian voting.

5. Preference elicitation for single-winner problems

The ability to compute regret-minimizing winners is critical when only partial information is available. However, in 
many cases, one has the option of eliciting additional preference information from the voting population in order to reduce 
minimax regret and improve decision quality. This can be especially important when the minimax regret of the partial 
profile exceeds some (problem- or domain-specific) tolerance, indicating the potential for divergence from optimality beyond 
an acceptable threshold.

Of course, as discussed above, elicitation can be difficult with respect to both computation and communication complex-
ity in the worst case. Despite this, we show how minimax regret can be used effectively to guide the elicitation process, 
providing strong results in practice. As a measure of solution quality, minimax regret can be used to terminate elicitation 
whenever regret falls to some suitable level (including zero if optimality is desired).16 More importantly, the solution to the 
minimax optimization can guide the selection of queries, and voters to whom those queries should be directed, so that an 
(approximate or exact) optimal solution can often be found quickly. In this section, we describe a simple heuristic strat-
egy to do just this. In Section 5.1 we focus on linear positional (Borda-like) rules while Section 5.2 develops an elicitation 
strategy for the egalitarian rule. Both algorithms use two specific query types; but these ideas generalize to other rules and 
other forms of queries.

5.1. Current solution strategy for positional scoring rules

We consider a general technique, called the current solution strategy (CSS), that has been used effectively in both single-
agent recommendation systems [16,23,92], multi-agent mechanism design [50–52], and in multi-agent stable matching [41]
settings (the latter uses the completion techniques we develop in this paper). Intuitively, CSS identifies voter preference 
information that helps assess the relative degree of preference between the minimax optimal solution and the adversarial 
witness within each voter’s partial preference ranking, and queries a voter whose response has the greatest potential to 
reduce the advantage of the witness over the minimax optimal alternative.

CSS is a meta-strategy for elicitation. Its precise instantiation depends on the types of preference queries permitted and 
the specific voting rule in question. We consider two forms of queries in this work. A comparison query identifies a voter k, 
and asks k to compare two alternatives: “Is a �k b?”. A top-t query identifies and asks voter k to state which alternative is 
tth in their ranking (we assume that the first t − 1 alternatives have already been articulated by k). We describe CSS in 
detail using comparison queries, but we show how the same intuitions can be adapted to the selection of top-t queries.

Suppose we are allowed to ask any voter a pairwise comparison query. CSS generates queries by considering the current 
solution to the minimax optimization—i.e., the minimax optimal alternative a and adversarial witness w—and using this to 
choose a voter-query pair with greatest potential to reduce minimax regret. Notice that if the advantage of w over a is not 
reduced in some partial vote pk in response to a query, PMR(a, w) will not change, thus, unless the response changes the 
minimax optimal solution, MMR will not change. So CSS selects queries that tackle this gap directly.

In this section we focus on positional scoring rules, illustrating the main concepts first using the Borda PSF. We determine 
the value of posing a query to voter k by considering the three cases in Fig. 2, in each case determining the query with the 
largest potential reduction given a positive response by k:

Case 1, where Neck(a � w). Recall that a worst-case completion must place (all alternatives in) set D below w , set C
above a, and set U either below w or above a. We can reduce PMR(a, w) by asking two different types of queries: d � w

16 If determining termination for an elicitation procedure is hard for a particular voting rule (i.e., determining whether a winner is known given elicited 
preferences) [33,94], then so is computing minimax regret; or equivalently, if computing minimax regret is easy (as demonstrated for certain rules above), 
so is termination.
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for some d ∈ D or a � c for c ∈ C . In each case, a positive response will position alternatives between a and w , thus reducing 
PMR(a, w) by increasing the (worst-case) position of a relative to w in pk , Specifically, a positive response to d � w prevents 
the adversary from placing d, or any of its ancestors in D , below w in the completion. And a positive response to a � c
prevents the adversary from placing c, or any of its descendants in D , above a in the completion. We pick the alternative in 
C ∪ D (and corresponding query) with greatest potential to reduce PMR in the case of such a positive response. For linear 
scoring rules, this potential is measured by the number of ancestors of d in set D (all of which will be positioned between 
a and w if d is), and the number of descendants of c in set C . If C ∪ D = ∅, we can ask two other query types, u � w or 
a � u for some u ∈ U . These do not reduce PMR directly, but shift u and its ancestors in U to set C (for query u � w) or u
and its descendants in U to set D (for query a � u). The u with the potential to shift greatest number of alternatives within 
U to some other set is chosen.

Case 2, where Neck(w � a). Recall that a worst-case completion must place sets E , A and U between w and a. We can 
reduce PMR(a, w) by asking four different types of queries: a � e for some e ∈ E; a � u for u ∈ U ; x � w for some x ∈ A; 
or u � w for some u ∈ U . A positive response to any such query will reduce PMR. In the case of query a � e (respectively, 
a � u), it increases the (worst-case) score of a in pk , by preventing the adversary from positioning e (respectively, u), or 
any of its descendants in E (respectively, U ), between w and a. Similarly, in the case of query x � w (respectively, u � w), 
it reduces the (worst-case) score of w in pk , by preventing the adversary from positioning x (respectively, u), or any of its 
ancestors in A (respectively., U ) between w and a. Selection is again made by choosing the alternative and query that have 
the greatest potential (i.e., the number of alternatives that are removed from their respective sets E , A or U in case of a 
positive response).

Case 3, where Inck(a, w). We can reduce PMR(a, w) by asking several different queries, however, heuristically, we always 
choose to ask if a � w , since a positive response reverses pk ’s contribution to PMR from positive to negative. Any response 
will move partial vote pk into either case 1 or case 2.

We note that each voter is “scored” by assessing which query has the greatest potential to reduce adversarial advan-
tage in her partial vote, based on the classification of that partial vote into one of the three cases above. When asking a 
single query at each round, we choose the voter whose corresponding best query has the greatest potential (breaking ties 
arbitrarily).

CSS must eventually terminate with an optimal solution:

Proposition 7. Unless MMR(p) = 0, CSS will always select a voter k and comparison query ai �k a j such that Inck(ai, a j). That is, CSS 
never generates redundant queries and eventually outputs a winner under the positional scoring rule.

Proof. Suppose that MMR(p) > 0, that a is a minimax optimal alternative, and w is its adversarial witness. If there exists 
a partial vote pk such that Inck(a, w), then CSS generates the query a �k w for voter k. If there is a partial vote pk such 
that Neck(a � w) and at least one of the sets D , C or U (see Fig. 2) is non-empty, then CSS will generate a (non-redundant) 
query for voter k (see Case 1 of CSS). If there is a partial vote pk such that Neck(a ≺ w) and at least one of the sets E , A
or U (see Fig. 2) is non-empty, then again CSS will generate a (non-redundant) query for voter k (see Case 2 of CSS).

Finally, suppose no partial vote satisfies any of the three conditions above. We argue this is impossible unless minimax 
regret is zero. If no partial vote satisfies any of the three conditions, this implies that all partial votes fall into Case 1, 
where Nec(a � w), or Case 2, where Nec(a ≺ w). Furthermore, all Case 1 votes satisfy D ∪ C ∪ U = ∅ and all Case 2 votes 
satisfy E ∪ A ∪ U = ∅. However, this means the exact rank positions and hence the positional scores of a and w can be 
determined in every partial vote (see Fig. 2). By definition of MMR, w must have a strictly higher score than a in some
full vote completion if MMR(p) > 0. Therefore, since the positional scores of a and w are fully known in all partial votes, 
it follows that w would have a strictly higher score than a in every completion of p, contradicting the minimax optimality 
of a (in particular w would have a strictly lower max regret than a). �

CSS can be adapted, using similar intuitions, to generate top-t queries. Such queries are asked of each voter in order—no 
voter is asked for the second-ranked candidate before their revealing their first-ranked candidate, their third before their 
second, etc. This means that CSS need only select a voter at any stage—the query is determined once the voter is selected. 
If elicitation is confined to top-t queries, for a given voter we consider four cases to assess the potential reduction in MMR
associated with querying that voter (again assuming minimax optimal a and adversarial witness w):

Case 1. If a and w are already in the voter’s top-t list, then their scores are known with certainty and PMR(a, w) cannot be 
reduced by querying this voter.

Case 2. If a is in the voter’s top-t list but w is not, asking for the next highest alternative—assuming optimistically that the 
response is not w—reduces the adversarial advantage by one (i.e., the adversary would place w at rank t + 2 instead of 
t + 1).
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Case 3. If a is not in top-t list, but w is, the adversary maximizes PMR by placing a at the bottom of the ranking. If a is 
(optimistically) returned as the next highest alternative, PMR is reduced by m − (t + 1) (since a must be at position t + 1).

Case 4. If neither a nor w are in the top-t list, the adversary will place a at the bottom of the ranking and w at position 
t + 1. If a is (optimistically) returned as the next highest alternative, PMR is reduced by m − t (a must now be placed at 
position t + 1 and w at t + 2).

In each of the cases above, we calculate the potential PMR reduction for each voter, and query the voter with the largest 
potential reduction. It is clear that, unless minimax regret is zero, CSS will always have some voter to query with positive 
potential reduction.

5.2. Current solution strategy for egalitarian voting

As discussed above, CSS is a meta-strategy that requires specific instantiations for different voting rules. While we fo-
cused on CSS for positional scoring above, we illustrate the generality of CSS by developing a CSS strategy for the egalitarian 
rule.

Using CSS for egalitarian voting relies on similar intuition as for positional scoring rules, but must deal with potential 
interaction across different profiles (as in the case of computing MMR for egalitarian in Section 4.5. Suppose we have 
minimax regret winner a and its witness w . Again, the key idea is to reduce the pairwise advantage of w with respect to 
a in adversarial completions of the partial votes. Thus we focus on asking queries involving a or w that have the greatest 
potential to reduce their pairwise max regret. We consider each voter k and the corresponding potential reduction in 
PMR(a, w), again focusing on three main cases:

Case 1, where Inck(a, w). We measure the impact of query a � w . The greatest potential regret reduction comes with an 
affirmative response. This occurs in one of two ways. (a) If the resulting configuration has w decreasing its rank in vote k
such that its overall egalitarian score decreases (i.e., partial vote pk implies that w be ranked lowest among all votes in an 
adversarial completion, which we can obtain via the MMR algorithm for egalitarian). (b) If a increases its overall egalitarian 
score (i.e., prior to query response, voter k ranks a lowest amongst all voters in an adversarial completion, but a is elevated 
in k’s ranking after the response). In either case, the query has a strictly positive impact in reducing pairwise regret of a
and w .

Case 2, where Neck(w � a). Consider all queries in the corresponding Case 2 of the CSS algorithm for the positional scoring 
rules. Each such query (i.e., for x ∈ A, w � x; or for x ∈ E , x � a), may either reduce w ’s egalitarian score or increase a’s 
score, depending on whether partial vote pk is the unique vote in an adversarial preference profile completion that ranks 
w or a the lowest. Of all such queries, we select that with the highest potential PMR reduction. This can be done by 
first identifying whether pk is the unique partial vote whose worst-case completion (as computed by the egalitarian MMR
algorithm) ranks w highest or a lowest among all partial vote completions—if so, the above queries can potentially reduce 
regret.

Case 3, where Neck(a � w). Consider the similar situation for queries as in Case 2. These queries can potentially reduce 
the overall score of w or increase the score of a, depending on whether pk is the unique optimizer the egalitarian score of 
either a or w .

We run a potential regret analysis for each voter and query pair, and select the pair with largest such potential reduction 
in pairwise max regret. Note that the potential to reduce PMR might be zero for any single pairwise query—in such cases 
we can either ask a random query or generate a query that can help reduce regret in later rounds. When this case occurs, it 
implies that multiple partial votes minimize (respectively, maximize) the position of a (respectively, w). That is, one of the 
two following conditions must hold:

1. There are two or more votes that under the worst-case completion minimize the position/score of a, or
2. There are two or more votes that under the worst-case completion maximize the position/score of w .

Even though a single query cannot reduce PMR, any query that improves the rank of a (pairwise comparison queries that 
involve a) or worsens the rank of w (comparisons that involve w) in any such vote is helpful in reducing PMR in later 
rounds.

5.3. Empirical evaluation

Our experiments focus on evaluating elicitation strategies with respect to the Borda rule, but our conclusions give us 
general intuitions about the advantages of CSS over some baseline strategies. As benchmarks in our experiments, we use 
two other strategies to contrast with CSS. The random strategy (Rand) randomly chooses a voter k and a comparison query 
such that Inck(ai, a j) (so the query response always bears information). With top-t queries, Rand only needs to choose voter 



T. Lu, C. Boutilier / Artificial Intelligence 279 (2020) 103203 17
k at random. The volumetric strategy (Vol) selects a voter k and query ai � a j that maximizes the number of new pairwise 
preferences revealed (given the worst response):

Vol(pk) = max
ai ,a j

min

{ |tc(pk ∪ {ai � a j})|,
|tc(pk ∪ {a j � ai})|

}
,

where tc denotes transitive closure. This strategy reduces preference uncertainty maximally, without regard for the “rele-
vance” of the revealed preference information to winner determination (much like volumetric strategies for in polyhedral 
conjoint analysis for single-agent problems [91].) Its application to top-t queries involves selecting the voter whose next-
ranked candidate reduces uncertainty the most. Since this voter must be one who has ranked the fewest candidates, the 
strategy reduces to a simple sequential iteration: each voter in turn is asked for their top-ranked candidate; then each is 
asked for their second-ranked candidate; and so on. We refer to Vol in this case as SequentialTop.

In previous work (see Section 2.4), Kalech et al. [53] proposed two vote elicitation algorithms. Their first method is 
essentially the SequentialTop method described above, and proceeds in rounds in which each voter is queried for their next 
most preferred choice. It uses necessary winner computation for termination. This contrasts with our CSS approach, which is 
much more subtle and incremental: we identify a particular voter to query at each stage by evaluating its potential to reduce 
minimax regret. We see in our experiments that this can reduce the number of required queries substantially. Furthermore, 
our elicitation methods are anytime: querying can terminate when minimax regret is sufficiently small, and we show below 
that this further reduces the number of queries significantly.

Their second algorithm proceeds for a predetermined number of rounds, asking each voter at each stage for fixed number 
of positional rankings. Since termination is predetermined, necessary winners may not result (instead possible winners are 
returned), and interesting tradeoffs between the number of rounds and amount of information per round are explored. As 
the authors acknowledge, this scheme provides no guarantee of winner optimality or any bounds on quality. A key advantage 
of our minimax regret-based scheme is that a natural, precise objective is being minimized, and anytime quality guarantees 
are provided.17 Their approach does, however, batch queries, so voters are only queried a few times, though each query 
may request more information than the CSS scheme. This batching can minimize user interruption as well as user latency
(since voters are not required to wait until the responses of other voters are delivered before their next query is received). 
We discuss the advantages of batching—and how minimax regret can be adapted to handle batching—in Section 8.

We test CSS on three different data sets:

• Sushi: The Sushi data set [54] contains 5000 full preference rankings over 10 varieties of sushi;
• Irish: The Irish data set comprises the votes of the 2002 Irish national election from the Dublin North constituency. It 

contains 43, 942 ballots of the top-t form over 12 candidates. We use the subset consisting of the 3662 complete ballots 
(i.e., that rank all 12 candidates).18

• Mallows: We generate random vote profiles, each with 100 random rankings over 20 alternatives, where each ranking 
is drawn from a Mallows φ-model [68], using several different parameter settings (as we explain further below). The 
Mallows model is a distribution over rankings given by a modal ranking σ and dispersion parameter φ ∈ (0, 1] with 
Pr(r|σ , φ) ∝ φd(r,σ ) , where d is Kendall’s τ -distance. Smaller φ concentrates probability mass around the modal ranking 
σ (i.e., all voters have nearly identical rankings), while φ = 1 gives the uniform distribution over rankings, also known 
as impartial culture.

These data sets are used to generate responses to elicitation queries, and reflect different forms of group decisions, including 
political voting and applications related to recommender systems.

We test CSS on each data set, measuring how quickly minimax regret reduces as a function of the total number of 
queries asked of the voting population. For the real-world data sets (Sushi, Irish), we use both pairwise comparisons and 
top-t queries, and compare the performance of CSS to both the random and volumetric elicitation strategies. On the Mal-
lows (random) data, we use only pairwise comparisons and analyze the impact on convergence as we vary the dispersion 
parameter. In all cases, we use Borda scoring to measure candidate quality (similar results hold for other positional scoring 
rules).

The top two plots in Fig. 4 show MMR as a function of the total number of queries asked on the Sushi and Irish data 
sets. We see that CSS offers superior elicitation performance with both pairwise comparisons and top-t queries. With Sushi, 
CSS reaches the optimal solution (i.e., the provable winner with MMR = 0) after an average of only 11.82 comparison queries 
per voter. This compares with 20.64 queries for Vol and 20.63 queries for Rand (as well as the 25 queries required by the 
theoretically optimal MergeSort to determine full voter rankings). With top-t queries, CSS needs only 3.40 queries per voter 
to reach MMR = 0, compared to 4.18 for Seq, and 5.50 for Rand. With Irish, results are similar: CSS reaches optimality with 
18.57 comparison queries and 5.47 top-t queries per voter. This stands in contrast with 31.82 comparisons and 6.91 top-t
queries for Vol/Seq; 31.22 comparisons and 8.38 top-t queries for Rand, and 33 comparisons for MergeSort. Note that top-t

17 We also note that elicitation of pairwise preferences is not considered in [53]; such queries are extremely valuable and arise naturally in many domains 
such as search, information retrieval, consumer product comparisons, etc.
18 See www.dublincountyreturningofficer.com.

http://www.dublincountyreturningofficer.com
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Fig. 4. Performance of elicitation algorithms (paired and top queries) on Sushi, Dublin and Mallows data. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)
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queries are “information rich” as they provide many pairwise comparisons per response.19 Thus, while CSS’s advantage is 
somewhat smaller in the top-t case (though RandomTop still requires over 50% more queries to reach MMR = 0 in Irish), 
the fact that there is an advantage is of greater significance due to the greater “intensity” of each query.

Critically, if one is interested in approximate solutions, we see that CSS reduces MMR very quickly, providing high-quality 
solutions after very few queries. For example, with Irish, CSS reduces MMR to 18% of its initial value (with no voter pref-
erence data) after only 5.82 comparison queries per voter, which is a small fraction of the queries required to elicit full 
rankings. By contrast, to reduce regret to the same degree requires 25.77 comparisons for Vol, and 24.03 comparisons for 
Rand. Computationally, for problems of this size, CSS takes only a few milliseconds on average (wall clock time) to find the 
best agent/comparison query (including time needed to recompute the MMR-solution).

On the synthetic Mallows data set, we sample 100 complete voter profiles, each with 100 voters and 20 alternatives, for 
each of several different values of φ. The same impact of CSS on MMR as a function of the number of pairwise comparisons 
asked is shown in the bottom plot of Fig. 4. With larger φ, more queries are clearly needed to reach the same level of 
regret, which conforms to our intuitions that intelligent elicitation schemes can take significant advantage of less uniform 
preferences to minimize queries and voter effort (and conversely, that with almost uniformly random preferences, nearly 
full rankings must be obtained). Work in behavioral social choice strongly suggests that real-world preferences are not uni-
formly random [81], and CSS seems to perform especially well in this case; indeed our results on Sushi and Irish suggest 
that real preferences are not uniform, and contain regularities that can be readily exploited to reduce the informational 
complexity of voting.

6. Robust slate optimization for multi-winner problems

We now turn our attention to the multi-winner problem, focusing primarily on the Chamberlin-Courant rule, and con-
sider the robust optimization of a slate of alternatives given a partial preference profile, using minimax regret as our robust-
ness criterion. We begin in Section 6.1 by defining minimax regret for multi-winner problems. We then discuss the computa-
tion of minimax optimal slates in Section 6.2, focusing our attention on linear positional scoring rules (like Borda) for ease of 
exposition. We describe the relevant completion principles, and show that the computational problem is hard in general—it 
is in complexity class XP with respect to K , and can be practically solved for small, bounded slate sizes K . In Section 6.3, we 
describe a tractable greedy algorithm for approximating minimax-optimal slates and derive relevant approximation ratios. 
We explore the use of these methods to drive preference elicitation for multi-winner problems in the following section.

6.1. Minimax regret for slate optimization

We consider the slate optimization problem described in Section 2.3 in which our goal is to select, given a vote profile, 
a set or slate of alternatives ā ⊆ A of up to K alternatives that maximizes total voter satisfaction. We assume that voter 
satisfaction with candidates is given by some scoring function induced by their ranking (e.g., the Borda PSF), and that a 
voter’s satisfaction with the slate is given by the score of their most preferred alternative on the slate. Recalling Eqs. (1) and (2), 
we define the score of a K -set and the optimal K -set as follows:

S(ā,v) =
∑
i∈N

Si(ā) where Si(ā) = max
a∈ā

αi(a), (14)

ā∗
v = argmax

|ā|≤K
S(ā,v). (15)

We suppress dependence of S on α since the PSF will be fixed and clear from context. This corresponds to the Chamberlin-
Courant rule [26] when α is the Borda PSF. For more general α, this is known as the limited choice model [62].

We now consider the problem of selecting an optimal K -set of alternatives when we have only a partial preference 
profile p rather than a complete profile v. We again adopt minimax regret as a robustness criterion for making decisions 
with a partial profile. The definitions of pairwise maximum regret, maximum regret, and minimax regret are analogous to 
those in the single-winner case, with decisions (and adversarial choices) corresponding to slates of K options rather than 
single alternatives. We first present definitions (for sets of fixed size K ) then explain the intuitions. Recall that ā and w
represent slates of options.

Regret(ā,v) = max
|w|≤K

S(w,v) − S(ā,v) (16)

PMR(ā, w,p) = max
v∈C(p)

S(w,v) − S(ā,v) (17)

19 We expect that, in general, answering a top-t query will impose a lower cognitive burden on the user (and be less time-consuming) than the equivalent 
collection of pairwise comparison queries due to the overhead of assessing to each pairwise comparison in isolation. Of course, the top-t strategy requires 
users to answer informationally rich queries even when not all of the implied comparisons are necessary for winner determination.
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Table 1
Example of computing max regret for each candidate slate ā of size 2. The notation vi : +{. . .} indicates additional 
pairwise comparisons added to pi for the adversarial completion. The minimax optimal slate is ā∗

p = {a1, a4} with 
max regret of 2.

Slate ā Adversarial completion Witness w Max regret MR(ā,p)

{a1,a2} v1, v2 : +{a4 � a1} {a3,a4} 9 − 6 = 3
v3 : +{a1 � a2}

{a1,a3} v1, v2 : +{a4 � a1} {a2,a4} 9 − 5 = 4
v3 : +{a4 � a3}

{a1,a4} v1, v2 : +{a3 � a4} {a1,a2} 9 − 7 = 2
v3 : +{a2 � a3,a1 � a4}

{a2,a3} v1, v2 : +{a4 � a1} {a2,a4} 9 − 5 = 4
v3 : +{a4 � a3}

{a2,a4} v1, v2 : +{a3 � a4} {a1,a3} 9 − 5 = 4
v3 : +{a1 � a2}

{a3,a4} v1, v2 : +{a3 � a4} {a1,a2} 9 − 4 = 5

MR(ā,p) = max
v∈C(p)

Regret(ā,v)

= max
|w|≤K

PMR(a, w,p) (18)

MMR(p) = min
|ā|≤K

MR(ā,p) (19)

ā∗
p ∈ argmin

|ā|≤K
MR(ā,p) (20)

Given a vote profile v, Regret(ā, v) describes the loss in satisfaction associated with offering set ā rather than the optimal 
K -set. Given a partial profile p, the pairwise max regret PMR(ā, w, p) is the worst-case loss that could be incurred, under 
all possible realizations of voter preferences, by offering ā rather than w . Note that our definition of PMR does not impose 
constraints on set sizes, a fact we exploit below. The max regret MR(ā, p) of set ā is the worst-case loss relative to the 
optimal K -set under all preference realizations: this bounds the loss associated with ā given our preference uncertainty. 
Finally, a minimax optimal set ā∗

p is one with minimum max regret or minimax regret MMR(p).

Observation 8. If MMR(p) = 0, then ā∗
p is an optimal slate of alternatives for any v ∈ C(p).

To illustrate the various regret-based optimization concepts above, consider the following example.

Example 9. Suppose we have four alternatives A = {a1, a2, a3, a4}, and three voters with partial preferences p1 = p2 = {a1 �
a2 � a3} and p3 = {a3 � a1, a2 � a4}. We use Borda scoring, with α(i) = 4 − i for i = 1, . . . , 4. Assume we are interested in 
slates of size K = 2 (we can also compute max regret for singleton slates but the calculations are similar so we omit for 
brevity). Table 1 shows the max regret calculations for each slate of size 2.

For example, for candidate slate ā = {a1, a2}, to maximize regret the adversary ranks a4 above a1 for the first two voters 
(achieving regret of 2 when a4 is in the witness slate) and a1 above a2 for the third voter (achieving regret of 1 when a3
is in the witness slate). This results in max regret of 3 for ā. Max regret for the other candidate slates is derived similarly. 
The minimax optimal slate is {a1, a4}. To reduce minimax regret, one can ask specific preference queries of particular voters, 
as we elaborate in the next section. For example, if voter 3 is asked whether a1 � a2, a positive response reduces the max 
regret of slate {a1, a4} by 1—it remains minimax optimal, but becomes closer to being provably optimal. (The query a4 � a3
has a similar effect.)

6.2. Computing minimax optimal slates

Before discussing computation of minimax regret, we begin with the simpler problem of computing pairwise max regret. 
From Eqs. (17)–(19), we see that the regret-optimal slate ā∗

p can be determined by first computing PMR(ā, w, p) for all pairs 
of K -sets ā, w , followed by maximizing over w to determine MR(ā, p), and then minimizing over these terms to compute 
MMR(p). If K is small, then robust optimization is efficient if PMR can be computed effectively, a problem to which we now 
turn. (We discuss an approach for large K in the next subsection.) Just as with single-winner problems using scoring rules, 
one can show PMR is additively decomposable:

PMR(ā, w, pi) = max S(w, vi) − S(ā, vi),

vi∈C(pi)
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Fig. 5. Adversarial completions of pi regret PMR(ui(ā), {w}, pi), Cases 1 and 2.

PMR(ā, w,p) =
∑
i∈N

PMR(ā, w, pi) . (21)

Thus we can compute the contributions of each voter i to PMR independently. When i is presented with slate ā, she will 
choose her most preferred alternative from ā, and similarly for slate w . Define the undominated elements for voter i in any 
set ā to be:

ui(ā) = {a ∈ ā : �a′ ∈ ā s.t. a′ �i a}.
If presented with a slate ā, i’s maximal satisfaction—informally, we call this i’s choice for ā—can only be derived from 
one of these undominated elements, no matter what completion of i’s partial preferences that reflect her true underlying 
preferences. In the ranking vi ∈ C(pi) that maximizes pairwise regret, only one element in w will be chosen by i (the most 
preferred), which defines PMR:

PMR(ā, w, pi) = max
w∈ui(w)

PMR(ui(ā), {w}, pi). (22)

Given this, there are two cases to consider when determining the adversarial completion vi ∈ C(pi) that maximizes 
PMR(ui(ā), {w}, pi).

Case 1. Suppose there is an a ∈ ā such that Neci(a � w). This means there is no completion in which i would choose w , 
so PMR is negative. Maximizing pairwise regret requires reducing the “gap” between the most preferred a∗ ∈ ā and w . The 
only alternatives that must lie between the most preferred a and w are undominated elements ui(ā) of ā that dominate w , 
or those b known to lie between such an a and w . Define

ui(ā)+w = {a ∈ ui(ā) : a �i w},
Bi(ā, w) = {b ∈ A : ∃a ∈ ui(ā)+w ,a �i b �i w}.

Bi(ā, w) includes all alternatives that must lie between the best a ∈ ā and w (the specific choice or placement of the 
elements in these two sets has no impact on PMR). Every other alternative can consistently be ordered above the best a or 
below w depending on constraints in pi .20 Thus we have:

PMR(ui(ā), {w}, pi) = −|ui(ā)+w | − |Bi(ā, w)|.
See Fig. 5 (Case 1) for an illustration for an illustration of the different sets defined above and their relationship, as well as 
a schematic view of the completion.

Case 2. Now suppose that for voter i, no element in a ∈ ā is known to be preferred to w . If w ∈ ui(ā) then 
PMR(ui(ā), {w}, pi) = 0, since any adversarial completion can place w above all alternatives in ui(ā) \ {w} (otherwise regret 
would be negative). Otherwise the desired completion must maximize the gap between w and any alternative in ui(ā). The 
following options can be placed between w and ā:

B ′
i(ā, w) = {b ∈ A \ ā : b 
�i w and ∀a ∈ ui(ā),a 
�i b}. (23)

The relative ordering of these alternatives does not impact regret. With B ′
i(ā, w) placed below w , some alternative from 

ui(ā) must lie immediately below the last element of this set (becoming the most preferred a ∈ ā). Thus, we have:

20 For “nonlinear” scoring rules, where the score difference for two options depends not just on relative, but also absolute rank position, placement of 
options above or below a and w requires more care, but is straightforward in most cases.
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PMR(ui(ā), {w}, pi) =
{

1 + |B ′
i(ā, w)| if w /∈ ui(ā),

0 otherwise.

See Fig. 5 (Case 2) for an illustration (where w /∈ ui(ā)).
In both cases, the undominated sets ui(ā) and ui(w) can be computed in O (K 2) time. In case 1, ui(ā)+w can be computed 

in O (K ) time once ui(ā) is known, and Bi(ā, w) can be computed in O (mK ) time by checking if each b ∈ A satisfies the 
constraints with respect to ui(ā)+w and w . For case 2, B ′

i(ā, w) can be found in time O (mK ) by checking each b ∈ A with w
and the alternatives in ui(ā). Using Eqs. (22) and (21), PMR(ā, w, p) can be computed in O (n(K 2 + K (K +mK ))) = O (nmK 2)

time. Note that for K = 1, the approach is identical to PMR computation for the single-winner Borda rule. Putting this 
together we have:

Theorem 10. PMR(ā, w, p) is given by:

∑
i∈N

max
w∈ui(w)

⎧⎪⎨
⎪⎩

−|ui(ā)+w | − |Bi(ā, w)| if ∃a ∈ ā : a �i w,

1 + |B ′
i(ā, w)| otherwise, and w /∈ ui(ā),

0 otherwise,

and is computable in O (nmK 2) time.

The minimax optimal slate ā∗
p can be constructed by computing max regret MR(ā, p) for each slate ā of size K , and then 

selecting the slate ā∗
p that minimizes max regret. In turn, MR(ā, p) can be computed by determining the PMR of slate ā for 

each witness set w of size K . Hence:

Proposition 11. The minimax regret optimal slate ā∗
p can be computed in time O (nm2K+1 K 2).

The additive decomposability of PMR has the nice computational consequence that, during the course of incremental 
elicitation (see Section 7), one need only update the contributions to PMR of those agents who have their partial preferences 
updated by responding to a query. For slates of small bounded size K , enumeration of alternative sets may be practical. 
Indeed, if K is bounded, minimax optimal slates can be computed in polynomial time (in n and m). In other words, the 
problem is in the parameterized complexity class XP with respect to slate size K .21

However, in general, since this form of multi-winner selection and budgeted social choice is an NP-hard optimization 
problem [62] (as are variants [78]), finding the minimax optimal slate is also NP-hard (simply let p be a full preference 
profile). Indeed, simply computing MR(ā, p) is NP-complete:

Theorem 12. Given threshold r ≥ 0, partial profile p, set size K , and set ā of size at most K , deciding if MR(ā, p) ≥ r (i.e., does some 
set w of size at most K satisfy PMR(ā, w, p) ≥ r) is NP-complete.

Proof. The decision problem is in NP since a witness certificate is a set w , for which we can compute the pairwise max 
regret in polynomial time (Theorem 10) and hence check if PMR(ā, w, p) ≥ r.

To show NP-hardness, we reduce from the decision problem defined by the optimization objective given in Eq. (15) using 
the Borda PSF. This limited choice (LC)22 decision problem is: “given a threshold r′ , budget K and complete vote profile v, 
does there exist a slate ā′ of size at most K such that S(ā′, v) ≥ r′?” This is known to be NP-hard [62].

Given any LC instance with threshold r′ , budget K and complete profile v over a set A of m alternatives, we transform 
it into a partial profile p with m + K alternatives (the m original alternatives A plus K “dummy” alternatives D), and 
we let ā = D consist of the dummy alternatives. Define each partial vote pi to be identical to vi on the top-m ranked 
alternatives (which are from A), with the remaining dummy alternatives D ranked below, but for which their relative 
ordering is unspecified. Clearly any completion of the partial votes places the dummy items as the last K ranked items for 
all the voters, therefore the score of ā for any completion v′ ∈ C(p) is S(ā, v′) = ∑

i∈N maxa∈ā αi(a) = nα(m + 1) = nK . In the 
transformed instance, we set r = r′ .

A witness ā′ to a positive instance of the LC decision problem implies that S(ā′, v) ≥ r′ , which in turn ensures we 
have a positive instance of our max-regret decision problem where r = r′ . To see this, let witness certificate w = ā′ . The 
alternatives in this witness set are ranked in the top m positions in each of the n partial votes pi (i.e., their rank positions 
are already fixed and are K positions higher than their rank positions in v, since p has K additional dummy items). Hence, 
PMR(ā, ̄a′, p) = maxv′∈C(p) S(ā′, v′) − S(ā, v′) ≥ (r′ + nK ) − nK = r.

A negative instance of the LC decision problem implies there is no subset ā′ ⊆ A of size at most K such that its score 
exceeds r′ . This implies that, for the max-regret decision problem, there is no witness set w of size at most K , where 

21 Betzler at al. [13] have shown that the computation of Chamberlin-Courant winners with full preferences is W[2]-hard with respect to K . This means 
membership in FPT (i.e., fixed-parameter tractability) is unlikely, thus their XP algorithms are the best one can realistically hope for.
22 This is also known as Chamberlin-Courant winner determination [26].
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w ⊆ A, such that PMR(ā, w, p) ≥ r′ = r. If w contains any of the dummy alternatives then clearly its score must decrease 
if that dummy alternative is swapped for an alternative b ∈ A (since b has a higher rank position), thus the pairwise max 
regret would only decrease. Hence, the transformed instance is a negative instance for the max-regret decision problem. 
This completes the reduction, which has polynomial time complexity. �
6.3. A greedy algorithm for robust slate selection

Given the intractability of computing a minimax optimal slate ā∗
p for a partial profile p in general, we investigate the 

possibility of an efficient algorithm for approximating the problem that will be practical even for large values of K . It turns 
out that a relatively simple greedy optimization procedure can be used for this purpose.

Before describing our method, we note that the slate optimization problem in the full information case (i.e., when all 
voter preferences are fully known) is submodular [62]. Intuitively, this holds because, for any two slates X, Y where X ⊆ Y , 
adding an alternative x to X results in a subset Nx of voters who choose x as their preferred element of X . Adding x to Y
results in the corresponding subset N ′

x of voters who choose x from Y . Since X ⊆ Y , it must be that N ′
x ⊆ Nx (anyone who 

chooses x from Y ∪ {x} must also do so from X ∪ {x}; furthermore, the marginal score of x relative to slate X for each of 
voter in Nx must be at least as much as their marginal score for x relative to Y . This implies that S(X ∪ {x}, v) − S(X, v) ≥
S(Y ∪ {x}, v) − S(Y , v) for all complete profiles v. We exploit this full-information submodularity below when analyzing our 
partial information greedy algorithm.

To develop our greedy approach, we first define the following problem, which we call the additional alternative problem. 
Assume a partial profile p and a fixed set ā of k − 1 alternatives; if one can add a kth alternative to the set, which next 
option minimizes maximum regret under the Chamberlin-Courant or limited choice model? We define this problem in the 
obvious way:

PMR(a, w,p|ā) = PMR(ā ∪ {w}, ā ∪ {a},p) (24)

MR(a,p|ā) = max
w∈A

PMR(a, w,p|ā) (25)

MMR(p|ā) = min
a∈A

MR(a,p|ā) (26)

a∗̄
a,p ∈ argmin

a∈A
MR(a,p|ā). (27)

Here PMR(a, w, p|ā) denotes the pairwise max regret of extending slate ā by adding a rather than w , while MR(a, p|ā)

denotes the regret of extending ā with a rather than some other alternative in the worst case (over completions of p). 
Minimax regret and the minimax optimal “extension” of ā, i.e., a∗̄

a,p , are defined in the obvious way. We note that setting 
k = 1 gives the single-winner robust voting problem addressed earlier.

The additional alternative problem can be solved in polynomial time. We can explicitly compute the pairwise max regret 
PMR(a, w, p|ā) of all m(m −1)/2 pairs of alternatives (a, w) (where a is a proposed additional option and w is an adversarial 
witness), using ideas very similar to those developed in Section 4.2 (as we discuss below). Indeed, while we can apply our 
previous algorithm for finding the pairwise max regret for arbitrary pairs of slates (ā, w), the algorithm and analysis of 
PMR(a, w, p|ā) that we provide below offers a factor k speedup over the direct application of our earlier algorithm.

With PMR in hand, we can readily determine minimax regret using Eqs. (25) and (26). Hence, we need only show that 
PMR can be computed in polynomial time. As in Section 4.2, we can compute each voter’s i’s contribution PMR(a, w, pi |ā)

independently. We again consider two cases.

Case 1, where Neci(a � w). We have that PMR(a, w, pi |ā) ≤ 0 since adding w to ā cannot improve i’s score any more than 
adding a. Because Neci(a � w), if there is some b ∈ ā such that Neci(b � a) or Inci(a, b) then b can be ordered over a and 
PMR(a, w, pi |ā) = 0. However, if Neci(a � b) for all b ∈ ā, regret must be negative. PMR(a, w, pi |ā) is then maximized (or 
negative regret minimized) by placing as few alternatives as possible between a and the best element of ā ∪ {w}. For any b
with Neci(a � b), define

Ti(a,b) = {b′ : Neci(a � b′) and Neci(b
′ � b)}.

Then regret is maximized by ordering the alternatives in ui(ā ∪ {w}) such that the element with the fewest possible alter-
natives between it and a is ranked first. This gives:

PMR(a, w, pi|ā) = max
b∈ui(ā∪{w})

−|Ti(a,b)| − 1.

Case 2, where Neci(w � a) or Inci(a, w). We have that PMR(a, w, pi |ā) ≥ 0. In this case, if there is some b ∈ ā such that 
Neci(b � w), then w can never be selected; but since w can be ordered over a, PMR(a, w, pi |ā) = 0. However, if there is 
no b ∈ ā with Neci(b � w), then regret is maximized by maximizing the gap between w and the best element of ā ∪ {a}. 
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Algorithm 1 greedy algorithm.
1: a ← ∅
2: for k = 1 to K do
3: MMR ← ∞
4: for a ∈ A do
5: MR ← −∞
6: for w ∈ A : w 
= a do
7: for i ∈ N do
8: if Neci(a � w) then
9: PMR ← PMR + maxb∈ui (a∪{w}) −|Ti(a, b)| − 1

10: else
11: PMR ← PMR + |B ′

i(a ∪ {a}, w)| + 1
12: end if
13: end for
14: if PMR > MR then
15: MR ← PMR
16: end if
17: end for
18: if MR < MMR then
19: MMR ← MR
20: a∗ ← a
21: end if
22: end for
23: a ← a ∪ {a∗}.
24: end for

In particular, the alternatives in B ′
i(ā ∪ {a}, w), as defined in Eq. (23), can all be ordered between w and the best such 

alternative. This gives us:

PMR(a, w, pi|ā) = |B ′
i(ā ∪ {a}, w)| + 1.

Taken together, this shows:

Theorem 13. Given a (partial) slate ā, partial vote pi , and two alternatives a, w ∈ A, pairwise max regret PMR(a, w, pi |ā) for the 
additional alternative problem can be computed in polynomial time.

This gives rise to a very simple greedy algorithm for approximating a minimax optimal K -set: starting with the empty 
slate ā0 = ∅, at each iteration k ≤ K we add alternative a∗

k = a∗̄
ak−1,p to slate āk−1, i.e., the option with least max regret given 

the alternatives already on the slate. The method is detailed in Algorithm 1. While this algorithm comes with no strong 
approximation guarantees—though we provide some weaker guarantees below—we show in Section 7.2 that it appears 
works well in practice on a small selection of problems.

In terms of run time, case 1 takes O (mk) time (at the kth iteration) and case 2, as discussed previously, takes O (k2 +
mk) = O (mk) time. Computing pairwise max regret for all pairs (a, w), across all agents, and finding the next best alternative 
a∗̄

ak,p
for each of the K slots on the slate results in a total running time of O (nm3 K 2).

There are two reasons the greedy algorithm is not guaranteed to find the minimax optimal slate. The first is unrelated 
to preference uncertainty: even with complete preference information, the greedy algorithm is unable to ensure we find an 
optimal K -slate. In other words, it can produce a slate that has positive max regret. However, the greedy algorithm does 
provide a 1 − 1

e approximation in the full information setting. It is not hard to see that if we have sufficient information 
to make the “optimal greedy choice” at each stage, then the regret-based approach will correspond to the exact greedy 
algorithm described by Lu and Boutilier [62]:

Proposition 14. If MR(a∗
k , p|āk−1) = 0 for all k ≤ K , then the greedy-MMR set āK is identical to the set produced by the (full-

information) greedy algorithm given any v ∈ C(p).

Proof. We prove this by induction on the number of greedy-MMR iterations k. In the base case, the full information greedy 
algorithm will select a single alternative, one with the highest score (i.e., the winner under a positional scoring rule). If 
MR(a∗

1, p) = 0, this implies a∗
1 is a necessary winner and hence must have the greatest score, so greedy-MMR selects the 

score optimal alternative.
For the induction, let v∗ be the true but unknown completion of p. For some k < K , suppose that the following 

holds regarding the greedy-MMR slate āk: each a∗
i added to the greedy-MMR slate at iteration i, for i ≤ k, satisfies 

a∗
i ∈ argmaxa′∈A S(āi−1 ∪ {a′}, v∗), where āi−1 = {a∗

1, . . . , a
∗
i−1}. Consider the k + 1st iteration: at that point, the chosen al-

ternative a∗
k+1 has conditional max regret zero, i.e., MR(a∗

k+1, p|āk) = 0. By definition of conditional max regret, any other 
alternative a′ ∈ A satisfies S(āk−1 ∪ {a′}, v) ≤ S(āk, v) for any completion v ∈ C(p). In particular, this holds for v = v∗ , which 
implies, by definition, that a∗ is a full-information greedy optimal choice at iteration k + 1. �
k+1
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If the last alternative added has non-zero max-regret, we are assured that true minimax regret is also nonzero:

Observation 15. If MR(a∗
K , p|āK−1) > 0, then MMR(p) > 0.

Unfortunately, we cannot be sure that if only the last element has zero regret that we have found the greedy-optimal 
slate. But even if the minimax-optimal alternative a∗

i does not have zero max regret, we can still obtain bounds on the 
quality of the solution. We can consider each iteration of our greedy algorithm under partial information as approximating
the corresponding full-information greedy algorithm—it is only able to approximate the greedy choice of alternative at each 
iteration because it is working with the partial profile p rather than the true, unknown profile v. However, using known 
results for bounding the quality of approximate greedy optimization [47], we can provide a bound on the quality of the slate 
āgrd

K (p) produced by the greedy algorithm under partial information (with respect to the true profile v) relative to the true 
optimal slate ā∗

K (v) given full information. Specifically:

Proposition 16. Let p be a (known) partial profile and v ∈ C(p) be any (unknown) complete preference profile. Let āgrd
K (p) =

{ap
1 , . . . , ap

K } denote the size K slate produced by the regret-based greedy algorithm using partial profile p, where alternative ap
k is 

added in the kth iteration, and let ā∗
K (v) be the optimal K -slate. Let mk be any lower bound on the marginal value of the kth alternative 

added to a slate by the full information greedy algorithm; that is, mk ≤ S(ā f
k−1 ∪{a f

k }, v) − S(ā f
k−1, v) where, ā f

k−1 consists of the first 
k − 1 greedily selected alternatives using the full profile v. If MR(ap

k , p|{ap
1 , . . .ap

k−1}) ≤ α−1
α mk for all k ≤ K , for some α ≥ 1, then

S(āgrd
K (p),v) ≥

(
1 − 1

e1/α

)
S(ā∗

K (v),v).

In other words, the greedy regret-based algorithm constructs a slate that is within a factor of 1 − 1
e1/α of the optimal (full-information) 

slate despite working with incomplete information.

Proof. We prove this bound by relating the marginal improvement offered at the kth iteration of the greedy algorithm 
when run using full information v (call this the full-information greedy algorithm) with that when using conditional max 
regret to add an alternative to the slate (call this the partial-information algorithm). Let āp

k−1 denote the slate constructed 
by the partial-information algorithm at iteration k − 1. Let a f

k be the alternative that would be added by full-information 
greedy to slate āp

k−1 constructed to that point, and let FIk = S(āp
k−1 ∪{a f

k }, v) − S(āp
k−1, v) denote its marginal value. Similarly, 

let ap
k denote the alternative added by the partial-information algorithm, and let PIk = S(āp

k−1 ∪ {ap
k }, v) − S(āp

k−1, v) denote 
its marginal value. Note that we are measuring marginal value relative to the true underlying profile v (notwithstanding 
the fact that the partial-information algorithm does not have access to this profile). Finally, let āgrd

K (p) denote the K -slate 
produced by the partial-information algorithm and PI = S(āgrd

K (p), v) denotes its value under v, and let OPT = S(ā∗
K (v), v) be 

the value of the optimal slate ā∗
K (v).

At stage k, the partial-information algorithm adds an alternative ap
k that minimizes conditional max regret. By definition 

of conditional max regret, the marginal value of ap
k w.r.t. āp

k−1 must be within an additive factor MR(ap
k , p|āk−1) of the 

marginal value of a f
k . Thus we have

FIk ≤ PIk + MR(ap
k ,p|āk−1) (28)

≤ PIk + α − 1

α
mk (29)

≤ PIk + α − 1

α
FIk (30)

(where the second and third inequalities follow by the statement of the theorem). This implies 1
α FIk ≤ PIk; i.e., the partial-

information greedy algorithm offers an 1
α -approximation of the full-information algorithm w.r.t. the additional alternative 

problem.
It can be shown that a greedy algorithm applied to a submodular optimization problem in which the alternative added 

at each step does not maximize marginal improvement, but does provide a γ -approximation of the maximal marginal 
improvement, provides a (1 − 1

eγ ) approximation to the submodular optimization problem [47]. Since slate optimization for 
the full information problem is submodular [62], we have

PI ≥
(

1 − 1

e1/α

)
OPT. �

We provide some interpretation of this result and its applicability. The first thing to note is that the result provides 
a post-hoc (i.e., data- or instance-dependent) bound rather than a prior guarantee on solution quality. Specifically, the 
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quality guarantee requires testing the condition MR(ap
k , p |

{
ap

1 , . . . ,ap
k−1

}
) ≤ α−1

α mk with each item added to the slate. 
This data-dependence is to be expected in the general partial information context we deal with: we would not expect any 
reasonable bound to apply, say, if we had zero knowledge of voter preferences. Moreover, since we largely use our quality 
guarantees to drive the decision whether to elicit further preference information, if the conditions of the bound fail, then it 
suggests we elicit further (see the next section).

We also remark on the condition that we have a lower bound mk on the marginal improvement of the full-information
greedy algorithm. In general, such bounds will be problem-dependent and may be hard to obtain. But non-trivial bounds 
may be viable in many settings. For instance, if we use plurality scoring and have upper and lower bounds on the number 
of voters in a population that prefer any individual candidate, one can easily derive a lower bound mk for the kth addition 
to a slate. Similarly, in marketing, assortment optimization, product line design, etc., preliminary consumer surveys and past 
purchase behavior may inform such bounds. Finally, if we have distributional information about voter/consumer preferences, 
we may be able to derive bounds of this type that apply with high probability, and thus derive a probabilistic variant of 
this result.

Finally, we emphasize that this bound is relative to the quality of the optimal slate that can be obtained under full 
information. Of course, it would be interesting to compare the greedy result with regret of minimax-optimal slate under the 
same partial information. But the relationship to the quality of the optimal solution is potentially just as valuable a device 
for driving an elicitation procedure. (Indeed, MMR is itself a bound on solution quality relative to the true optimum.)

7. Preference elicitation for multi-winner problems

We now turn our attention to the question of incremental elicitation of voter preferences. When attempting to find an 
optimal K -slate, with a partial preference profile p, we cannot guarantee that an optimal slate can be obtained (regardless 
of whether we resort to greedy or exact optimization)—specifically, if MMR(p) > 0, no slate can be guaranteed to be optimal. 
To improve the quality of the slate, further information must be elicited from one or more voters. Our goal is to reduce 
relevant uncertainty, i.e., find those queries that have the greatest potential to reduce minimax regret. To do this we adapt 
the principles of the single-winner current solution strategy (CSS), introduced in Section 5, to work with slates. We first define 
CSS in this new context, then provide empirical evaluation of CSS, both in terms of the number of queries required to reach 
solutions with low minimax regret, and its running time.

7.1. Current solution strategy for slate selection

We focus here on pairwise comparison queries, in which some voter i is asked whether a �i a′; but the basic principles 
can be applied to other forms of queries (e.g., top-t queries, as discussed in Section 5). The use of CSS differs depending 
on whether we are using the greedy heuristic or optimal MMR computation to determine our K -slates. We present our 
approach in the context of greedy-MMR computation since it is the more practical method for problems involving slates of 
reasonable size. The general principles can be readily adapted to optimal MMR computation as well.

Our elicitation scheme works by using the greedy algorithm to compute an (approximately) minimax optimal slate 
ā∗

p = 〈a∗
1, . . . , a

∗
K 〉 given the current partial profile p. If MR(a∗

K , p|ā∗
K−1) = 0, we treat this as an (approximately) minimax 

optimal slate and stop. Otherwise, we know that MMR(p) > 0, so we use CSS to select a voter i and a pairwise comparison 
query a �i a′ with the greatest potential to reduce MR(a∗

K , p|ā∗
K−1). Let a∗

K be the last alternative added to the slate and 
let w K be the witness alternative (i.e., where MR(a∗

K , p|ā∗
K−1) = PMR(a∗

K , w K , p|ā∗
K−1). CSS identifies the appropriate query 

(and its potential) for a particular voter i based on several specific cases.

Case 1, where Neci(a∗
K � w K ). Then voter i’s contribution PMRi to PMR(a∗

K , w K ,p|ā∗
K−1) must be PMRi ≤ 0. If PMRi = 0, 

then either: (i) a∗
K is dominated in i’s partial ranking pi by some a j ∈ ā∗

K−1, or (ii) a∗
K is not dominated by any such a j . 

In case (i), no query can reduce MR(a∗
K , p|ā∗

K−1) since voter i would never select either of a∗
K or w K given the rest of the 

slate ā∗
K−1, so no query is asked of i. In case (ii), the adversary can set PMRi = 0 by ordering some alternative a j ∈ ā∗

K−1
over a∗

K (if no such alternative were possible, PMRi would have to be negative). In this case, any query that prevents 
a j from being orderable above ak can reduce PMRi (by making it negative). Specifically, any query of the form b �i c
for b ∈ a∗

K ∪ {a : Neci(a∗
K � a)} and c ∈ a j ∪ {a : Neci(a � a j)} will suffice. Since the degree of PMRi is determined by the 

relationship of a∗
K to w K and not the gap with a j , we choose query a∗

K �i a j since it is implied by any other.
If PMRi < 0, then (iii) a∗

K dominates each a j ∈ ā∗
K−1 as well as w K . Queries that can extend the advantage over the 

best alternative of w∗ ∈ ui({w K } ∪ ā∗
K−1) (i.e., make PMRi even smaller) take two forms: learning that Neci(a∗

K � c) for 
some ancestor c of w∗ (since we do not know w∗ , we choose an arbitrary alternative in ui({w K } ∪ ā∗

K−1)); or learning 
that Neci(d � w∗) for some descendant d of a∗

K . The query with the greatest potential is that with the largest number of 
descendants (respectively, ancestors) lying between it and c (respectively, d) in pi .

Case 2, where Neci(w K � a∗
K ) or Inci(a∗

K , w K ). Then voter i’s contribution PMRi to PMR(a∗
K , w K ,p|ā∗

K−1) must be 
PMRi ≥ 0. (i) If PMRi = 0, then we must have w K dominated by some a j ∈ ā∗

K−1. In this case we ask no query. (ii) If 
PMRi > 0, then w K is not dominated by any a j ∈ ā∗ (i.e., by none of the K alternatives). Then regret can be reduced only 
K
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by asking a query that removes elements from the set B ′
i(ā

∗
K , w K ) by either: (a) placing w K (or one of its ancestors) below 

some a j (it is only necessary to consider those in ui(ā∗
K )); (b) placing some a j ∈ ui(ā∗

K ) (or one of its descendants) above 
w K ; or (c) placing some element that is incomparable to both a∗

K and w K either above w K (hence placing its ancestors 
above as well) or below a∗

K (hence placing its descendants below as well). In the case that w K dominates all elements of 
ā∗

K , one can ask queries that either (a) move a descendant d of w K , where d is not an ancestor of some a j ∈ ā∗
K , below such 

an a j ; or (b) move an ancestor c of some a j , where c is not a descendant of w K , above w K . The potential of a query to 
reduce PMRi is measured by the number of elements it removes from the set B ′

i(ā
∗
K , w K ).

We note that if PMR(a∗
K , w K , p|ā∗

K−1) > 0, then one of the query generating cases above must hold for at least one voter. 
As a consequence, CSS cannot “stall” as long as the last alternative added to the slate has non-zero max regret.

7.2. Empirical evaluation

We now describe experiments designed to test the ability of our greedy slate optimization method, when coupled with 
the CSS elicitation strategy, to find good (or even optimal) slates of alternatives with few voter queries. We evaluate the 
approach on two real datasets as well as on more systematically generated random data. As in single-winner problems, we 
use the Sushi data set and the Irish dataset, and draw profiles of 100 random users/voters from these sets as described in 
Section 5.3. In the Sushi experiments we set the slate size to be K = 3, while in the Irish experiments we set K = 4. We 
also test CSS by generating random profiles of 100 voter rankings over 10 alternatives, with voter rankings drawn i.i.d. from 
a Mallows distribution, again using the same methodology as in Section 5.3. In the Mallows experiments, we set K = 3 and 
analyze elicitation performance as we vary the dispersion parameter φ.

Each experimental instance consists of a full profile. We start each run with no voter preference information, then, using 
CSS to generate queries, we elicit pairwise comparisons from voters (who respond accurately based on their underlying 
preferences). After each query/round, we use the greedy algorithm to compute an approximately optimal K -slate. Elicitation 
terminates once the conditional max regret (CondMR) of the K th alternative added to the slate, MR(a∗

K , p|ā∗
K−1), is zero. 

(Note that after each elicitation round a “fresh” slate is constructed; elicitation is terminated at that round if the K th 
alternative added to the slate at that round has zero conditional max regret.) We also compare this to the use of exact 
minimax regret computation at each round of elicitation to determine the truly optimal K -slate.

Results in Figs. 6(a) and (b) show performance for the Sushi and Irish data. All results are averaged over 20 randomly 
drawn profiles, and in each plot we show the following metrics for the slate produced by the greedy algorithm after each 
query:

• its conditional max regret (CondMR), i.e., that of the last element added to the slate;
• its true max regret;
• and one sample standard deviation above and below its regret values (dotted lines).

We also show the performance of CSS when exact MMR is computed and the optimal slate is generated at each iteration. 
Finally, we compare CSS with a baseline random strategy (Rand) that randomly picks a voter and pairwise comparison query 
(ensuring this response to this query is not implied by that voter’s partial ranking, i.e., it is not contained in the transitive 
closure of previous responses), using Greedy to compute the slate at each round and measuring its max regret. Again, a 
range of one standard deviation is shown.

These plots indicate that CSS works very well. It finds a slate with zero max regret “per voter” with only about 20 
queries per user in Sushi (respectively, 15 in Irish). CSS also reaches near-zero regret in about 10 queries (respectively, 8) 
per user; thus, its anytime profile is very encouraging for settings where approximately optimal solutions are permissible, 
especially if approximation provides a significant reduction in elicitation burden. Note that the true regret may be zero even 
if max regret is not. We contrast the number of queries needed by CSS with the demands of complete sorting to provide 
a full ranking, which requires O (m log(m)) pairwise comparisons using methods with good average case performance, or 
equivalently 34 (respectively, 29) queries. Random requires 25 (respectively, 22) queries per user to reach zero regret, and 
has a much worse anytime profile.

The greedy algorithm itself works extremely well: it almost always finds the minimax optimal slate—the MR Greedy and 
MMR curves coincide almost exactly—and in the rare cases that it does not, Greedy MR is very close to true MMR. MR may 
not decrease monotonically, as preference updates may “mislead” Greedy into choosing an inferior slate (by contrast, true 
MMR is non-increasing). CondMR is also a good proxy for true max regret: in Sushi, the per-voter difference is at most 0.41
and in Irish at most 0.24. Thus, CondMR—which can be computed efficiently—is an excellent surrogate for MR—which is 
NP-hard—as a quality measure and a stopping criterion for elicitation.

Mallows results in Fig. 6 (c) show how the same quantities change as a function of the total number of queries, for 
different dispersion values φ. The results show that, unsurprisingly, more concentrated preference distributions (smaller φ) 
require fewer queries to find good slates. This is consistent with results for the single winner voting (see Section 5.3).

Table 2 shows wall clock runtimes for Greedy with different values of m (alternatives) and K (slate size) on a 3.0 GHz 
Intel Xeon processor. Results are averaged over “complete” CSS elicitation runs (i.e., over all optimizations solved until 
elicitation reaches a slate whose CondMR is zero), on random profiles of n = 40 voters drawn from a Mallows distribution 
with φ = .7. Average runtime increases significantly with the number of candidates m, but less dramatically with K . This is 
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Fig. 6. Performance of Greedy/CSS on (a) Sushi (20 trials), (b) Irish (20 trials) and (c) Mallows datasets (20 trials).

Table 2
Average Greedy runtime (sec.), on random Mallows profiles.

m K = 2 K = 3 K = 4 K = 6 K = 8

10 0.015 0.020 0.023 0.028 0.033
20 0.105 0.152 0.194 0.275 0.345
30 0.342 0.508 0.642 0.987 1.282
50 1.577 2.042 2.247 4.439 6.344
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consistent with the “quadratic in K ” and “cubic in m” computational analysis described above. Still, Greedy is very practical, 
taking only 6.3 s to find optimal slates for m = 50 candidates and slates of size K = 8.

8. Concluding remarks

We have proposed the use of minimax regret as a means of robust group decision support for both single-winner 
determination and a certain form of the slate selection problem. This regret criterion allows us to analyze the quality of the 
recommended outcome by bounding the loss in “social welfare,” as indicated by the profile score of the selected alternatives, 
with respect to the optimal outcome. Consequently, this approach supports the informational approximation of voting rules, 
as well as guiding the process of incremental elicitation of voter preferences.

We have demonstrated the tractability of regret computation for several important single-winner voting rules, and 
showed the power of regret-based elicitation on both real-world and synthetic data sets. Our empirical results for single-
winner regret-based elicitation show that one can determine both approximate and exact winners using only a small fraction 
of (pairwise) voter preferences. In multi-winner settings, we extended the approach to deal with Chamberlin-Courant style 
schemes. We developed algorithms for both the exact and greedy optimization of slates with respect to minimax regret. 
The greedy method is especially practical from a computational perspective. We provided some theoretical bounds on the 
performance of the greedy method, but more importantly demonstrated that it often outputs slates that are either minimax 
optimal or very close to optimal. We also adapted the CSS elicitation heuristic and showed that, when coupled with the 
greedy slate algorithm (even when using conditional max regret as surrogate for max regret), it finds very good slates while 
asking for relatively little preference information. As with single-winner CSS, it has a desirable anytime profile.

While our results suggest that incremental elicitation is viable in many practical domains, a number of interesting av-
enues for future research remain. Apart from developing computational and elicitation schemes for additional single- and 
multi-winner voting rules, one important direction is to develop approaches well-suited for multi-attribute domains, where 
alternatives and/or voters are specified using particular instantiations of attributes, and preferences are represented as com-
pact functions of these attributes. Such models are particularly relevant in recommender systems and product configuration.

Another direction for future work is the deeper empirical analysis of both our regret-based robust optimization tech-
niques and the CSS elicitation method on a wider range of data sets, such as those contained in the PrefLib repository 
[69].

While our elicitation techniques are distribution-free, future directions include tailoring elicitation to the demands of 
particular population preference distributions (e.g., Mallows [68], Plackett-Luce [66,76], etc.). Such a probabilistic framework 
would allow for more subtle analysis of elicitation performance and new elicitation heuristics. The models could be purely 
(Bayesian) decision-theoretic; but more interesting analyses would mix probabilistic and regret-based reasoning (e.g., the 
expected number of queries needed to determine a winner or to reduce minimax regret to some acceptable threshold). This 
is an important step in making incremental vote elicitation practical in real-world settings. Some preliminary work in this 
direction couples regret-based decision making with query policies influenced by prior distributions over voter preferences 
within a Bayesian PAC-style framework [64]. Recently, several other probabilistic and learning-based models for social choice 
with partial information have been developed as well [40,45,74].

At the same time, minimizing the number of rounds of elicitation by asking many (or all) voters to provide some pref-
erence information simultaneously, rather than in sequence, and allowing voters to provide greater amounts of information 
at each round, can provide important practical advantages. As discussed in Sections 2.4 and 5.3, the scheme of Kalech et 
al. [53] does just this in a heuristic way, providing solutions with far fewer rounds of elicitation than our scheme. How-
ever, they do not analyze the tradeoff between rounds of elicitation, the amount of information ultimately elicited, and the 
quality of the final solution. A framework for such an analysis is developed by Lu and Boutilier [64].

Finally, there are interesting questions connecting elicitation to vote manipulation, where the elicitation process may 
reveal preference information that a manipulating coalition can exploit. Neither our optimization techniques nor our elici-
tation methods account for the strategic nature of social interactions. Strategy-proof (non-regret-based) elicitation has been 
considered for some voting rules (e.g., [33,59]). While the strategic nature of regret-based elicitation has been studied in 
the context of mechanism design [50–52], exploring the impact of regret-based elicitation on opportunities for vote manip-
ulation remains of significant interest.
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