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Group decision making is of fundamental importance in all aspects of a modern society.

Many commonly studied decision procedures require that agents provide full preference

information. This requirement imposes significant cognitive and time burdens on agents,

increases communication overhead, and infringes agent privacy. As a result, specifying

full preferences is one of the contributing factors for the limited real-world adoption of

some commonly studied voting rules.

In this dissertation, we introduce a framework consisting of new concepts, algorithms,

and theoretical results to provide a sound foundation on which we can address these

problems by being able to make group decisions with only partial preference information.

In particular, we focus on single and multi-winner voting. We introduce minimax

regret (MMR), a group decision-criterion for partial preferences, which quantifies the loss

in social welfare of chosen alternative(s) compared to the unknown, but true winning

alternative(s). We develop polynomial-time algorithms for the computation of MMR

for a number of common of voting rules, and prove intractability results for other rules.

We address preference elicitation, the second part of our framework, which concerns the

extraction of only the relevant agent preferences that reduce MMR. We develop a few

elicitation strategies, based on common ideas, for different voting rules and query types.

While MMR can be applied in a distribution-free context, in many practical environ-

ments decision makers have access to historical datasets of, and probabilistic knowledge

of agent preferences. To leverage such information, we first address the problem of learn-

ing probabilistic models of preferences from pairwise comparisons—the building block
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of many preference structures—for which previous techniques cannot handle. Then we

extend our framework to a multi-round elicitation process that leverages probabilistic

models to guide and analyze elicitation strategies.

We empirically validate our framework and algorithms on real datasets. Experiments

show our elicitation algorithms query only a fraction of full preferences to obtain alter-

native(s) with small MMR. Experiments also show our learning algorithms can learn

accurate mixture models of preference types, which we then use to guide the design of

one-round top-k elicitation protocols.
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Chapter 1

Introduction

People, societies, and organizations routinely make decisions that impact not just a single

entity, but multiple individuals and stakeholders. Whether this involves scheduling a

meeting or nations electing their leaders, decisions must be made in the presence of

diverse preferences amongst the agents. In practice, such decision processes typically

involve informal deliberations, limited forms of voting, or outright dictatorship. But with

the recent rise in ubiquitous forms of electronic communications such as social media and

smartphones, there are greater opportunities to apply novel approaches and algorithms to

these group decision problems so as to enable more efficient and desirable outcomes. This

creates the need to develop more intelligent, transparent, and sophisticated mechanisms

capable of reducing the time and effort required by users to specify their preferences, as

well as increasing the overall satisfaction with selected decisions.

One of the long-standing priorities in artificial intelligence is the development of sys-

tems that can autonomously make or otherwise assess decisions for one or more underlying

agents. Making decisions for these multi-agent systems is the primary focus of this the-

sis. The field of decision making for groups of individuals, typically studied in political

science and economics, is termed social choice. One of the main interests within social

choice is the study of voting rules that take the preferences of individuals as input, such

as rankings over all given alternatives, and output a recommended choice that reflects

some notion of consensus or compromise. In fact, one usually thinks of social choice,

from the perspective of social scientists, as being primarily concerned with theoretical

aspects of elections and political matters. However, with the success of recommender

systems and the ease with which we can state our preferences (such as rating products

or comparing options), it is becoming more realistic to conduct both high-stakes and

low-stakes social choice events electronically. In order to realize this shift, progress must

be made in both the theory and practice of computational social choice.
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Chapter 1. Introduction 2

The major bottleneck in both single or multi-agent decision making is the availability

of preference information. We seek to alleviate this burden on the agents, by providing

a protocol under which partial preference information is elicited incrementally, and deci-

sions or social choices can be made or recommended even with such partial preferences.

Such decisions should be robust—in the sense that worst-case guarantees can be made

about their quality. As discussed below, the quality measure is typically implicit in the

underlying social choice mechanism, as it usually measures the social welfare of its se-

lected alternative. Preference information should be elicited cleverly—preferences and

agents that are or become irrelevant to the best decision should be pruned from queries.

Furthermore, elicitation should be adaptive—using the history of questions and answers

to update the best queries.

By reducing the number of questions and amount of information elicited, the decision

maker may be able to arrive at a “good enough” decision faster and with less cognitive and

communication effort from agents while better protecting their privacy. We also require

that algorithms for these problems be practical in the sense that they are relatively simple

to implement, have good time and space complexity, and have good performance on real

world datasets: in terms of computation, decision quality and the amount of information

elicited. The primary aim of this thesis is to address these issues. In particular, we seek

to develop models and algorithms to reduce the cognitive and communication burdens

on agents or voters engaged in social choice decisions.

Existing research has not provided a principled approach under which decisions can

be made, recommended or assessed with arbitrary collections of partial preference infor-

mation. Past work has introduced and studied notions of necessary and possible winners,

and while these ideas are suitable when winners can be fully determined from given par-

tial preferences, they have no relevance in the vast majority of practical scenarios when

such partial preference information cannot fully determine the winners. Simple elicita-

tion strategies involving repeatedly querying an agent’s next favourite alternative have

also been proposed and studied. Such approaches, however, are not fully incremental

(querying all agents at once), rely on the problematic concepts of necessary and possible

winners, and are restrictive in the types of queries considered.

We focus on making group decisions that do not involve the transfer of money, or

more generally the transfer of utility. We focus on settings where agents have underlying

preference rankings over a finite set of alternatives, and we assume that partial preference

information consists of a consistent set of pairwise alternative comparisons. For example,

this may model a situation where each member of a hiring committee (the agents) has

an ordinal ranking over the set of candidates (the alternatives). This ranking usually



Chapter 1. Introduction 3

reflects a personal preference or an objective evaluation of the candidates. In the hiring

committee example, each member’s ranking can reflect both: objective evaluations of

candidates’ level of job skills and experience, and personal preferences regarding candi-

dates’ cultural fit. Then a social choice mechanism, which receives as input the preference

rankings of each committee member, outputs a decision. In the example, this may be a

single candidate, or even a selection or slate of candidates to hire.

A social choice mechanism typically reflects some notion of consensus. For example

a mechanism may score each candidate in a ranking by the position of the ranked can-

didate, and then sum the scores across all agents’ rankings to obtain a total score for

each candidate. Then the candidate with the highest total score is selected. This was

effectively the technique, now known as the Borda count, used by the French Academy

of Sciences in 1770 after being introduced by de Borda [39]. More generally, the Borda

count belongs to a class of voting schemes known as positional scoring rules which assigns

arbitrary non-increasing scores to each of the rank positions. Such rules are based on

an implicit assumption that each rank position corresponds to a utility value the agent

has when the candidate ranked at the said position is chosen by the voting scheme. And

the candidate with the maximum total positional score is selected. This type of voting

scheme, roughly speaking, implements notions of utilitarianism in the theory of politics.

There are also social choice schemes (e.g., maxmin fairness), that implement notions of

egalitarianism, which is the idea that the utility of the least well off agent (in this case the

agent whose rank position of the chosen alternative is the largest) should be maximized.

Many of the social choice mechanisms have an underlying objective that is maximized

or minimized (such as any positional scoring rule) reflecting some social desiderata. Still

other rules are more algorithmic and procedural based, such as Single Transferable Vote

or Dodgson’s rule. Such rules, however, can be motivated from axiomatic foundations,

which in itself has a long history in social choice—starting with Arrow’s Impossibility

Theorem [4]. Axiomatic approaches serve another avenue from which to devise social

choice rules with desired properties. These and other rudimentary aspects of social

choice can be found in an introductory text (see e.g., [51]).

In this dissertation, we generally do not assume preferences are restricted. Agents

may express all m! possible rankings (where m is the number of alternatives) indepen-

dently of the rankings of the other agents. In some situations restricted preferences may

arise—a common example are single-peaked preferences. For example, in elections where

candidates can be ordered from left to right on the political spectrum, then it is likely

that the preferences of a particular agent is relatively stronger for a candidate near the

agent’s ideal leaning on the political spectrum.
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1.1 Overall Contributions

The purpose of this PhD thesis is to advance the theory and practical design of decision

support systems for social choice. In particular, we develop models and algorithms for

making and assessing group decisions with only partial preference information, and algo-

rithms for the effective elicitation of only the most relevant preference information. To

make progress towards these two goals, we address three sub-goals:

1. Reducing the cognitive and communication burden on agents involved in a group

decision;

2. Developing learning algorithms to learn statistical models of rankings with arbitrary

pairwise preference data; and

3. Integrating statistical models of rankings into group decision support so as to fur-

ther improve decision quality while reducing user cognitive and communication

burden.

We now detail below these three points.

Reducing Interaction Burdens on Users

In this research thread, we are interested in making group decision mechanisms more prac-

tical for agents. One of the main reasons that commonly studied social choice schemes—

which typically require participants to provide a full ranking over all alternatives—are

not deployed in practice is the cognitive and communication burden that they impose on

users. Individuals or organizational entities would like to avoid the exercise of thinking

about and communicating a full ranking if it is not necessary. Moreover, agents may be

hesitant to reveal their preferences for reasons of privacy or confidentiality. This is in

part why Plurality voting, where users simply vote for their favourite candidate, is by far

the most popular voting rule used in practice.

Past work has done little to address this issue [76, 78, 123, 32, 121], and one of the

aims of this thesis work is to relieve voters of this burden while maintaining the benefits

of rank-based voting schemes. Allowing users to flexibly specify partial preferences—

which may come in the form of a ranking of their top few choices, or simple pairwise

comparisons of a few options—would help reduce cognitive burden. Given this partial

preference information, there is the problem that the decision maker still needs to assess

and make good group decisions. Furthermore, not all partial preferences are equally

useful—being able to selectively query or elicit the most relevant preference information
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can reduce the time and effort required of users, while still allowing one to reach a high

quality or optimal decision. In order to achieve these goals, new conceptual frameworks

must be developed to formalize notions of voting with partial preferences and elicitation of

the relevant preferences. Moreover these notions must be tied to a solid decision-theoretic

foundation for the underlying decision task.

Two of the main concepts developed in this thesis are those of robust social choice

and vote elicitation. Robust social choice refers to making a group decision under par-

tial preferences that is guaranteed, regardless of what the uncertainties may be in the

worst-case, to be as close as possible to the true optimal choice. It provides a worst-case

guarantee in the sense that regardless of how the partial preferences are “completed,”

the quality level of the recommended decision is above some tolerance. Vote elicitation

involves intelligently asking a small number of preference queries, such as “agent 3, do

you prefer A to B?” or “agent 4, what is your second favourite item?” such that a rea-

sonably good choice outcome can be identified using robust social choice methodologies.

Such elicitation strategies can operate incrementally, finding both the right agent and

preferences to elicit. The ultimate goal is to elicit only the relevant preferences that lead

to a good and robust group decision.

In Chapter 3, we introduce a formal, quantifiable concept of robust social choice based

on the notion of minimax regret. Minimax regret has previously been successfully applied

in the context of single-agent decision support [12, 109, 122, 13, 14, 18, 15, 19]. Roughly

speaking, minimax regret is a decision criterion that aims to minimize the worst-case

utility/satisfaction loss that can possibly be incurred due to the uncertainty of incom-

plete preferences. This measure of utility is usually implicit in common social choice

rules. The alternative that corresponds to the minimax regret criterion is guaranteed to

be within some ε of the actual voting outcome given the underlying full, but unobserved,

preferences. This minimax criterion has a number of advantages over previous approaches

of dealing with partial preferences, as we discuss in later chapters. We develop polyno-

mial time algorithms—with respect to several popular voting rules—for computing the

maximum regret of any alternative, and consequently, for identifying the minimax regret

optimal alternative. We then show how minimax regret can be used to effectively drive

incremental preference elicitation and devise several heuristics for this process. Despite

worst-case theoretical results showing that many common voting rules require nearly

complete voter preferences to determine winners, we demonstrate the practical effective-

ness of regret-based elicitation for determining both approximate and exact winners on

several real-world datasets.

In Chapter 4, we extend the applicability of our framework to a recently popular
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multi-winner voting scheme known as proportional representation [25, 92]. This form of

slate optimization, where we select a subset of at most K alternatives that maximizes

a notion of total satisfaction, also fits within the robust social choice and incremental

elicitation model. The social choice objective, however, is NP-hard to optimize even

with full preference information [83]. Thus in the case of partial preferences, we develop

a greedy algorithm that finds an approximately minimax regret optimal slate (subset of

candidates). We also exploit conditional max regret, a type of score used to approximate

the true max regret, as a stopping criterion, and just as importantly, we use it to drive

the elicitation strategy. Experimental results show the effectiveness of both the greedy

algorithm and the elicitation heuristic.

Learning probabilistic models of rankings

Historical preference data obtained from users, which are now plentiful due to user track-

ing technologies, are motivating researchers to develop algorithms that learn statistical

models of user preferences. Such methods can be used for a variety of purposes, ranging

from recommender systems to consumer product design to social choice. In social choice,

probabilistic models of populational preference rankings can be used to improve both

decision recommendation/assessment and elicitation strategies. However, learning mod-

els of rankings or permutations represents a challenge as there are m! possible rankings,

where m is the number of alternatives. Many specialized unimodal models of rankings

exist, including Plackett-Luce, Thurstone and Mallows (see Marden [88] for an overview).

Such models typically require much fewer parameters than the m!−1 probabilities needed

to specify a full ranking distribution. Having a mixture of such unimodal distributions

allows us to model preference diversity around clusters of rankings, each of which is de-

fined by a modal or centre ranking. Such a mixture distribution still is quite manageable

in the number of parameters required.

While past work has focused on developing algorithms for learning such mixtures

[24, 95, 90], it has only been developed for very restrictive classes of preference data.

Such preference structures include, for example, top- or bottom-k preferences (where

agents specify a ranking of their top or bottom k most or least preferred alternatives).

But such algorithms do not apply to a very fundamental and ubiquitous class of pref-

erences: arbitrary sets of pairwise comparisons. Pairwise comparisons are fundamental

building blocks of higher order preference structures. For example, a top-k or bottom-

k partial preference can be reduced to a set of pairwise comparisons. The converse is

not necessarily true: a single pairwise comparison (assuming three or more alternatives)

cannot be represented with either a top- or bottom-k preference structure. Hence, it
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is critically important to develop algorithms that can learn mixture models given such

training data. Furthermore such learning algorithms should be practical and capable of

scaling into the hundreds of alternatives. Algorithms that have been proposed, however,

cannot learn with more than a few dozen alternatives [24, 90, 95, 79, 62].

Such is the aim of Chapter 5, where we present learning algorithms for training data

consisting of arbitrary sets of pairwise comparisons. In particular, we develop the first

algorithms for learning mixture of Mallows models. At the heart of our technique is a

new algorithm, the generalized repeated insertion model (GRIM), which allows sampling

from arbitrary ranking distributions, and conditional Mallows models [87] in particular.

We also show that exact sampling from a conditional Mallows is hard in general, but

that the approximate samplers we develop are exact for many of the previously studied

restrictive preference structures. We use these sampling methods to derive algorithms for

evaluating log-likelihood, learning Mallows mixtures and for non-parametric estimation.

We also show the effectiveness of our algorithms on several real-world datasets. While the

focus of our learning algorithms is on a specific, and popular, form of ranking distribution

known as the Mallows model, many of the techniques can be readily extended to other

unimodal component distributions such as Plackett-Luce.

Leveraging preference learning

Equipped with learning algorithms for inferring populational preference models, we can

naturally leverage such models to support social choice when we only have partial pref-

erences. Two of the main applications to social choice settings are: developing better

elicitation strategies (hence, further reducing user thinking and communication and bet-

ter protecting privacy) by exploiting probabilistic preference predictions using learned

models; and computing group decisions that aim for good expected quality, in addition

to, or as an alternative to, robust minimax optimal decisions.

While incremental elicitation schemes will generally minimize the amount of pref-

erence information required to make a “good enough” decision, these tend to require

repeated rounds of interaction from participants. For example, consider the hiring com-

mittee example, and suppose that the committee members are distributed across differ-

ent geographical regions and must report their preferences electronically. An incremental

elicitation procedure would, say, query member A (for a pairwise comparison), then

wait for A’s response. Then it must query member C, and again wait for C’s response.

This process of sequentially querying pairwise preferences from agent to agent introduces

costly interruption overhead when each committee member must wait for an individual’s

response before continuing. On the other hand, when querying for full rankings, the de-
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cision maker can simply ask each member, in parallel what their preference rankings are

(as the queries are not dependent on previous responses, these may be asked in parallel).

One can think of these elicitation approaches as spanning multiple rounds where in

each round a batch of queries is presented in parallel to a subset of agents. Once all

agents in a round have responded, the elicitation strategy will generate the next set of

queries for the next round. Hence, the queries in each round are only dependent on the

responses from all prior rounds and not dependent on the responses within that round.

There is also a trade-off to be made between the number of rounds and the amount

of information elicited. Fewer rounds of elicitation leads to a reduction in the overall

interruption cost but it results in requiring relatively more preference information. On the

other hand, increasing the number of rounds leads to a relative reduction in the amount

of preference information elicited, but increases the interruption cost. This trade-off must

be carefully considered when designing effective elicitation strategies.

In Chapter 6 we propose a probabilistic analysis of vote elicitation that combines

the advantages of incremental elicitation schemes—namely, minimizing the amount of

information revealed—with those of full information schemes—single (or few) rounds of

elicitation. We exploit distributional models of preferences to derive the ideal ranking

threshold k, or number of top candidates each voter should provide, to ensure that either

a winning or a high quality candidate (as measured by max regret) can be found with

high probability. Our main contribution is a general empirical methodology, which uses

preference profile samples to determine the ideal ranking threshold for many common

voting rules. We develop probably approximately correct (PAC) sample complexity re-

sults for one-round protocols with any voting rule and demonstrate the efficacy of our

approach empirically on one-round protocols with Borda scoring.

1.2 Organization of Dissertation

In Chapter 2, we review the necessary background in social choice theory. This includes

notation we will use throughout the dissertation. We will also review some related work

on single-agent decision making with partial preference information, and prior work on

elicitation in social choice. In Chapter 3 we present notions of robust decision assessment

and regret-based elicitation in the context of social choice for voting schemes that selects

a single alternative. We then go on to develop efficient and effective algorithms for

robust decision making and elicitation for several common voting rules. In Chapter 4 we

apply the robust social choice framework to the problem of selecting a subset or slate

of alternatives. In particular, we develop robust decision support algorithms and an
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effective elicitation heuristic for the proportional representation scheme, which is known

to be NP-hard even with complete preference information. In Chapter 5, we present

the first efficient algorithms for learning Mallows models with arbitrary collections of

pairwise preference data. Chapter 6 presents a model of multi-round elicitation, and a

probabilistic analysis of preference elicitation in a new one-round protocol that exploits

populational ranking models. Finally Chapter 7 concludes the thesis and discuss future

research directions.



Chapter 2

Overview of Social Choice

The field of social choice, and in particular, voting theory, is concerned with the problem

of selecting an outcome, from a set of outcomes or alternatives (candidates, items are

also terms used throughout this dissertation) A = {a1, . . . , am}, for a set of agents N =

{1, . . . , n} (see Gaertner [52] for an overview). Such an outcome is a decision for all

agents, that impacts each agent’s satisfaction or utility. Agents, however, may have

different preferences for different alternatives, and as such, the outcome must be chosen

so that it reflects some notion of consensus, compromise, or fairness.

This can be achieved through two avenues, first through defining axioms that any

selection, or voting rule should satisfy, and second through the principle of decision theory,

where the goal is to maximize some objective or societal welfare function. The focus of

this dissertation is mostly the latter approach. There are many excellent overviews of

social choice and voting to which we refer the interested reader for a more detailed

background, including general overviews [52, 97] as well as material with a more specific

computational focus [16, 27, 31]. To begin, we present formal definitions of preference

relations, partial preferences and other concepts central to computational social choice.

2.1 Preliminaries

2.1.1 Preference Relations

A preference relation R over a set A of alternatives is an anti-symmetric, transitive,

binary relation such that for any x, y ∈ A with x 6= y, either xRy or yRx. In other

words R is a strict “prefers to” relation. We refer to R as a complete preference or

complete vote or simply ranking, since alternatives can be linearly ordered with respect

to R. It is common to use symbols � for “is preferred to” and ≺ for “is dispreferred

10
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to.” It is possible to allow for weak preference relations, that is, relations that allow

ties in preferences. We focus on strict preferences, however, most models and concepts

presented in this dissertation can be readily extended for weak preferences. It is assumed

each agent ` ∈ N has an underlying complete or full preference v`. Let v`(a) for a ∈ A
be the preference rank or position of a. We denote by 2A the set of all subsets of A (also

known as the power set of A). Let σ be a ranking, for any X ∈ 2A (i.e., X ⊆ A), let σ|X
denote the ranking obtained by restricting σ to alternatives in X.

For a positive integer u let [u] = {1, . . . , u}. As discussed above, R can be represented

by a ranking, or equivalently a bijection σ : A → [m] which maps an item onto its

rank. Thus for i ∈ [m], σ−1(i) is the item in the ith rank. We will use the notation

σ = σ1σ2 · · ·σm to refer to a ranking where the ith ranked item is σi. Let 1[·] be the

indicator function.

The collection of agent preferences v = (v1, . . . , vn) is referred to as a preference

profile. Let V denote the set of all preference profiles, and Vn,m denote the set of all

preference profiles for a fixed n and m. Note that V is not restricted—in this dissertation,

we generally do not make assumptions about the structure of preference profiles, such as

that of single-peaked preferences [10, 93].

2.1.2 Partial Preferences

While agents have a true underlying complete preference, in many applications only

partial preferences are reported, elicited, or observed. It is possible to capture many

incomplete ordinal preferences with a set of pairwise preferences

p = {x1 � y1, . . . , xk � yk},

where we abuse the � notation to allow for incomplete preferences. We will also write

x �p y to indicate x is preferred to y in the partial (or incomplete) preference (or vote)

p. We will use the term preference to refer to either a complete or partial preference as

understood in context. Let tc(p) denote the transitive closure of p, which is the smallest

transitive relation containing p. We write {x, y} ∈ p if there is a comparison between x

and y in p and, similarly {x, y} ∈ tc(p) if x and y are comparable under p’s transitive

closure. We assume p is consistent, that is, the transitive closure contains no cycles in p.

Since preferences are strict, the transitive closure forms a partial order on A. Preference

p is a full ranking if and only if tc(p) is a total order.

Denote by C(p) the set of linear extensions (or completions) of p, which is the set of

all complete preferences that are consistent with p. Let C = C(∅) denote the set of all
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m! rankings. We will refer to the collection of incomplete preferences p = (p1, . . . , pn),

one for each voter, as a partial preference profile. We use C(p) = C(p1)× · · · × C(pn) to

denote the set of complete preference profiles that are consistent with the partial votes.

There are several natural, special cases of pairwise partial preferences. For example,

top-t preferences, in which agents rank their t most preferred alternatives, are quite popu-

lar, as well as its generalizations [79]. To illustrate, suppose we have a set of alternatives

A = {a, b, c, d, e}. An example of a top-2 preference might be a partial ranking that

ranks a first and b second, while not specifying the remaining part of the ranking with

respect to c, d and e. This top-2 example corresponds to the following set of pairwise

comparisons: p = {a � b, b � c, b � d, b � e}. Another interesting class of preferences

are rankings of only subsets of items [58, 26]. For example, an individual may rank the

subset {b, d, e} in the following order: e � b � d. This corresponds to the following set

of pairwise comparisons: p = {e � b, b � d}. The remaining alternatives a and c can be

interleaved in any position within this ranking of b, d and e. However, all of these fail to

capture natural partial preferences even as simple as exactly two pairwise comparisons:

p = {a � b, c � b}. In this case, since we do not know the most preferred alternative

(which may be any alternative except for b), we cannot represent p as a top-k preference

structure. Furthermore, it is not a ranking of a subset of alternatives because we do not

know the relative ranking of a and c. In this dissertation we treat pairwise comparisons

as the fundamental building blocks of partial preference relations, since they represent

almost all special cases of interest.

2.1.3 Distances over Preference Rankings

There are several notions of distance and metrics over rankings and partial preferences

(see Diaconis [41] for an overview). We will focus on the popular Kendall-tau distance

[72] and a simple extension to partial preferences. We will use the terms disagreement

or misordering to refer to a pairwise comparison a � b that differs from the preference

b � a in some ranking. Given a ranking σ = σ1σ2 · · ·σm over A and a partial preference

p, define the dissimilarity measure d(p, σ) to be the number of pairwise comparisons in

the transitive closure tc(p) that are misordered with respect to σ. More formally,

d(p, σ) =
∑
i<j≤m

1[σj � σi ∈ tc(p)]. (2.1)

Note that in preference ranking σ, alternative σi is preferred to σj whenever i < j.

Hence, the indicator function within the above summation will count the number of
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pairwise disagreement between tc(p) and σ. If p is a full ranking, then d(p, σ) is the

Kendall-tau distance. Effectively, d is an extension of the Kendall-tau distance where

one argument can be a strict partial order. Likewise, define s(p, σ) to be the number of

pairwise comparisons in the transitive closure of p that agree with σ. That is,

s(p, σ) =
∑
i<j≤m

1[σi � σj ∈ tc(p)]. (2.2)

Hence d(p, σ) + s(p, σ) is the number of comparisons in the transitive closure of p. If p is

a full ranking, then d(p, σ) + s(p, σ) =
(
m
2

)
.

2.2 Single-Choice Problems

The single-choice group decision problem [16, 27, 107], also known as the winner deter-

mination problem, is that of specifying and computing a winning consensus alternative

given a preference profile. Before implementing or computing a winning alternative, one

must specify a function that maps any possible preference profile into a single alternative.

Definition 1. Let N be a set of n agents and A be a set of m alternatives. A social

choice function (SCF) is any mapping f : Vn,m → A.

For certain common voting rules, we assume the availability of a tie-breaking mech-

anism. If the tie-breaking is deterministic, we assume the SCF captures tie-breaking.

Definition 2. Given a social choice function f , and a preference profile v ∈ V, the

winner is the alternative f(v).

In this dissertation we assume SCFs are deterministic mappings. Stochastic SCFs

may be useful as a protocol to break ties, for example, by selecting a winner at random

amongst alternatives that have the highest number of first-place votes.

The Muller-Satterthwaite theorem [94] is an impossibility result for winner determina-

tion. It states that three seemingly desirable axioms cannot be simultaneously satisfied.

We define these axioms as follows.

Definition 3 (Weak Unanimity). A social choice function f is weakly unanimous if for

all v ∈ V, and for all pairs x, y ∈ A such that x �v` y for each vote v` in v, then

f(v) 6= y.

Weak unanimity simply asserts that if an alternative x is preferred to y by all agents,

then the SCF should never select y.
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Definition 4 (Monotonicity). A social choice function f is monotonic if for all n, m, for

all v ∈ Vn,m, if f(v) = x, and v′ ∈ Vn,m is another profile such that x �v′` y whenever

x �v` y for all agents ` and all alternatives y (where v` ∈ v and v′` ∈ v′), then f(v′) = x.

The monotonicity condition essentially states that if one takes a preference profile v

for which x is the winner, then modifying that profile by modifying each vote v ∈ v in

such a way that the position of x might improve relative to other alternatives, then x

remains the winner (i.e., f(v′) = x).

Definition 5 (Non-Dictatorial). Let f be a social choice function. An agent ` ∈ N is a

dictator (with respect to f) if for every v ∈ V, f(v) = v−1
` (1). A social choice function

f is dictatorial if there is a dictator and it is non-dictatorial if no dictator exists.

The last condition states that, f should not admit dictators—that is, an agent ` whose

most preferred alternative, v−1
` (1), is always chosen as the winner. Finally, the Muller-

Satterthwaite result states that the above three conditions cannot be simultaneously

satisfied.

Theorem 1 (Muller-Satterthwaite [94]). For any set of alternatives A such that m ≥ 3,

and there is no restriction on the set of preference profiles, if f is weakly unanimous and

monotonic then it must be dictatorial.

In many respects the Muller-Satterthwaite theorem resembles the famous impossi-

bility result of Arrow [4], in the context of social choice functions (as opposed to rank

aggregation or social welfare functions as considered by Arrow).

Another well-known impossibility result for social choice functions involves the vote

manipulation phenomenon, when agents misreport their preferences to change the social

choice outcome in their favor. The famous Gibbard-Satterthwaite theorem [54, 110]

ensures that no sensible voting rule is resistant to manipulation when the manipulator(s)

have full knowledge of other agents’ true preferences.

Definition 6 (Unanimity). A social choice function f is unanimous if for all x ∈ A, and

all v ∈ V such that for each ` ∈ N , v−1
` (1) = x, then f(v) = x.

Unanimity asserts that for a preference profile where all agents rank the same alter-

native, x, as their most preferred, then f selects x.

Definition 7 (Manipulability). A social choice function f is manipulable if there exists

n, m, v ∈ Vn,m, an agent ` ∈ N , and a different profile v′ ∈ Vn,m (where v′` 6= v`,

v′`′ = v`′ for all `′ 6= `) such that f(v′) �v` f(v). A strategy-proof social choice function

f is not manipulable.
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Manipulability asserts that there exist a preference profile and an agent who can

change their vote in such a way that the winning outcome f(v′) is preferred to f(v)

under the agent’s original preference v`. The Gibbard-Satterthwaite result asserts the

following:

Theorem 2 (Gibbard-Satterthwaite [54, 110]). For any set of alternatives A such that

m ≥ 3, and no restriction on the set of preference profiles, if f is unanimous and non-

dictatorial, then it must be manipulable.

The above impossibility results, while of strong theoretical interest, have little bearing

on the reality that many practical problems require the selection of a consensus choice.

One desirable property of voting rules that Condorcet [30] proposed was that an alter-

native that is preferred to all other alternatives by a majority of voters should always

win.

Definition 8 (Condorcet criterion). Given a preference profile v, an alternative x ∈ A
is a Condorcet winner if for all y ∈ A,

|{` ∈ N : x �v` y}| > n/2.

A social choice function f satisfies the Condorcet criterion if for all v ∈ V, f(v) = x

whenever x is a Condorcet winner.

While this seems like a reasonable criterion it is turns out such an alternative may

not exist. This is known as the Condorcet paradox.

Example 1 (Condorcet paradox). Let A = {a, b, c}, v1 = abc, v2 = bca and v3 = cab.

In the preference profile v = (v1, v2, v3), none of the alternatives a, b or c is a Condorcet

winner: a is only preferred to c once, b is only preferred to a once, and c is only preferred

to b once.

However, rules that do elect the Condorcet winner—if it exists—are called Condorcet

methods and include, for example, the rule that elects the top ranked alternative in a

Kemeny consensus ranking (see Section 2.4). We will now review various popular voting

rules for winner determination. This is only a brief review and covers the main aspects,

including the technical definitions, of each voting rule.

Positional Scoring Rules

The first set of rules are known as positional scoring rules. Formally the score of alterna-

tive a ∈ A, given a positional scoring function (or PSF ) α : [m] → R≥0 that maps rank
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positions into a non-negative number, and a profile v, is

sα(a,v) =
∑
`∈N

α(v`(a)).

We write α`(a) = α(v`(a)) which can be interpreted as a measure of `’s “satisfaction”

with alternative a. The positional scoring winner, using PSF α, is the alternative with the

highest score a∗ = argmaxa∈A sα(a,v). Special cases of positional scoring rules include

Borda, Plurality, k-approval and k-veto.

The Borda count is attributed to Jean-Charles de Borda [39], a French mathematician

and scientist whose proposed method was used by the French Academy of Sciences to

elect its members. This rule has been used in a range of applications including political

elections, university council elections, and awarding sports trophies. The rule is simple:

a given ranking is translated into scores for the alternatives, where the alternative ranked

ith receives a score of m−i. In other words it is a positional scoring rule with α(i) = m−i
for i ∈ [m].

Plurality is arguably the most commonly used voting rule in political elections. This

is in part due to its ease of use (whereby voters need only report their most preferred

candidate, as opposed to a full ranking) and its understandability. It is a special case of

the positional scoring rule with α(1) = 1 and α(i) = 0 for i > 1.

k-Approval is a voting rule where each agent reports a k-set of alternatives, with the

winner being the alternative that appears in the most agents’ chosen approval set. For

example, plurality is 1-Approval. It is a special class of positional rules where α(i) = 1

if i ≤ k, and α(i) = 0 otherwise.

k-Veto is similar to k-Approval, where each agent reports a k-set of alternatives

they do not prefer. It is equivalent to (m − k)-Approval where the approval set is the

complement of the veto set. In particular, α(i) = 1 if i ≤ m− k and α(i) = 0 otherwise.

Approval Voting

A rule that is similar to positional scoring is approval voting, where agents submit a

subset of alternatives, of any size, that they “approve.” The winner is the alternative

with greatest number of approvals across all agents. Approval voting is a simple method

that is in popular use for a variety of applications including, for example, finding a

common time for meetings.
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Single Transferable Vote (STV)

Also known as instant run-off, STV is a reasonably common method for political elec-

tions in the English speaking world (e.g., Irish and Indian presidential elections, mayoral

elections in London, Australian House of Representatives, etc.). Voters submit a top-k

list of preferred items (i.e., a ranking of k most preferred alternatives). Winner deter-

mination proceeds in rounds, and in each round, if there is an alternative that has a

majority (≥ 50%) of the first place votes then it is elected, otherwise the alternative with

the fewest number of first place votes is eliminated and the alternative is deleted from

all the votes (i.e., in each agent’s top-k ranking, the alternative is removed and every

candidate ranked below is moved up). This process is repeated until a winner is found.

There are also variations of this rule such as eliminating more than one candidate in each

round.

Maximin

Maximin voting is a Condorcet method, defined as follows. Let

N(ai, aj; v) = |{v` : v`(ai) < v`(aj), ` ∈ N}|,

be the number of voters who prefer ai to aj. Let

sm(ai,v) = min
j 6=i

N(ai, aj; v).

The alternative a with highest score sm(a,v) wins.

Copeland

The Copeland voting rule is also a Condorcet method, defined as follows. LetW (ai, aj; v) =

1 if strictly more voters prefer ai to aj, 1/2 if tied and 0 otherwise. Let

sc(ai) =
∑
j 6=i

W (ai, aj; v).

The alternative a with largest sc(a) wins.
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Egalitarian (maxmin fairness)

The Egalitarian voting rule is defined by

sf (a,v) = min{m− v`(a) : ` ∈ N}.

The winner is the alternative a that maximizes sf (a,v). This objective maximizes the

satisfaction/utility of the least satisfied agent. One can extend this to incorporate arbi-

trary positional scores. While changing the positional scores does not change the winner,

it may change the social welfare (i.e., the total score) of the winner.

Bucklin

The Bucklin rule is defined using the Bucklin score sB(a,v), which is the smallest k ∈
{1, . . . ,m} such that more than half of all voters rank a above position k. The winner is

the alternative a with smallest Bucklin score.

Range Voting

Smith [113] introduces the notion of range voting. The voting rule is similar to positional

scoring, with the exception that rather than reporting rankings of alternatives, each

agent gives a score for each alternative, with the score drawn from some predetermined

fixed interval of values. Then each alternative’s score is tallied across the votes and the

alternative having the highest score wins. While this requires that agents specify “utility”

values for each alternative (imposing significantly more cognitive burden than specifying

a ranking), it allows for more flexibility, expressiveness, and strength of preference over

Borda or positional scoring, and can thus lead to a better consensus winner. Approval

voting is a special case of range voting where each voter chooses a value from {0, 1}
corresponding to approval or disapproval, for each alternative.

Cumulative Voting

Cumulative voting is similar to range voting except the sum of the scores submitted for

each voter are normalized (e.g., to 1). This requires the voter to strategically distribute

a fixed unit of scores across the alternatives.
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2.3 Multi-Choice Problems

The multi-winner election problem is that of selecting a subset of the alternatives, usually

of some restricted size K.

Definition 9. Let N be a set of n agents and A a set of m alternatives. A multi-choice

function (MCF) is any mapping f : Vn,m → 2A.

We will also refer to a MCF as a multi-winner rule. Multi-winner rules are typically

motivated by the selection of committees, such as choosing members of parliament, boards

of directors, etc. One can always frame this as a winner determination problem where

the outcome corresponds to the admissible subsets of alternatives of the multi-winner

problem. For example, each outcome in a multi-choice winner determination problem

corresponds to a K-subset of alternatives, resulting in
(
m
K

)
total outcomes. However, this

is a large choice space, and imposes the unrealistic requirement of having agents rank all

such subsets. Instead methods based on rankings over the original alternatives (rather

than sets of alternatives) are more desirable.

One ad hoc approach to the problem is to use a rank aggregation rule such as Borda

and pick the top K alternatives as the winning set. However, this heuristic may be

inappropriate given the true objectives of the problem. Meir et al. [91] study problem

settings, such as those using k-approval and approval votes, where such a heuristic (or

variations of it) yield optimal solutions. They also investigate the computational com-

plexity of manipulability. This heuristic is discussed in more depth in in Lu and Boutilier

[83].

For the remainder of this section we instead focus on schemes that aim for proportional

representation, which is the main motivation behind many multi-winner methods. The

rough idea is to select a committee where the weight or number of elected candidates

of a particular political party roughly corresponds to the number of voters that support

that party. There are several rules that aim to implement proportional representation,

which we outline below.

Single Transferable Vote (STV)

While STV allows one to select a winner, STV can be extended to selecting a set of

winners is to run a number of rounds, each time either electing a winner with more than

half of all first place votes or eliminating the alternative with fewest votes, until a set of

K winners is obtained.
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Chamberlin and Courant’s rule

Chamberlin and Courant [25] propose a rule whereby a given K-subset a ⊆ A has an

objective notion of quality given by

s(a,v) =
∑
`∈N

max
a∈a

s(a, v`)

where s(a, v`) = m − v`(a) is the Borda score. The winning set a∗ maximizes s(a,v).

One can extend this rule to arbitrary positional scores or utility values. Each voter’s

preference over a slates of alternatives is the preference of the alternative from which the

voter benefits the most.

This is what Chamberlin and Courant term the “representation axiom.” They pro-

vide political justifications of this idea. Roughly speaking, they argue that a voter is

really interested in having one “representative,” i.e., his/her most preferred candidate

in the committee, to “speak” for the voter’s interests. Having more candidates speak

does not add to the voter’s satisfaction. They also suggest, in passing, the possibility

of trading off social welfare and the cost of larger committees: “examination of the rate

at which the measure of representation increases as committee size increases would al-

low proper balance to be struck between the benefits of increased representation and

the costs associated with increases in committee size.” This is a trade-off that would

occur in applications other than political voting, such as market segmentation. How-

ever, Chamberlin and Courant [25] do not discuss the problem of algorithmically finding

the optimal committee. Potthoff and Brams [102] generalize Chamberlin and Courant’s

model to allow each agent to be represented by several candidates in the slate of winners.

They also provide an integer programming formulation for optimal slate selection, shown

below with slight modifications.

Let xi ∈ {0, 1}, i ≤ m denote whether alternative ai appears in the slate set a, and

let y`i ∈ {0, 1}, ` ≤ n, i ≤ m denote whether ai is agent `’s most preferred element in ba.

We then have:

max
xi,y`i

∑
`∈N

m∑
i=1

α`(ai) · y`i (2.3)

subject to
m∑
i=1

xi ≤ K, (2.4)

y`i ≤ xi, ∀` ≤ n, i ≤ m (2.5)
m∑
i=1

y`i = 1, ∀` ≤ n. (2.6)
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More complexity and algorithmic results are provided by Lu and Boutilier [83].

The follow up work by Monroe [92] presents a new model termed “fully proportional

representation” and is essentially the Chamberlin and Courant model, except that there

is an explicit constraint requiring that the number of voters whose most preferred alter-

native is x ∈ a is roughly the same for every y ∈ S. In other words if voters are clustered

by their favourite candidate in the committee, then the clusters are of roughly equal size.

Procaccia et al. [103] show that computing Chamberlin and Courant’s rule as well

as Monroe’s rule, for approval votes (and not ranking votes), is NP-hard. See [112, 86]

for additional computational results on this problem. Recently, Aziz et al. [6] studied

the axiomatic properties of approval-based committee voting. Facility location [59] and

maximum coverage problems [28] all bear close connection to these problems as well.

We are unaware of any work that considers either robust optimization of slates in multi-

winner problems in the presence of an incomplete preference profile, nor any work that

considers the incremental elicitation of voter preferences in such a setting.

Budgeted Social Choice

Budgeted Social Choice was introduced by Lu and Boutilier [83], and is similar to Cham-

berlin and Courant’s model but is considerably more general. The authors also provide

new complexity and algorithmic results (including a greedy algorithm that has a 1 − 1
e

approximation ratio) as well as evaluating the solution quality of taking the top-k can-

didates in a Borda ranking (i.e., a ranking of candidates by their Borda counts).

Related is the combinatorial public project problem [98] where each agent has a

valuation function over all subsets of alternatives, and a limited number of alternatives

must be chosen for all agents. The focus is more on the tension between approximating

social welfare and incentivizing truthfulness (which would require payments from agents).

Segmentation Problems

Kleinberg et al. [74] proposed a class of so-called segmentation problems that is very

similar to Chamberlin and Courant’s model. Specifically, it is assumed that each agent

has a utility function f`(a) = w` · a, the dot-product of a weight vector w` with a

multi-attributed representation of alternative a. Then the segmentation problem involves

finding K alternatives S ⊆ A such that
∑

`∈N maxa∈S f`(a) is maximized. This is very

much like Chamberlin and Courant’s model, and in fact is the same if alternatives lie in

m dimensional space and ai is represented by the vector with a 1 in the ith entry and 0

elsewhere; then w` is the vector of utility values for alternatives (i.e., w` represents Borda
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scores). The authors show that it is NP-hard to optimize (specifically it is MAXSNP-

complete) but that polytime algorithms exist for fixed dimension (i.e., fixed number of

attributes over alternatives). They point out the trade-off between pure personalization

(K large, which would be more costly as many alternatives must be procured) versus pure

consensus (K small, which would be less costly). Often a balance must be struck: variable

segmentation is defined by penalizing the objective function when K gets larger by a

linear term −γK for some γ > 0. They also propose related problems and corresponding

approximation algorithms.

2.4 Rank Aggregation

Rank (or preference) aggregation is one of the first problems that spurred much of the

modern research into social choice. As opposed to single- or multi-winner voting rules,

rank aggregation aims to combine multiple rankings into a consensus ranking.

Definition 10. A rank aggregation rule (also known as a social welfare function [4]) is

any mapping f : V→ C.

Typically a rank aggregation rule outputs a consensus ranking that reflects the level

of group preference over the alternatives. The rigorous study of rank aggregation schemes

first started with the seminal work of Arrow [4]. Arrow’s impossibility result spawned

off much of the existing economic social choice literature. He was primarily interested in

knowing whether there exists a rank aggregation rule that satisfies the following three

seemingly desirable properties.

Definition 11 (Pareto Efficiency). A rank aggregation rule f is Pareto efficient if for

all v ∈ V, for all pairs x, y ∈ A, if x �v` y for all v` ∈ v then x �f(v) y.

Pareto efficiency asserts that if all agents prefer x to y then the resulting aggregate

ranking should rank x above y.

Definition 12 (Non-Dictatorial). Let f be a rank aggregation rule. An agent ` ∈ N is

a dictator (with respect to f) if for every v ∈ V, f(v) = v`. A rank aggregation rule f

is dictatorial if there is a dictator, and it is non-dictatorial is no dictator exists.

In other words, the rank aggregation rule should not always output the ranking of

the same agent.

Definition 13 (Independence of Irrelevant Alternatives (IIA)). A rank aggregation rule

f is independent of irrelevant alternatives (IIA) if for all n, m, v ∈ Vn,m, for all pairs
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x, y ∈ A if x �f(v) y, then for any v′ ∈ Vn,m such that x �v` y if and only if x �v′` y, for

all ` ∈ N (v` ∈ v and v′` ∈ v′), then x �f(v′) y.

That is, the relative ranking of two alternatives x and y, in the aggregate ranking,

should depend on their relative rankings within the agents’ preferences. Arrow’s theorem

asserts that the above three conditions cannot be simultaneously satisfied.

Theorem 3 (Arrow [4]). For any set of alternatives A such that m ≥ 3, if f is Pareto

efficient and independent of irrelevant alternatives, then it must be dictatorial.

Relatively recent work by Lu and Boutilier [82] casts questions about the utility of an

aggregate ranking and provides a novel decision-theoretic model that not only justifies

the use of a consensus ranking, but also motivates a well defined objective for rank

aggregation.

While negative results are informative and provide us with an understanding of the

difficulty inherent in selecting the right aggregation rule, such results do not suggest

practical guidelines for aggregating rankings. For example, rank aggregation is of prac-

tical importance in the computational social choice, machine learning and information

retrieval communities. It has found a prominent application in the so called “learning to

rank” problem, which is vital in web search. We now discuss several of popular methods

researchers have proposed for rank aggregation.

Positional Scores Ranking

To produce an aggregate ranking, one can use the positional scores of all alternatives

(with respect to some PSF α), sα(a,v), and rank them by their score in descending order.

Ranking using the Borda score has been used in various rank aggregation applications

[117, 45]. It is also known that sorting by Borda score yields a 5-approximation to the

Kemeny ranking [38]. This provides a fast heuristic to the NP-hard problem of computing

the Kemeny ranking.

Kemeny Ranking

The Kemeny ranking or consensus [71] represents a different approach to rank aggrega-

tion, which is based on pairwise comparisons instead of explicitly scoring alternatives. It

is based on the Kendall-tau distance and outputs a ranking that minimizes

κ(r,v) =
∑
`∈N

d(r, v`).
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There are many interpretations of the Kemeny ranking, we will provide a more compre-

hensive and integrated discussion in Section 5.2.2.1.

Considerable work in computational social choice has focused on Kemeny. It is known

to be NP-hard to optimize [8], even with four agents [45]. The optimization can be framed

graph-theoretically: construct a pairwise cost graph where vertices represent alternatives

and the weight of each directed edge x → y is cxy = |{` ∈ N : y �v` x}|, the number

of agents that prefer y to x. This is the “Kemeny cost” of choosing to place x above y

in a consensus ranking. So the goal is to find an ordering r of the vertices r = r1 . . . rm

such that
∑

i<j crirj = κ(r,v) is minimized. Thus, the input to the problem of finding

a Kemeny ranking does not require O(nm) space to represent all rankings but simply

O(m2) space to represent the pairwise cost graph.

One can formulate the optimization as an integer program in a straightforward way

(see also [35]). Let Ixy ∈ {0, 1} indicate whether x � y is in the consensus ranking. We

need transitivity constraints on the consensus ranking: Ixy+Iyz−2Ixz ≤ 1 for all distinct

x, y, z ∈ A as well as the anti-symmetric property Ixy + Iyx = 1 for all distinct x, y ∈ A.

Then the objective function becomes

min
I

∑
{x,y}∈A

Ixycxy + Iyxcyx.

Despite the computational difficulty of constructing the Kemeny ranking, practical local

optimization heuristics often work effectively [45]. This typically involves swapping a pair

of items (local moves) in the candidate consensus ranking if it decreases the objective

function until no more such pairs can be found. See Algorithm 1 for a local search

heuristic. On the more theoretical side, a polynomial time approximation scheme exists

[73] as well as approximation algorithms for nuanced extensions of Kemeny to partial

rankings [2].

Other common rank aggregation rules include the Slater rule (which is similar to

Kemeny but cxy = 0 if majority of voters prefer x to y and cxy = 1 otherwise), and

the Dodgson rule. However, positional rules and Kemeny are most commonly used in

practice.

2.5 Social Choice with Partial Preferences

Most of the social choice schemes discussed so far require each voter to provide a ranking

of all alternatives. As discussed in Chapter 1, this can impose significant cognitive and

communication burdens on voters, especially when the number of alternatives is large.
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Algorithm 1 LocalKemeny

Input: Pairwise cost graph cxy for all {x, y} ∈ A.
1: Initialize a ranking σ
2: d←∑

{x,y} : x�σy cxy
3: for i = 2..m do
4: x← item in ith rank of σ
5: for j = i− 1..1 do
6: y ← item in jth rank of σ
7: if cxy < cyx then
8: Swap x with y
9: d← d− cxy + cyx

10: else
11: quit this loop
12: end if
13: end for
14: end for
Output: σ, Kemeny cost d

One prominent approach to reducing this burden is the development of mechanisms that

guide the selection of winner(s) with partial votes, and corresponding elicitation strategies

that cleverly query voters for the partial preferences that will best guide the selection

of winner(s). The rest of this section will review previous work on solution concepts

for social choice with partial votes, as well as results concerning elicitation problems for

common voting rules.

2.5.1 Possible and Necessary Winners

One may be required to make a group decision without full preference information from

agents, and to do so by being as “faithful” to the voting rule as possible. In such

a situation, a number of approaches may be taken, which are described in detail in

the following chapters. The predominant approach in computational social choice has

been to rely on the notions of possible and necessary winners, as originally introduced

by Konczak and Lang [75]. Roughly speaking, these concepts aim to prune the set of

alternatives so that each remaining alternative either must win (necessary winners) or

may win under some consistent completion (possible winners). Other approaches rely

on probabilistic inference, choosing winner(s) assuming some underlying distribution of

partial preferences.

Definition 14 (Possible Winner). Let f be a social choice function, and p a partial

preference profile. An alternative x is a possible winner if there exists a (full) preference
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profile v ∈ C(p) such that x = f(v). Let PW (p) denote the set of all possible winners

with respect to p and f .

Definition 15 (Necessary Winner). Let f be a social choice function, and p a partial

preference profile. An alternative x is a necessary winner if for all v ∈ C(p), we have

x = f(v). Let f : V → 2A be a social choice function that produces co-winners (does

not break ties), then alternative x is a necessary co-winner if for all v ∈ C(p), we have

x ∈ f(v). Let NW (p) denote the set of necessary (co-)winners with respect to p and f .

We omit f from PW (p) and NW (p) to de-clutter our notation. In this dissertation

the social choice function used when referring to possible and necessary (co-)winners will

be clear from context. Note that the notion of a necessary co-winner is typically used

in the context of single-choice voting rules. Examples include positional scoring rules as

applied to preference profiles where two or more candidates have the maximum score.

A somewhat similar, but not as strong definition as non-possible winners was studied

earlier by Conitzer and Sandholm [32] in the context of their ELICITATION-NOT-DONE

problem: given some complete votes with t votes still unknown (i.e., empty votes), is

there a way to cast the t votes so a given candidate will lose?

It can be seen that NW (p) ⊆ PW (p) and, in particular, when p consists of all empty

votes then NW (p) = ∅ and PW (p) = A, for many common voting rules. When enough

preference information is known, NW (p) = PW (p), and no more preference information

needs be obtained, even if the agent preferences are still partial. For example, when

all agents state that x is their most preferred alternative, then clearly for the Borda

rule PW (p) = NW (p) = {x} and no more information is required from the agents.

This highlights the fact that one may require much less preference information than that

contained in full rankings to determine the winner(s).

Konczak and Lang [75] also show an interesting relationship between possible and

necessary winners and coalitional vote manipulation. This problem considers a group of

agents who wish to manipulate an election by either trying to elect a desired candidate

(known as constructive manipulation) or trying to make a specific candidate lose (known

as destructive manipulation) while having complete knowledge of other agents’ prefer-

ences. These two computational problems can be framed as special cases of possible and

necessary winners. In particular, by setting the manipulators’ votes to all empty votes

and the remaining agents’ votes to their sincere votes, then asking if a desired candidate

x is a possible winner is equivalent to asking whether the manipulators can vote in such

a way as to make x win; similarly asking if a candidate is not a necessary winner is

equivalent to asking whether there exists a destructive manipulation (see also footnote 3

of [32]).
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In a follow up paper, Pini et al. [99] settle the computational complexity of possi-

ble and necessary winners for Single Transferable Vote (STV), where it is shown that

finding possible and necessary (co-)winners is NP-complete and co-NP-complete, respec-

tively. The NP-completeness result for STV possible winners essentially follows from

Bartholdi III et al. [8], who showed the NP-completeness of deciding whether a partic-

ular voter, when given all other votes, can vote in such a way so as to make a given

candidate win. Conitzer and Sandholm [32] also showed that the necessary winner prob-

lem for STV (even when only one voter’s vote is unknown) is NP-complete. Note that

it is easy to confirm [75] that the possible winners problems is in NP (for voting rules

that are polynomial time computable) since a “certificate” consists of a valid complete

profile and verifying the candidate winner in question would take polynomial time. The

necessary winner problem is in co-NP since a certificate for a negative instance consists

of a preference profile in which the candidate in question loses.

For specific rules, it has been shown by Xia and Conitzer [123] that computing pos-

sible winners is NP-complete for positional scoring rules (with respect to specific scores,

such as the Borda count), Copeland, maximin, Bucklin, and ranked pairs. They also

show necessary (co-)winners can be computed in polynomial time for positional scoring,

maximin, and Bucklin, while showing it to be co-NP-complete for Copeland and ranked

pairs. Konczak and Lang [75] show that possible and necessary (co-)winners can be com-

puted in polynomial time for determining Condorcet winners. Pini et al. [99] show that

for polynomial time computable rank aggregation rules which satisfy independence of

irrelevant attributes (IIA), computing possible and necessary (co-)winners can be done

in polynomial time (they define winner as the highest ranking candidate).

An open research direction proposed by Konczak and Lang [75] as well as Pini et al.

[99] is whether there is a solution concept that would result in a smaller set of “good

candidates” relative to a typically large set of possible winners while never being triv-

ially empty. One approach is to count the frequency of winners in complete preference

extensions, which gives a more probabilistic interpretation (assuming that all extensions

are equally likley). Bachrach et al. [7] show the #P-hardness of this (essentially reducing

from the problem of counting the number of linear extensions of partial orders, which is

known to be #P-complete [20]). They also provide a randomized, high-level algorithm

that can use, in principle, previously developed MCMC algorithms for sampling from the

uniform distribution over consistent extensions of partial votes to approximately count

the number of preference profiles in which a given alternative wins.

While much of the previous work discussed above has focused on possible and nec-

essary winners, these concepts do not in fact directly support the selection or recom-
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mendation of a particular group decision. The set of possible winners may be relatively

large even with a considerable amount of preference information, and necessary winners

may not exist unless the right kinds of preference information are known. Furthermore,

one cannot quantify, and therefore distinguish, the quality of the alternatives within the

possible winners. Chapter 3 delves into detail the weaknesses behind these concepts as

a decision criterion.

2.5.2 Elicitation

Conitzer and Sandholm [32] first studied the problem of preference elicitation in the

context of voting systems. They defined the notion of coarse elicitation as successively

querying each agent for their full ranking and fine elicitation as querying for finer grained

preferences, such as a single pairwise comparison or a top-k ranking. They introduced

the EFFECTIVE-ELICITATION problem for coarse elicitation: given a complete preference

profile and an integer k > 0, does there exist a subset of votes of size at most k such

that those votes completely determine the winner(s)? In other words, regardless of what

the other votes are, do the k elicited votes guarantee that the necessary co-winners are

the same as the possible winners? The motivation is to understand whether, given the

complete preference profile in hindsight, the optimal elicitation strategy can be found in

polynomial time (optimal in the sense that after eliciting k rankings the possible winners

and necessary (co-)winners coincide). They show that this problem is NP-complete

for approval, Borda, Copeland and maximin rules. They also consider the strategy-

proofness of fine elicitation schemes and conclude that generally, such schemes open

new opportunities for agents to manipulate but that it can be controlled by restricting

the form of the elicitation strategy, which may reduce its effectiveness in minimizing

preference queries. A follow-up paper by Walsh [121] provides further complexity results

for other voting rules, such as Copeland, cup, and ranked pairs, showing that in most

cases it is NP-hard to determine when to terminate elicitation (similar complexity results

can also be obtained from the complexity of destructive manipulation problems [36]).

Conitzer and Sandholm [34] investigate the communication complexity of common

voting rules. In the context of elicitation for voting, communication complexity [125]

refers to the minimum number of bits, over all preference profiles of some fixed dimen-

sion (i.e., fixed n and m), that need to be transferred from the agents to the decision

maker so that the decision maker is able to determine the winner. They showed that for

Borda, Copeland, and ranked pairs, agents’ must communicate Ω(nm logm) bits. This is

equivalent to the amount of information needed to specify a full preference profile, within



Chapter 2. Overview of Social Choice 29

a constant factor. This also holds for other popular rules such as approval, plurality, and

plurality with runoff. There are a few other rules such as STV and maximin where there

exist elicitation schemes that asymptotically query for less preference information than

that contained in full rankings, in the worst-case. Note that because communication

complexity is measured over the worst possible preference profile, some preference pro-

files that do not require much communication (e.g., a profile where every agent has the

same top ranked candidate) are not reflected in this measure. In fact, as these results are

worst-case, they do not necessarily provide insights into the average amount of preference

information required for most real-world instances of preference profiles.

Almost no prior work has addressed practical vote elicitation—with the exception of

the work of Kalech et al. [69]. They propose practical elicitation procedures for common

voting rules. They focus on range voting, the Borda rule and a few other rules. The

solution concept used to drive elicitation is that of possible and necessary (co-)winners.

In particular, whenever the set of possible winners is equal to the set of necessary (co-

)winners then elicitation can terminate and the winner(s) can be determined. Because

computing possible winners for the Borda rule is NP-hard1, they redefine possible winners

as the candidate whose maximum possible score is larger than the minimum possible

scores of all other candidates. Strictly speaking, this is a different notion of possible

winners, but their definition includes all possible winners (in the original sense) and

potentially other alternatives that are not possible winners.

Kalech et al. propose two elicitation algorithms. The first is a very simple and

straightforward strategy that in each round, asks each voter, in some predetermined

order, what their next top ranked alternative is (in round 1, it would query for their

most preferred alternative, in round 2 query for second most preferred alternative, etc.)

Elicitation terminates when the set of possible winners (according to their definition) is

equal to the set of necessary co-winners. Their second greedy elicitation strategy tries

to find a good but not provably optimal candidate. This is done by using the first

elicitation algorithm and restricting the number of rounds to an input integer P > 0,

then using Q > 0 (Q an input) alternatives with the largest possible minimum scores,

and querying all voters for each of the Q alternatives’ rank positions (or utility values).

Finally, elicitation outputs the Borda or range vote winner over the Q candidates. As the

authors acknowledge, there’s no guarantee on the optimality or quality of the selected

candidate.

In this dissertation, we take a decision-theoretic approach to the selection of a win-

1One might argue that a drawback of the possible winners concept is that deciding when to terminate
elicitation becomes NP-hard.
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ner or slate of winners, in the sense that we seek to find and quantify the best, or

approximately good outcome with respect to the underlying social welfare objective. In

particular, we use the notion of minimax regret as our criterion for robust decision sup-

port. The following chapters will define minimax regret in the context of social choice

problems.

Once we have defined such a solution concept and are able to compute it exactly or

approximately, we must assess the quality of the decision and whether it is sufficient for

the particular problem. If it is of insufficient quality, the decision maker may have the

opportunity to query for more preference information from agents until the quality meets

a predefined threshold (possibly including true optimality). Finding the right elicitation

strategy that will query for the least amount of preference information until the decision

is of sufficient quality, is one of the main algorithmic problems that we will address.

Note that the design of elicitation strategies will depend critically on the choice of the

underlying decision criterion, in our case, the minimax regret criterion. A successful

strategy will always aim to generate as few queries as possible to satisfy the criterion.

There are variety of forms of preference queries one can use to elicit votes. Much of

this depends on the voting rule being used, and hence, the type of preference required.

For example, in plurality voting one only needs to query the most preferred alternative

of each voter. In approval voting one may ask whether a voter approves of a certain

candidate or whether they like candidate x better than y (if so, this might be interpreted

as x being approved and y not).

In rank-based voting rules, perhaps the most fundamental preference query is the pair-

wise comparison. Another natural query is to ask agents to rank their k most preferred

alternatives (top-k). This, however, can be represented by a set of pairwise comparisons.

One can also query for the least preferred alternatives, and this again can also be rep-

resented by a set of pairwise comparisons. Choice set queries are also possible, which

involves presenting an agent with a slate of choices and asking which one(s) she prefers

the most. Choice set queries can also be translated into a set of pairwise comparisons.

One might also ask what range of rank positions a certain candidate belongs in. This

resembles a bound query where an agent is asked for an interval of possible utility values.

However, it does not directly translate into pairwise comparisons, although one can argue

that if an agent knows candidate x belongs in positions 2 to 5 then that agent should know

what candidate belong in position 1 and all positions below 5, in which case it becomes

a partitioned preference (see Definition 18 in Chapter 5) which can be represented by a

set of pairwise comparisons. A special case of this query form is to ask what candidate

is in rank position r.
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For numerical based voting schemes such as range or cumulative voting, pairwise

preference queries are less informative for deciding the winner. Bound queries and queries

of the form “what is your most preferred alternative and what is your score for it?” (as

introduced in [69]) are more natural and informative.



Chapter 3

Robust Optimization and Elicitation

for Single-Choice Problems

This chapter introduces the concept of robust social choice, and preference elicitation for

making single-winner group decisions with arbitrary partial preferences from the agents.

This is in contrast to previous notions of possible and necessary winners in that it gives

worst-case guarantees on the quality of the recommended alternative. This chapter shows

that, in practice, one only needs to elicit a fraction of the full preference information in

order to make an optimal group decision. Furthermore, if an approximately optimal deci-

sion is sufficient for the application domain, even less preference information is required.

We start in Section 3.1 by presenting the regret-based criterion, known as minimax

regret, that is at the heart of our decision-theoretic approach to robust decision support.

In the following section, Section 3.2, we investigate the computation of minimax regret.

We show computational complexity results and connections to necessary winners. We

also develop polynomial time algorithms for various voting rules, including Borda, Max-

imin, Egalitarian, and Bucklin, based on the construction of worst-case completions of

partial profiles. In Section 3.3, we develop preference elicitation algorithms that quickly

reduce minimax regret and we demonstrate its empirical effectiveness in reducing in-

formation requirements on both real datasets and synthetic datasets in Section 3.4. In

Section 3.5, we discuss related work and in particular describe previous approaches to

winner determination with partial preferences. Finally we summarize and conclude in

Section 3.6.

32
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3.1 Robust Winner Determination

In this section, we address the question of robust winner determination given partial

information about voter preferences. We introduce the notion of minimax regret as

a robustness criterion for such problems in Section 3.1.1. We discuss the relationship

of minimax regret with the notions of possible and necessary winners in Section 3.1.2,

and use this relationship to show that computing minimax regret is computationally

intractable for certain voting rules (e.g., Copeland, ranked pairs).

Notice that most of the voting schemes discussed so far explicitly score alternatives

with respect to agent preferences, implicitly defining some form of “societal utility,”

“degree of societal acceptance” or aggregate quality measure for each alternative. Indeed,

this is true of many (though not all, such as STV) voting schemes.

Definition 16. Let N be a set of n agents and A a set of m alternatives. A scoring

function is any mapping s : A×Vn,m → R.

In the sequel, we assume the existence of a scoring function s(a,v) that measures the

quality of any candidate given a preference profile v.

Definition 17. Let r be a social choice function and s a scoring function. Then s is

consistent with r if for all v ∈ V, r(v) ∈ argmaxa∈A s(a,v).

This is, of course a minimal requirement, since any voting rule can be defined using an

indicator function as the score (i.e., by giving the winning alternative a score of one and

all other alternatives a score of zero) . However, most rules discussed so far have “natural”

scoring functions. Our approach to robust optimization will exploit this fact. When there

are ties among the highest scoring candidates, usually some form of tie-breaking is used.

None of our results are tied critically to any specific form of tie-breaking.

3.1.1 Minimax Regret

Let r be a voting rule, defined using some natural scoring function s(a,v) such that r(v) ∈
argmaxa∈A s(a,v) as described above. For example, in plurality voting, the natural score

s(a,v) of alternative a is the number of votes that rank a first. For positional scoring

more generally (of which plurality, k-approval, and k-veto systems are all instances),

the score of an alternative is its total positional score. The natural score for egalitarian

(maxmin fairness) is sf (a,v) = min{m− v`(a) : ` ∈ N}.
Suppose we have a partial profile p and we are forced to make a decision in the face

of this incomplete information. We distinguish our partial information setting from the
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question of aggregating preferences of voters whose preferences reflect genuine incompa-

rability (see, e.g., [100]). Unfortunately, the notions of necessary and possible winners do

not resolve this issue satisfactorily: necessary winners are not guaranteed to even exist

given arbitrary partial profiles; and possible winners can only be used to narrow the

set of options rather than prescribing an actual winner. Here we propose the use of the

minimax regret solution concept. This concept has been used for robust decision making,

and for driving preference elicitation, in a variety of single-agent domains [14, 13, 19] and

in mechanism design [67]; but our work is the first application of the notion to voting

and (rank-based) social choice.

Intuitively, we measure the quality of any proposed winner a ∈ A given p by consid-

ering how far from optimal a could be in the worst-case (i.e., given any completion of

p). The minimax optimal solution is any alternative that is nearest to optimal in the

worst-case. More formally, we define:

Regret(a,v) = max
a′∈A

s(a′,v)− s(a,v) (3.1)

= s(r(v),v)− s(a,v)

PMR(a, a′,p) = max
v∈C(p)

s(a′,v)− s(a,v) (3.2)

MR(a,p) = max
v∈C(p)

Regret(a,v)

= max
a′∈A

PMR(a, a′,p) (3.3)

MMR(p) = min
a∈A

MR(a,p) (3.4)

a∗p ∈ argmin
a∈A

MR(a,p) (3.5)

Regret(a,v) is the loss (or regret) of selecting a as a winner, given true vote profile

v, instead of choosing the optimal alternative under rule r (equivalently, under scoring

function s).1 PMR(a, a′,p) denotes the pairwise max regret of a relative to a′ given

partial profile p. This is simply the worst-case loss—under all possible realizations of the

full profile—of selecting alternative a rather than a′. Notice that pairwise max regret can

be negative. MR(a,p) is the maximum regret (or max regret) of a, in other words, the

worst-case loss associated with selecting a rather that selecting a true (score-maximizing)

winner. We can view this as adversarial selection of a complete profile v to maximize

the loss between our chosen alternative a and the true winner under v. Our aim is to

choose the alternative a with minimum max regret : MMR(p) denotes minimax regret

1See Smith [113] who uses score-based regret to measure the performance of various voting rules,
including range voting.



Chapter 3. Optimization and Elicitation for Single-Choice Problems 35

under partial profile p, while a∗p denotes the minimax optimal alternative.2 This gives

us a form of robustness in the face of vote uncertainty: every alternative has worst-case

error at least as great as that of a∗p.

3.1.2 Relationship to Possible and Necessary Winners

Notice that if MMR(p) = 0, then the minimax winner a∗p has the same score or utility as

the winner in any completion v ∈ C(p); i.e., a∗p is guaranteed to be optimal. While this

does not imply there is a necessary winner under p (due to tie-breaking), MMR(p) = 0 if

and only if there is a necessary co-winner. Thus for any rule r we have, by setting ε = 0:

Observation 1. The max regret decision problem for any voting rule r (i.e., does al-

ternative a have MR(a,p) ≤ ε) is at least as computationally hard as the necessary

co-winner problem for r.

This implies that computing minimax regret is co-NP-hard for the following voting

rules [124]: Copeland, ranked pairs, (balanced or unbalanced) voting trees, and STV

(single transferable vote). This observation does not imply, however, the easiness of either

max regret or minimax regret computations when the necessary co-winner problem is

easy; but we describe polynomial time algorithms to compute minimax regret for several

important voting rules in Section 3.1.1.

The relationship between max/minimax regret and possible winners is more compli-

cated. For certain scoring rules (e.g., plurality) the minimax winner a∗p must be a possible

winner under p. However, in general, we have:

Observation 2. The regret-minimizing alternative may not be a possible winner for

some voting rules and partial profiles.

Figure 3.1 illustrates this observation, showing a vote profile in which, under the 2-

approval voting rule, the alternative that minimizes max regret is not a possible winner.3

Both possible winners in this example have a poor 2-approval score under some comple-

tion of the votes, while a compromise candidate that cannot win under any completion

has a much higher guaranteed score (i.e., lower max regret) than either possible winner.

This suggests that using the notion of possible winners to select winners with partial votes

can be problematic for some voting rules. Indeed, there would appear to be no general

2We informally write as if the optimal candidate is unique, but there can be several alternatives a
that minimize max regret.

3In 2-approval, the top two candidates in each voter ranking each receive one point, and the winner
is that with highest total approval score.
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Figure 3.1: A partial profile p where the minimax alternative is not a possible winner
(under 2-approval). Alternative b has score 2k in every completion. Either a or c must
be at the top of every vote in set III, so one of them must receive at least k+ 1 approval
points from set III. Hence max(s(a), s(c)) ≥ 2k+1, and a and c are both possible winners,
while b is not. Now, MR(b,p) = k + 1 (a completion that puts a at the top of all votes
in set III would give a a score of 3k+ 1, the maximum possible). But MR(a,p) = 2k+ 1:
if we select a, the adversary will place c and e above a in each vote in set III, setting
s(a) = k and s(c) = 3k + 1. MR(c,p) = 2k + 1 by similar reasoning.

way to ensure a possible winner isn’t far from being optimal without using max regret to

quantify this risk. The fact that the minimax winner a∗p is not a possible winner is not

problematic in our view, but if one insists on selecting from the set of possible winners,

max regret could at least be used to aid in that selection (i.e., to choose the possible

winner with least max regret). Still we take max regret to be the more fundamental

notion for winner determination with partial information.

3.2 Computing Single-winner MMR

Minimax regret decision problems can often be solved as a mixed integer program (MIP)

[14, 13] or a search problem [19] in a variety of decision problems. In our voting context,

a MIP formulation (with variables capturing rank placement in specific votes) would

be prohibitively expensive to solve. However, for certain voting rules and preference

constraints, we can greatly simplify minimax regret computation by directly considering

properties of the worst-case completions of voter profiles without directly computing

them. We will illustrate this for several voting rules in this section. Our constructions

are tightly related to those used by Xia and Conitzer [124] to demonstrate polynomial

time algorithms for necessary winners for the positional scoring, maximin, and Bucklin

rules. Indeed, their constructions can be viewed as attempting to maximize the difference

in score between a proposed winner and an “adversarially chosen” alternative. We adapt
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these ideas to minimax regret, and extend the analysis to maxmin fairness.

3.2.1 Exploiting Pairwise Max Regret

To demonstrate the polynomial time computability of minimax regret for specific voting

rules below, we explicitly compute the pairwise max regret PMR(a, w,p) of all m(m−1)
2

ordered pairs of alternatives (a, w) such that a 6= w (where a is a proposed winner and

w is an adversarial witness). With PMR in hand, we can readily determine minimax

regret using Eqs. 3.3 and 3.4. We thus need only show that PMR can be computed in

polynomial time.

A scoring function is (additively) decomposable if s(a,v) =
∑

`∈N s(a, v`); i.e., if it is

the sum of votewise scores. This implies that (pairwise) regret is decomposable, since

Regret(a, w,v) = s(w,v)− s(a,v) (3.6)

=
∑
`∈N

s(w, v`)−
∑
`∈N

s(a, v`) (3.7)

=
∑
`∈N

[s(w, v`)− s(a, v`)]. (3.8)

Given a collection of partial votes p, their completions by an adversary can be undertaken

independently, so we can compute PMR by independently choosing the completions v`

of each p` that maximize v`’s local regret:

PMR(a, w,p) = max
v∈C(p)

s(w,v)− s(a,v) (3.9)

=
∑
`∈N

max
v`∈C(p`)

s(w, v`)− s(a, v`). (3.10)

All positional scoring functions are decomposable in this way.

3.2.2 Positional Scoring Rules

We illustrate our constructions by first examining the relatively simple case of computing

PMR(a, w,p) for a linear positional scoring rule.4 Since PMR is decomposable, we

determine, for any partial vote p, the completion v with maximum contribution to PMR.

For a given partial preference p, let Nec(x � y) denote that x must be preferred to y in

p, and Inc(x, y) denote that no information is known regarding the pairwise preference of

4Linear means that an alternative’s score is a linear function of its rank in v, hence the difference in
two rank positions uniquely determines their difference in score. k-veto, k-approval, and plurality are
not linear, but Borda is (linear rules are all “Borda-like”).
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Figure 3.2: An illustration of the three possible relations between alternative a and
adversarial alternative or “witness” w in any partial vote p. Other alternatives stand
in a specific relation to a and w, with each oval representing one of the possible rela-
tionships (see text). To maximize a partial vote’s contribution to pairwise max regret
PMR(a, w,p), linearizations of p require placing the groups of alternatives indicated by
the ovals in specific positions relative to a and w in a way that depends on the scoring
function.

x and y. Figure 3.2 illustrates the three different cases we need to consider in any partial

vote p: (1) p implies Nec(a � w); (2) p implies Nec(w � a); and (3) p implies Inc(w, a).

In each case, the remaining alternatives stand in one of several possible relationships with

a and w, as indicated by the ovals, each representing the set of alternatives that fall into

the following categories:

• H: those alternatives that are (known to be) preferred to both a and w in the

partial vote p.

• B: those alternatives that are between a and w in p. If Nec(a � w) then these are

preferred to w, while a is preferred to them. If Nec(w � a) then these are preferred

to a, while w is preferred to them. If Inc(w, a), then there are no such alternatives.

• L: those alternatives that are dispreferred to both a and w.

• D: those alternatives that are dispreferred to a but incomparable to w. If Nec(w �
a), then there are no such alternatives.

• E: those alternatives that are dispreferred to w but incomparable to a. If Nec(a �
w), then there are no such alternatives.

• C: those alternatives that are preferred to w but incomparable to a. If Nec(w � a),

then there are no such alternatives.



Chapter 3. Optimization and Elicitation for Single-Choice Problems 39

• A: those alternatives that are preferred to a but incomparable to w. If Nec(a � w),

then there are no such alternatives.

• U : those alternatives that are incomparable to both a and w.

The lack of preference arrows between between certain sets (ovals) does not mean that

pairwise preferences are not known between elements of some of these pairs. For instance,

the preference c � u for some c ∈ C and u ∈ U may be part of the partial vote. This

relation will not play a role in constructing a completion for PMR, so is ignored. Of

course, not all such pairwise preferences across distinct sets are viable—for instance, it

is not possible to have u � c, since this would imply u � w, contradicting the definition

of U . Similarly, elements within these sets may have known preferences within p, for

instance, we may know c � c′ for some c, c′ ∈ C. Indeed, we will exploit these “internal”

known preferences in determining queries during preference elicitation (see Section 3.3).

We will use these categories in analyzing other voting rules below as well.

Returning to linear positional scoring rules, in the first case, we have Nec(a � w), so

p’s contribution to PMR must be negative. It is easy to see that we maximize pairwise

regret with a completion v that minimizes the positional gap between a and w (i.e.,

maximize the adversary’s (negative) advantage). To minimize the gap, it suffices to: (i)

order set D below w, i.e., assume w � d for all d ∈ D; (ii) order set C above a, i.e.,

assume c � a for all a ∈ A; and (iii) order elements of set U either above a or below w.

These orderings can be arbitrary (one need only maintain consistency within and across

the sets in question). This implies that the (negative) contribution to PMR is exactly

−(|B|+ 1). Note that we needn’t compute an actual linearization of p, but simply need

to determine the cardinality of the set B.

The second case of Nec(w � a) proceeds similarly (see figure), but instead we max-

imize the positional gap between w and a (i.e., maximize the advantage of w over a).

This is accomplished by ordering sets E, A and U (arbitrarily) between w and a. Hence,

the contribution to PMR by p in the second case is |B∪F ∪E∪U |+1 = m−|H∪L|−1.

Finally, in the third case of Inc(a, w), the (positive) advantage of w over a is maximized

by ordering w over a and placing sets E, A and U between the two.

Computing PMR thus requires, for each partial vote, categorizing all alternatives as

belonging to the relevant sets described above and indicated in in Figure 3.2. This is

a simple matter: one compares each alternative a′ to both a and w in the partial vote

(assuming the transitive closure of p is given), classifying it into the appropriate set,

which takes O(m) time. This implies that PMR(a, w,p) computable in O(nm) time for

linear scoring rules. With O(m2) pairs, computing MMR(p) (and the optimal a∗p and
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its witness) takes O(nm3) time. In many practical settings, m can be treated as a small

constant relative to n, in which case our algorithms scale linearly in n.

With linear positional scoring rules, arbitrary placement of alternatives that do not

influence the positional gap between w and a (e.g., set U when Nec(a � w)) is allowed.

For nonlinear rules, the size of the gap and the position of both a and w can influence

w’s advantage. However, the required placement can be found by simply examining

splits of the set U of different cardinalities to determine how many to place above a and

below w to minimize a’s advantage over w—again, this can be accomplished in O(m)

time. Certain special cases can be treated more efficiently; e.g., if a positional rule is

monotonic non-increasing (i.e., si − si+1 ≥ si+1 − si+2) then U is placed above a (and if

non-decreasing, below w). In any case, the minimax regret computation remains O(nm3).

These observations show that:

Theorem 4. Minimax regret can be computed in O(nm3) time for any positional scoring

rule.

3.2.3 Maximin Voting

We now consider pairwise max regret computation for the maximin voting rule, a non-

decomposable voting rule that requires more intricate computation. However, it is “semi-

decomposable” in the sense that we can compute independent completions of each partial

vote p`, for each of a number of alternatives, and then aggregate the resulting scores.

To compute PMR, we recall the definition of the maximin scoring function, embedding

it in the definition of PMR:

PMR(a, w,p) = max
v∈C(p)

sm(w,v)− sm(a,v)

= max
v∈C(p)

sm(w,v)−min
a′ 6=a

N(a, a′; v)

= max
v∈C(p)

sm(w,v) + max
a′ 6=a

(−N(a, a′; v))

= max
v∈C(p)

max
a′ 6=a

sm(w,v)−N(a, a′; v)

= max
a′ 6=a

[
max
v∈C(p)

sm(w,v)−N(a, a′; v)

]
. (3.11)

Let Ma′ = maxv∈C(p) sm(w,v)−N(a, a′; v) denote the quantity inside the square brackets

of Eq. 3.11. This represents the worst-case (over completions of p) difference of the

maximin score of w and the number of votes, N(a, a′; v), in which a is preferred to a′.

We proceed by describing an algorithm for computing the pairwise max regret, PMR(a, w,p),
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which can then be used for computing and finding the minimax optimal alternative.

Given a fixed a and w, we must consider all alternatives a′ 6= a in order to compute the

expression in Eq. 3.11. Fix such an a′, and now consider worst-case completions of each

p` for this a′:

• If Nec`(w � a) or Inc`(a, w), then we maximize the advantage of w over a by

placing w as high as possible and a as low as possible in the worst-case completion

of p`, using the techniques described above.

• If Nec`(a � w), consider all other alternatives b (b 6= a, b 6= w):

– if Nec`(a � b) and Inc`(b, w), then place b below w;

– if Nec`(b � w) and Inc`(b, a) then place b above a;

– if Inc`(b, a) and Inc`(b, w), then: (1) place b below w if b 6= a′; or (2) place b

above a otherwise;

– otherwise place b arbitrarily, subject to the partial preference constraints.

Let v′ be the completion of the partial votes p` in p as specified above. As above,

specific completions need not be constructed, as the computations below can be largely

performed using the cardinality of “sets” of alternatives relating w, a and a′. We compute

Ma′ = sm(w,v′)−N(a, a′; v′) for each a′, and take the largest such Ma′ to be the pairwise

max regret.

We now argue that this algorithm computes PMR correctly. Assume that we have a

worst-case completion v∗ ∈ C(p) that is a maximizer ofMa′ (i.e., sm(w,v∗)−N(a, a′; v∗) =

Ma′). We claim that we can reconfigure v∗ into another completion v′ of p (exactly as

described above) such that sm(w,v′)−N(a, a′; v′) = Ma′ . For any v∗i and its correspond-

ing partial vote p`, the reconfiguration is the same as for positional scoring rules in the

cases when Nec`(w � a) or Inc`(a, w)—that is, we place w as high as possible and a as

low as possible in the resulting ranking.

The case Nec`(a � w) is different. One must place alternatives b where Nec`(a � b)

and Inc`(b, w) below w. This does not change N(a, a′; {v∗i }), and does not decrease the

maximin score of w, even if b = a′. If b is such that Nec`(b � w) and Inc`(b, a), then

we place b above a: this does not change the maximin score of w and will not increase

N(a, a′; {v∗`}), even if b = a′.

Finally, consider alternatives b where Inc`(b, a) and Inc`(b, w) (note that for all other

cases, b must be placed above a, between a and w, or below w). If b 6= a′, then we place

b below w—this will not change N(a, a′; {v∗`}) and does not decrease the maximin score
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of w. If b = a′ and a′ is not above a in v∗` , then we move it above a, as this decreases

N(a, a′; {v∗`}) by 1 and decreases maximin score of w by at most 1, hence their difference

can only increase. In all cases above, we can reconfigure votes v∗` into v′ such that

N(a, a′; v∗) ≥ N(a, a′; v′) and sm(w,v∗) ≤ sm(w,v′), hence sm(w,v′) − N(a, a′; v′) ≥
sm(w,v∗)−N(a, a′; v∗) = Ma′ . Of course, the construction v′ does not require using v∗

as a starting point—this only serves to prove the optimality of v′ as constructed by the

algorithm above.

By this method, we see that the relevant completion for a′ given p can computed

in O(nm) time. By Eq. 3.11, pairwise max regret can be computed in time O(nm2),

by computing Ma′ for all a′ 6= a and choosing the largest such value. Consequently,

computing minimax regret using this algorithm takes O(nm4) time:

Theorem 5. Minimax regret can be computed in O(nm4) time for the maximin voting

rule.

3.2.4 Bucklin Voting

As with maximin, the Bucklin score of a candidate is not decomposable across voters,

so it too requires a more intricate approach to constructing profile completions. Since

the standard definition of the Bucklin score involves selection of the alternative with the

smallest Bucklin score, we work with the inverted score b(a,v) = m− sB(a,v) to remain

consistent with our “score maximizing” definitions.

As above, we wish to compute PMR(a, w,p) with respect to (inverted) Bucklin score

b(·,v). To compute PMR, we solve the following decision problem, for various values

of t: is PMR(a, w,p) > t. The ability to solve this problem efficiently means we can

compute PMR in polynomial time by solving this problem for t = m− 2,m− 3, . . . , 0, in

this order. PMR(a, w,p) is then the largest t∗ for which PMR(a, w,p) > t∗ − 1. (Note

that for Bucklin, PMR must be one of {0, . . . ,m− 1}.)
This decision problem can be further broken down by solving a sequence of sub-

problems which asks whether there is a completion v ∈ C(p) such that sB(a,v) > k and

sB(w,v) ≤ k′ for fixed values k, k′ ∈ {0, . . . ,m − 1}. If such a completion exists, this

implies PMR(a, w,p) > k− k′. Hence, to solve the PMR decision problem above for any

fixed t, we can solve the subproblem for all values k ≤ m − 1, with its corresponding

k′ = t− k.

To solve the sub-problem, we consider the relevant worst-case completions of each

partial vote, based on different cases, as we did for positional scoring and maximin

voting. If either Nec`(w � a) or Inc`(a, w) holds, then the worst-case completion places
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w as high as possible and a as low as possible in `’s vote, as in the case of positional

scoring rules.

If Nec`(a � w) holds, then more subtle reasoning is required. First, it is clear that

all alternatives in the set D (see Figure 3.2, a � w) must be placed below w, and those

in set C above a. This, of course, only serves to improve w’s Bucklin score and possibly

worsen a’s score, which is our aim. At issue, however, is how many alternatives from the

set U should be placed above a and how many below w, since we have a choice (obviously

none should be placed between a and w). Consider the following two conditions:

• Condition 1: a is ranked below the kth position.

• Condition 2: w is ranked at or above the k′th position.

We consider five distinct cases (in all cases, we assume that all alternatives apart from

those in U are now positioned in the appropriate positions):

1. If p` cannot be arranged such that either Condition 1 or 2 is satisfied (i.e., there

are not enough alternatives in U to push a below position k or to push w to or

above position k′), then we complete p` in arbitrary fashion.

2. If p` can be arranged to simultaneously satisfy both conditions, we use that com-

pletion.

3. If p` can be arranged to satisfy Condition 1 but not Condition 2, we use that

completion.

4. If p` can be arranged to satisfy Condition 2 but not Condition 1, we use that

completion.

5. Otherwise p` can be arranged to satisfy either of Conditions 1 or 2, but not both

simultaneously. We tentatively “skip” these partial votes and complete them as

the last step of the algorithm.

To solve the subproblem, we use two counters: ca keeps track of the number of partial

votes that fall into Cases 1–4 above in which a’s rank is below k; and cw counts the

number of partial votes that fall into Cases 1–4 above in which w’s rank is at or above

k′. Notice that partial votes within these first four cases offer no scope to trade off the

relative position of a and w to satisfy our two conditions. Once these are counted, we

need to construct suitable completions of the remaining partial votes, all of which fall

into Case 5. Specifically, to validate the subproblem, we need bn/2c+ 1− ca of the Case
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5 votes to be completed in such a way that a’s rank is below k, and bn/2c+ 1− cw votes

to be completed so that w’s rank is at or above k′. Note that these two requirements

are exclusive: the completion of a Case 5 partial vote 5 can only satisfy one of these two

requirements.

Now if the number of partial votes ns satisfying Case 5 is such that ns < 2 bn/2c +

2 − ca − cw, then we cannot construct the required number of partial votes to satisfy

the Bucklin score requirements, therefore we conclude that answer to the sub-problem is

false. Otherwise we can satisfy the requirements, by configuring bn/2c+ 1− ca of these

ns votes so that a’s position falls below k (by placing alternatives from U above a), and

configuring bn/2c+ 1− cw of the votes so that w’s position is at least in rank k′ or better

(by placing U below w).

Testing which of the five cases a particular p` belongs to can be done in O(m) time

(see Figure 3.3): we first check if U is large enough to place sufficiently many alternatives

above a to make its rank position greater than k. If this is not possible, we then check

whether positioning U below w pushes w to position k′ or above. If this can be achieved

the partial vote falls in case 4, if not it falls in case 1. If a can be pushed below position

k, then we check whether the remaining alternatives in U (i.e., those left after removing

just enough alternatives to push down a’s position) can be placed below w to make its

position at least k′. If so, then it falls into case 2. If not, we ask whether the original set

U can be placed below w to meet its positional requirement. If so, it falls into case 5,

and otherwise it is case 3. Therefore the running time to solve the above sub-problem is

O(nm). Since we need to solve these sub-problems at most m− 1 times, for value of t of

the PMR decision problem, the total time to computing PMR is O(nm3). Consequently,

given m2 pairs of alternatives, we have:

Theorem 6. Minimax regret can be computed in O(nm5) time for the Bucklin voting

rule.

3.2.5 Egalitarian Voting

We’ve seen rather straightforward computation for PMR and minimax regret using the in-

dependent completion of the partial votes of each voter for decomposable rules (positional

scoring), while non-decomposable rules like maximin and Bucklin require the “coordi-

nated completion” of different voters’ partial votes. However, certain non-decomposable

scoring functions do admit the independent completion of partial votes. Consider the

egalitarian (or maxmin fairness) voting rule, where sf (a,v) = min`∈N{m−v`(a)}. While

minimizing or maximizing the score of a candidate in partial vote p` is straightforward,
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Figure 3.3: Classifying p`, with Nec`(a � w), into one of the five cases, used in answering
the sub-problem of whether there exists a completion v such that sB(a,v) > k and
sB(w,v) ≤ k′. The decision tree asks whether alternatives in U can be arranged to be
placed above a or below w so as to achieve the desired rank positions. See Figure 3.2 for
the definition of U .

the way in which adversarial advantage is maximized in p` can depend on other votes.

In the cases Nec`(w � a) and Inc`(a, w), there is only one way to maximize the local

advantage of w over a (see above). But when Nec`(a � w), the placement of U ei-

ther above a or below w influences the maxmin fairness score of a and w in a way that

depends on other votes. However, one can show that unless PMR(a, w,p) is negative,

then advantage is maximized by ordering U below w. Informally, placing U below w can

improve the minimum score of both a and w. However, this placement can only improve

the minimum score of a if vote v` gives a its minimum score over all p`, in which case the

minimum score of w is strictly less than that of a, and PMR(a, w,p) is negative. Since

max regret can never be negative, the pair (a, w) cannot define a’s max regret. This lets

us prove that, unless PMR is negative, PMR(a, w,p) is maximized by ordering U below

w in any p` where Nec`(a � w). In other words, we maximize the positional score of w

without concern for the score of a. The running time for PMR is O(nm) and for MMR

is O(nm3), as in the case of positional scoring rules, since we only need to identify the

relevant sets in Figure 3.2.

Theorem 7. Minimax regret can be computed in O(nm3) time for egalitarian voting.
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3.3 Preference Elicitation

The ability to compute regret-minimizing winners is critical when only partial information

is available about voter preferences. However, in many cases, one has the option of

eliciting additional preference information from the voting population in order to reduce

minimax regret and improve decision quality. This can be especially important when

the minimax regret of the partial profile exceeds some (problem- or domain-specific)

tolerance, indicating the potential for divergence from optimality beyond an acceptable

threshold.

Of course, as discussed above, elicitation can be difficult (with respect to both com-

putation and communication complexity) in the worst case. Despite this, we will show

how minimax regret can be used to effectively guide the elicitation process, providing

strong results in practice. As a measure of solution quality, minimax regret can be used

to terminate elicitation whenever regret falls to some suitable threshold (including zero

if optimality is desired).5 More importantly, the solution to the minimax optimization

can guide the selection of queries (and voters) so that an (approximate or exact) opti-

mal solution can often be found quickly. In this section, we describe a simple heuristic

strategy to do just this. We focus on linear positional (Borda-like) rules and two specific

query types; but these ideas generalize to other rules and other forms of queries.

The Current Solution Strategy (CSS)

We consider a general technique, called the current solution strategy (CSS ), that has

been used effectively in both single-agent recommendation systems [14, 118, 19], multi-

agent mechanism design [65, 67, 66], and in multi-agent stable matching [44] settings

(the latter using the completion techniques we develop in this paper). Intuitively, CSS

identifies voter preference information that helps assess the relative degree of preference

between the minimax optimal solution and the adversarial witness within each voter’s

partial preference ranking, and queries a voter whose response has the greatest potential

to reduce the advantage of the witness over the minimax optimal alternative.

The precise instantiation of CSS depends on the types of preference queries permitted.

We consider two forms of queries in this work. A comparison query identifies a voter

`, and asks ` to compare two alternatives: “Is a �` b?”. A top-k query identifies and

asks voter ` to state which alternative is kth in their ranking (we assume that the first

k − 1 alternatives have already been articulated by `). We describe CSS in detail using

5If determining optimal termination is hard for a particular voting rule [32, 121], then so is computing
minimax regret; or equivalently, if computing minimax regret is easy (as demonstrated for certain rules
above), so is termination.
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comparison queries, but we show how the same intuitions can be adapted to the selection

of top-k queries.

Assume we are allowed to ask any voter a pairwise comparison query. CSS gener-

ates queries by considering the current solution to the minimax optimization—i.e., the

minimax optimal alternative a and adversarial witness w—and using this to choose a

voter-query pair with greatest potential to reduce minimax regret. Notice that if the

advantage of w over a is not reduced in some partial vote p` in response to a query,

PMR(a, w) will not change, thus, unless the response changes the minimax optimal so-

lution, MMR will not change. So CSS selects queries that tackle this gap directly. We

determine the value of posing a query to voter ` by considering the three cases in Fig-

ure 3.2, in each case determining the query with the largest potential reduction given a

positive response by `:

Case 1, where a � w: Recall that a worst-case completion must place (all alternatives

in) set D below w, set C above a, and set U either below w or above a. We can reduce

PMR(a, w) by asking two different types of queries: d � w for some d ∈ D or a � c

for c ∈ C. In each case, a positive response will position alternatives between a and w,

thus reducing PMR(a, w) by increasing the (worst-case) position of a relative to w in

pk, Specifically, a positive response to d � w prevents the adversary from placing d, or

any of its ancestors in D, below w in the completion. And a positive response to a � c

prevents the adversary from placing c, or any of its descendents in D, above a in the

completion. We pick the alternative in C ∪D (and corresponding query) with greatest

potential to reduce PMR in the case of such a positive response. For linear scoring rules,

this potential is measured by the number of ancestors of d in set D (all of which will

be positioned between a and w if d is), and the number of descendents of c in set C. If

C ∪D = ∅, we can ask two other query types, u � w or a � u for some u ∈ U . These do

not reduce PMR directly, but shift u and its ancestors in U to set C (for query u � w)

or u and its descendents in U to set D (for query a � u). The u with the potential to

shift greatest number of alternatives within U to some other set is chosen.

Case 2, where w � a: Recall that a worst-case completion must place sets E, A and

U between w and a. We can reduce PMR(a, w) by asking four different types of queries:

a � e for some e ∈ E; a � u for u ∈ U ; x � w for some x ∈ A; or u � w for some u ∈ U .

A positive response to any such query will reduce PMR. In the case of query a � e

(resp., a � u), it increases the (worst-case) score of a in p`, by preventing the adversary

from positioning e (resp., u), or any of its descendents in E (resp., U), between w and a.

Similarly, in the case of query x � w (resp., u � w), it reduces the (worst-case) score of
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w in p`, by preventing the adversary from positioning x (resp., u), or any of its ancestors

in A (resp., U) between w and a. Selection is again made by choosing the alternative and

query that have the greatest potential (i.e., the number of alternatives that are removed

from their respective sets E, A or U in case of a positive response).

Case 3, where Inc(a, w): We can reduce PMR(a, w) by asking several different queries,

however, heuristically, we always choose to ask if a � w, since a positive response reverses

p`’s contribution to PMR from positive to negative. Any response will move partial vote

p` into either case 1 or case 2.

We note that each voter is “scored” by assessing which query has the greatest potential

to reduce adversarial advantage in her partial vote, based on which of the three cases

above by which her partial is classified. When asking a single query at each round, we

choose the voter whose corresponding best query has the greatest potential (breaking

ties arbitrarily).

CSS must eventually terminate with an optimal solution:

Proposition 1. Unless MMR(p) = 0, CSS will always select a voter ` and comparison

query ai �` aj such that Inc`(ai, aj).

Proof. Suppose that MMR(p) > 0, that a is a minimax optimal alternatives, and w is its

adversarial witness. If there exists a partial vote p` such that Inc`(a, w) then CSS will be

able to query that voter with a � w. If there is a partial vote p` such that Nec`(a � w)

and at least one of the sets D, C or U is non-empty, then CSS will generate a query (see

Case 1 in the CSS description). If there is a partial vote p` such that Nec`(a ≺ w) and

at least one of the sets F , E or U is non-empty, then again CSS will generate a query

(see Case 2).

Finally, suppose no partial vote satisfies the three conditions above. This implies that

all partial votes fall into Case 1 or Case 2, and all Case 1 votes satisfy D ∪ C ∪ U = ∅
and all Cases 2 votes satisfy F ∪ E ∪ U = ∅. However, this means the exact positional

scores of a and w can be determined in every partial vote. By definition of MMR, w

must have a strictly higher score than a in some completion if MMR(p) > 0. But this

means w has a strictly higher score than a in every completion of p, contradicting the

minimax optimality of a.

CSS can be adapted, using similar intuitions, to generate top-k queries. Such queries

are asked of each voter in order—no no voter is asked for the second-ranked candidate

before their revealing their first-ranked candidate, their third before their second, etc.

This means that CSS need only select a voter at any stage—the query is determined
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once the voter is selected. If elicitation is confined to top-k queries, for a given voter we

consider four cases to assess the potential reduction in MMR associated with querying

that voter (again assuming minimax optimal a and adversarial witness w):

Case 1: If a and w are already in the voter’s top-k list, then their scores are known

with certainty and PMR(a, w) cannot be reduced by querying this voter.

Case 2: If a is in the voter’s top-k list but w is not, asking for the next highest

alternative—assuming optimistically that the response is not w—reduces the adversarial

advantage by one (i.e., the adversary would place w at rank k + 2 instead of k + 1).

Case 3: If a is not in top-k list, but w is, the adversary maximizes PMR by placing

a at the bottom of the ranking. If a is (optimistically) returned as the next highest

alternative, PMR is reduced by m− (k + 1) (since a must be at position k + 1).

Case 4: If neither a nor w are in the top-k list, the adversary will place a at the

bottom of the ranking and w at position k + 1. If a is (optimistically) returned as the

next highest alternative, PMR is reduced by m − k (a must now be placed at position

k + 1 and w at k + 2).

In each of the cases above, we calculate the potential PMR reduction for each voter,

and query the voter with the largest potential reduction. It is clear that, unless minimax

regret is zero, CSS will always have some voter to query with positive potential reduction.

Proposition 2. Unless MMR(p) = 0, CSS for top-k queries will always select a voter `

to query for its next most preferred alternative.

Proof. We argue that, if MMR(p) > 0, there is at least one agent ` that does not belong

to Case 1 above (i.e., where minimax winner a and its witness w both appear in an

agent’s current list of most preferred alternatives). Suppose this is false. Then all agents

have specified the rank positions of both a and w, hence the positional scores of a are w

are both fully known. We argue that since MMR is strictly positive, w must have lower

max regret than a. Since MMR is positive, and we know the rank position of w for all

agents, then the positional score of w must be greater than a. That is, there exists a

positive constant C > 0 such that

s(w,v)− s(a,v) = C, ∀v ∈ C(p). (3.12)



Chapter 3. Optimization and Elicitation for Single-Choice Problems 50

We also know that for any other alternative b 6= a,

PMR(a, b,p) = max
v∈C(p)

s(b,v)− s(a,v)

= max
v∈C(p)

s(b,v)− s(w,v) + s(w,v)− s(a,v)

= max
v∈C(p)

s(b,v)− s(w,v) + C by Eq. 3.12

= PMR(w, b,p) + C.

Hence PMR(w, b′,p) < PMR(a, b′,p) for all b 6= w. This implies that MR(w,p) <

MR(a,p) which would imply that a is not the minimax winner. This is contradicts our

assumption and therefore there is at least one agent ` that belongs to Case 2, 3, or 4,

and hence CSS would query for the next most preferred alternative for `.

3.4 Empirical Evaluation

We now evaluate the performance of CSS, for both pairwise comparisons and top-k

queries, on a few datasets. In particular, we are interested in the amount of preference

information that CSS elicits before the minimax regret is small enough. We compare CSS

against two other baseline elicitation strategies. The random strategy (Rand) randomly

chooses a voter ` and a comparison query such that Inc`(ai, aj) (so the query response

always bears information). With top-t queries, Rand only needs to choose voter ` at

random. The volumetric strategy (Vol) selects a voter ` and query ai � aj that maximizes

the number of new pairwise preferences revealed (given the worst response):

Vol(p`) = max
ai,aj

min

{
|tc(p` ∪ {ai � aj})|,
|tc(p` ∪ {aj � ai})|

}
,

where tc denotes transitive closure. This strategy reduces preference uncertainty maxi-

mally, without regard for the “relevance” of the revealed preference information to win-

ner determination (much like volumetric strategies for in polyhedral conjoint analysis for

single-agent problems [115]). Its application to top-k queries involves selecting the voter

whose next-ranked candidate reduces uncertainty the most. Since this voter must be one

who has ranked the fewest candidates, the strategy reduces to a simple sequential iter-

ation: each voter in turn is asked for their top-ranked candidate; then each is asked for

their second-ranked candidate; and so on. We refer to Vol in this case as SequentialTop.

In related work (see Section 3.5), Kalech et al. [69] proposed two vote elicitation
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algorithms. Their first method is essentially the SequentialTop method described above,

and proceeds in rounds in which each voter is queried for their next most preferred

choice. It uses necessary winner computation for termination. This contrasts with our

CSS approach, which is much more subtle and incremental: we identify a particular

voter to query at each stage by evaluating its potential to reduce minimax. We see

in our experiments that this can reduce the number of required queries substantially.

Furthermore, our elicitation methods are anytime: querying can terminate when minimax

regret is sufficiently small, and we show below that this further reduces the number of

queries significantly.

Kalech et al.’s [69] second algorithm proceeds for a predetermined number of rounds,

asking each voter at each stage for fixed number of positional rankings. Since termina-

tion is predetermined, necessary winners may not result (instead possible winners are

returned), and interesting tradeoffs between the number of rounds and amount of in-

formation per round are explored. One attractive feature of this model is the batching

of queries (voters are only queried a fixed, ideally small, number of times, though each

query may request a lot of information), thus minimizing interruption, waiting time, etc.

As the authors acknowledge, this scheme provides no guarantee of winner optimality or

any bounds on quality. A key advantage of our minimax regret-based scheme is that a

natural, precise objective is being minimized, and anytime quality guarantees are pro-

vided.6 This second approach of Kalech et al. does, however, batch queries, so voters

are only queried a few times, though each query may request more information than the

CSS scheme. Such batching can minimize user interruption as well as user latency (since

voters are not required to wait until the responses of other voters are delivered before

their next query is received). We will return to the issue of batching in Chapter 6.

We test CSS on three different data sets:

• Sushi : The Sushi data set [70] contains 5000 full preference rankings over 10 vari-

eties of sushi.

• Irish: The Irish data set comprises the votes of the 2002 Irish national election

from the Dublin North constituency. It contains 43, 942 ballots of the top-t form

over 12 candidates. We use the subset consisting of the 3662 complete ballots (i.e.,

that rank all 12 candidates).7

6We also note that elicitation of pairwise preferences is not considered in [69]; such queries are
extremely valuable and arise naturally in many domains such as search, information retrieval, consumer
product comparisons, etc.

7See www.dublincountyreturningofficer.com.
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Figure 3.4: Performance of elicitation algorithms (paired and top-k queries) on Sushi.
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Figure 3.6: Performance of CSS elicitation (paired) on Mallows data.

• Mallows : We generate random vote profiles, each with 100 random rankings over

20 alternatives, where each ranking is drawn from a Mallows φ-model, using several

different parameter settings (as we explain further below). Note that in Mallows,

a smaller φ concentrates probability mass around the modal ranking σ (i.e., all

voters have nearly identical rankings), while φ = 1 gives the uniform distribution

over rankings, also known as impartial culture.

These data sets were used to generate responses to elicitation queries, and reflect different

forms of group decisions, both political voting and the types of group decisions often

needed in recommender systems.

We test CSS on each data set, measuring how quickly minimax regret reduces as a

function of the total number of queries asked of the voting population. For the real-world

data (Sushi, Irish), we use both pairwise comparisons and top-k queries, and compare

the performance of CSS to both the random and volumetric elicitation strategies. On

the Mallows (random) data, we use only pairwise comparisons and analyze the impact

on convergence as we vary the dispersion parameter. In all cases, we use Borda scoring

to measure candidate quality (similar results hold for other rules).

The plots in Figures 3.4 and 3.5 shows MMR as a function of the total number of
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queries asked on the Sushi and Irish data sets. We see that CSS offers superior elicitation

performance with both pairwise comparisons and top-k queries. With Sushi, CSS reaches

the optimal solution (i.e., the provable winner with MMR = 0) after an average of only

11.82 comparison queries per voter (or a total of 59,100 queries). This compares with

20.64 queries for Vol and 20.63 queries for Rand (as well as the 25 queries required

by the theoretically optimal MergeSort to determine full voter rankings). With top-k

queries, CSS needs only 3.40 queries per voter to reach MMR = 0, compared to 4.18

for Seq, and 5.50 for Rand. With Irish, results are similar: CSS reaches optimality

with 18.57 comparison queries and 5.47 top-k queries per voter. This stands in contrast

with 31.82 comparisons and 6.91 top-k queries for Vol/Seq; 31.22 comparisons and 8.38

top-k queries for Rand, and 33 comparisons for MergeSort. Note that top-k queries are

“information rich” as they provide many pairwise comparisons per response. Thus, while

CSS’s advantage is somewhat less in the top-k case (though RandomTop still requires

over 50% more queries to reach MMR = 0 in Irish), the fact that there is an advantage

is of greater significance due to the greater “intensity” of each query.

Critically, if one is interested in approximate solutions, we see that CSS reduces MMR

very quickly, providing high-quality solutions after very few queries. For example, with

Irish, CSS reduces MMR to 18% of its initial value (with no voter preference data) after

only 5.82 comparison queries per voter, which is a small fraction of the queries required

to elicit full rankings. By contrast, to reduce regret to the same degree requires 25.77

comparisons for Vol, and 24.03 comparisons for Rand. Computationally, for problems of

this size, CSS takes only a few milliseconds on average (wall clock time) to find the best

agent/comparison query (including time needed to recompute the MMR-solution).

On the synthetic Mallows data set, we sample 100 complete voter profiles, each with

100 voters and 20 alternatives, for each of several different values of φ. The same impact

of CSS on MMR as a function of the number of pairwise comparisons asked is shown

in Figure 3.6. With larger φ, more queries are clearly needed to reach the same level

of regret, which conforms to our intuitions that intelligent elicitation schemes can take

significant advantage of less uniform preferences to minimize queries and voter effort (and

conversely, that with almost uniformly random preferences, nearly full rankings must be

obtained). Work in behavioral social choice strongly suggests that real-world preferences

are not uniformly random [106], and CSS seems to perform especially well in this case;

indeed our results on Sushi and Irish suggest that real preferences are not uniform, and

contain regularities that can be readily exploited to reduce the informational complexity

of voting.
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3.5 Related Work

The elicitation question has been studied from a theoretical perspective, addressing

whether winners for some voting rules can be determined with partial voter preferences

(rankings). Unfortunately, worst-case results are generally discouraging. Conitzer and

Sandholm [34] demonstrate that the communication complexity of several common voting

protocols, such as Borda and Copeland, is Ω(nm logm), essentially requiring communi-

cation of full voter preferences in the worst-case. Indeed, determining which votes to

elicit to determine a winner is NP-hard in many schemes (e.g., Borda) [32, 121].

Despite the theoretical complexity of partial elicitation, practical means of eliciting

partial rankings and making decisions with partial preferences are vital. This is pre-

cisely the problem we address in this chapter. Kalech et al. [69] were among the first to

consider practical vote elicitation schemes for a couple of prominent score-based voting

rules (i.e., Borda and range voting). They propose two elicitation schemes using spe-

cific query types, and adopt possible and necessary winners as their primary solution

concept. Their iterative voting method—this is distinct from iterative voting schemes in

which voters change their votes in response to the current vote profile, which go by the

same name—determines a true winner (with no approximation) and proceeds in rounds.

At each round, voters are queried for their next best candidate (and by round k have

answered the equivalent of a top-k query, as defined below). At the end of each round,

necessary and possible winners are computed with respect to the current partial vote

profile: if every possible winner is a necessary (co-)winner, the process stops and returns

the set of necessary winners. (The algorithm could also be terminated once any necessary

winner is found.) On small random and real-world vote profiles (up to 30 voters and 50

alternatives), this scheme can reduce the number of alternatives ranked by voters by up

to 10–40%, with the larger gains possible when user preferences are more uniform.

Kalech et al. [69] also propose greedy voting, which proceeds for a fixed number of

rounds k. Given the current partial profile pk at round k, the minimal and maximal pos-

sible scores s(a, r), over all completions r of pt, of each candidate a are computed. Then

each voter ranks the set of q alternatives with the largest minimum scores (maximum

scores are used to break ties), for some small q. Since termination must occur after k

rounds, necessary winners may not result, so possible winners are returned. This model

batches queries (voters are only queried a fixed, ideally small, number of times, though

each query may request more information than in the other schemes discussed below).

Such batching can minimize user interruption as well as user latency (since voters are

required to wait until the responses of other voters are delivered before their next query
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is received). This scheme cannot guarantee winner optimality, nor any bounds on qual-

ity. Kalech et al. show empirically that the (post hoc) quality of the resulting winners

in small domains is reasonably high, and of course improves with the number of rounds

permitted.

Subsequent work on elicitation has focused on several rather distinct approaches.

Soufiani et al. [114] exploit a probabilistic model of voter utilities given attributes of

both voters and candidates, and applying a Bayesian experiment design approach to

elicit full rankings. However, their scheme is not directly driven by a specific decision

criterion. Ding and Lin [42] analyze the computation of a “deciding set” of queries for

a particular candidate—these are queries where any consistent set of responses will fully

determine whether a candidate must be a winner or loser. However, this cannot be

construed as an interactive elicitation scheme.

Finally, we note that minimax regret—the robustness criterion we adapt to the prob-

lem of winner determination under partial profiles and to drive our elicitation process—

has been used rather widely for the same purposes in single-agent decision making and

preference/utility elicitation. This includes work on multi-attribute optimization prob-

lems [12, 109, 122, 13, 14, 18, 15, 19], combinatorial optimization of item slates [118], and

Markov decision processes [104, 105]. It has also been used in (multi-agent) mechanism

design to minimize the amount of utility function information revealed to direct mech-

anisms such as the VCG mechanism [65, 67, 66]. We refer to [11] for an overview. We

also note that minimax regret has been used as a robustness criterion for optimization

problems (e.g., linear programs) in which there is data or objective function uncertainty

[77, 5, 3].

3.6 Conclusion

In this chapter we have introduced and defined the concept of minimax regret (MMR) as

the decision criterion for making robust social choice decisions with an arbitrary collection

of partial preferences. The MMR criterion and the notion of max regret allows a decision

maker to assess the difference in the quality of any outcome with respect to the (unknown)

optimal outcome. Specifically, it lets us bound the loss in “social welfare” associated

with the underlying voting rule. Consequently, this approach supports the informational

approximation of voting rules. We compared MMR to possible and necessary winners,

showing that it not only generalizes necessary winners but that it also provides a worst-

case guarantee on the decision quality. We also showed through examples that the notion

of possible winners is not supportive of decision making, and that while an alternative is
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not a possible winner it may still have good max regret.

We offered basic observations about the time complexity of computing MMR optimal

alternatives. We gave practically efficient, polynomial time algorithms for computing

MMR for some common voting rules including all positional scoring rules (such as Borda,

k-approval, etc.), Maximin, Bucklin and Egalitarian.

In preference elicitation, MMR also serves as the driving objective of any querying

strategy. In particular, we developed an elicitation strategy known as the current solution

strategy (CSS) for pairwise and top-k queries that quickly reduces MMR. Experiments

on real and synthetic datasets showed that CSS is superior to a “volumetric” strategy

and random querying for both pairwise and top-k queries. Experiments also showed

that in practice, only a fraction of preference information is required to make optimal or

near-optimal decisions.

While this chapter has covered the elicitation of preferences over atomic alternatives,

that is, alternatives that have no inherent structure, in many real application domains

the alternatives are multi-attributed and large in number. For example, this is the case in

recommender systems, such as recommending apartments or cars (which may consist of

thousands of alternatives). Preferences over such alternatives are usually more structured,

and exploit the fact that, for example, each agent’s utility can be approximated by the

sum of the utility of each individual attribute. Because there is much more structure in

multi-attributed domains, the robust optimization computations are more sophisticated

and preference elicitation queries would involve attributes of alternatives. However, with

added structure, we may be able to develop faster robust optimization algorithms and

improved elicitation schemes.

Another interesting avenue for future work is to explore different query types for

preference elicitation. In this chapter we have focused on pairwise comparisons and top-

k queries. However, there are a few other query types that appear natural and perhaps

more sensible in specific applications for certain individuals. This includes querying for

both top- and bottom-k (many people can often easily identify their most and least

preferred alternatives), querying for the most preferred alternative from a smaller subset

of alternatives, or perhaps even asking for alternatives at particular rank positions. Such

queries, or mixing of these query types would require the development of new elicitation

strategies.



Chapter 4

Robust Optimization and Elicitation

for Multiple-Choice Problems

Having introduced the regret-based decision criterion for single-choice problems, we now

turn our attention to the multi-winner problems, and consider the robust optimization

of a slate of alternatives given a partial preference profile, again using minimax regret as

our robustness criterion.

We begin in Section 4.1 by defining and discussing the multi-winner voting rule that

we study in this Chapter. Section 4.2 introduces and defines minimax regret for multi-

winner problems. We discuss the computation of minimax optimal slates in Section 4.2.1,

focusing our attention on linear positional scoring rules (such as Borda) for ease of expo-

sition. We describe the relevant completion principles, and show that the computational

problem is hard in general, but can be solved in polynomial time for bounded slate sizes

K (i.e., it is fixed-parameter tractable with respect to K). In Section 4.2.2 we describe

a greedy algorithm for approximating minimax-optimal slates and prove approximation

ratios. We then explore, in Section 4.3, the use of these methods to drive preference

elicitation strategies for multi-winner problems. We test the empirical performance of

our greedy slate selection method and of our preference elicitation strategy on some real

and synthetic datasets in Section 4.4. Finally, we conclude in Section 4.5.

4.1 Preliminaries

Multi-winner problems deal with the selection of a set or slate of alternatives a ⊆ A. A

voter’s satisfaction with a slate is a function of their satisfaction with the alternatives

in the selected slate, and constraints are generally placed on the set of feasible slates.

In this chapter, we focus on the conceptually simplest such multi-winner model: (i) we
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assume that voter satisfaction with candidates is given by some scoring function (e.g.,

the Borda PSF) induced by their ranking, and that a voter’s satisfaction with the slate is

given by the score of their most preferred alternative on the slate; and (ii) feasible slates

are those with size |a| ≤ K. In other words, we can select up to K candidates and each

voter derives benefit from their most preferred.

More formally, given a preference profile v, we define the score of a K-set and the

optimal K-set as follows:

s(a,v) =
∑
`∈N

max
a∈a

α`(a) =
∑
`∈N

s`(a), (4.1)

a∗v = argmax
|a|≤K

s(a,v). (4.2)

(We suppress dependence of s on α since the PSF will be fixed and clear from context.)

When α is the Borda PSF, this corresponds to the proportional representation (PR)

scheme of Chamberlin and Courant [25] as described in Section 2.3.1 For the remainder

of this chapter we focus on robust optimization and preference elicitation for multi-

winner problems that correspond to the above proportional representation scheme as

defined in Section 4.1. An important variant proposed by Monroe [92] requires the use

of an assignment function—that associates each voter with a specific winner—so that

candidates each represent a roughly equal number of voters.

This slate optimization problem can be viewed as a segmentation problem [74]; and

it is also a special case of budgeted social choice, specifically, the limited choice form of

the problem [83]. See Section 2.3 for a more detailed discussion. More general forms

of proportional representation [92] and budgeted social choice [83] allow for assignment

functions that map voters to specific alternatives (e.g., to ensure balanced representation,

or budget feasibility); but here we assume that the only constraint is on the number of

alternatives selected. Sets of size less than K offer no advantage over those of size K in

this case.

4.2 Minimax Regret for Slate Optimization

We now consider the problem of selecting an optimal K-set of alternatives when we have

only a partial preference profile p rather than a complete profile v. We again adopt

minimax regret as a robustness criterion for making decisions with a partial profile.

1Note that Chamberlin and Courant [25] specify their model in terms of misrepresentation and
attempt to minimize total degree of misrepresentation rather than maximize total satisfaction; but the
notions are equivalent.
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The definitions of pairwise maximum regret, maximum regret, and minimax regret are

analogous to those in the single-winner case, with outcomes/decisions (and adversarial

choices) corresponding to slates of K alternatives rather than single choices. We first

present definitions (for sets of fixed size K) and then explain the intuitions. Recall that

a and w represent slates of alternatives.

Regret(a,v) = max
|w|≤K

s(w,v)− s(a,v) (4.3)

PMR(a, w,p) = max
v∈C(p)

s(w,v)− s(a,v) (4.4)

MR(a,p) = max
v∈C(p)

Regret(a,v)

= max
|w|≤K

PMR(a, w,p) (4.5)

MMR(p) = min
|a|≤K

MR(a,p) (4.6)

a∗p ∈ argmin
|a|≤K

MR(a,p) (4.7)

Given a vote profile v, Regret(a,v) describes the loss in satisfaction associated with

offering set a rather than the optimal K-set. Given a partial profile p, the pairwise

max regret PMR(a, w,p) is the worst-case loss that could be incurred, under all possible

realizations of consistent voter preferences, by offering a rather than w. Note that our

definition of PMR does not impose constraints on set sizes, a fact we exploit below. The

max regret MR(a,p) of set a is the worst-case loss relative to the optimal K-set under

all preference realizations: this bounds the loss associated with a given our preference

uncertainty. Finally, a minimax optimal set a∗p is one with minimum max regret or

minimax regret MMR(p).

Observation 3. If MMR(p) = 0, then a∗p is an optimal slate of alternatives for any

v ∈ C(p).

4.2.1 Computing MMR-Optimal Slates

Before discussing computation of minimax regret, we begin with the simpler problem

of computing pairwise max regret. From Eqs. 4.4–4.6, we see that the regret-optimal

slate a∗p can be determined by first computing PMR(a, w,p) for all pairs of K-sets a, w,

maximizing over w to determine MR(a,p), then minimizing over these terms to compute

MMR(p). If K is small, then robust optimization is efficient if PMR can be computed

effectively, a problem on which we first focus. (We discuss an approach for large K in
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Case 1 Case 2

Figure 4.1: Adversarial completions of p` for PMR(u`(a), {w}, p`). Case 1, when there
exists a ∈ a such that a �` w, and case 2 when no such a exists. In case 1, PMR is given
by Eq. 4.10 and in case 2, PMR is given by Eq. 4.11.

Section 4.2.2.) Just as with single-winner problems using positional scoring rules, one

can show PMR is additively decomposable:

PMR(a, w, p`) = max
v`∈C(p`)

s(w, v`)− s(a, v`)

PMR(a, w,p) =
∑
`∈N

PMR(a, w, p`) (4.8)

Thus we can compute the contributions of each voter ` to PMR independently. When

` is presented with slate a, she will choose her most preferred alternative from a, and

similarly for slate w. Define the undominated elements for voter ` in any set a to be:

u`(a) = {a ∈ a : 6 ∃a′ ∈ a s.t. a′ �` a}.

If presented with a slate a, `’s maximal satisfaction—informally, we call this `’s choice

for a—can only be derived from one of these undominated elements, no matter what

completion of `’s partial preferences reflects her true underlying preferences. In the

ranking v` ∈ C(p`) that maximizes pairwise regret, only one element in w will be chosen

by ` (the most preferred), which defines PMR:

PMR(a, w, p`) = max
w∈u`(w)

PMR(u`(a), {w}, p`). (4.9)

Given this, there are two cases to consider when determining the adversarial completion

v` ∈ C(p`) that maximizes PMR(u`(a), {w}, p`).

Case 1: Suppose there is an a ∈ a such that a �` w. This means there is no completion
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in which ` would choose w, so PMR is negative. Maximizing pairwise regret requires

reducing the “gap” between the most preferred a∗ ∈ a and w. The only alternatives that

must lie between the most preferred a and w are undominated elements u`(a) of a that

dominate w, or those b known to lie between such an a and w. Define

u`(a)+
w = {a ∈ u`(a) : a �` w},

B`(a, w) = {b ∈ A : ∃a ∈ u`(a)+
w , a �` b �` w}.

B`(a, w) includes all alternatives that must lie between the best a ∈ a and w (the specific

choice or placement of the elements in these two sets has no impact on PMR). Every

other alternative can consistently be ordered above the best a or below w depending on

constraints in p`.
2 Thus we have:

PMR(u`(a), {w}, p`) = −|u`(a)+
w | − |B`(a, w)|. (4.10)

See Figure 4.1 (case 1) for an illustration for an illustration of the different sets defined

above and their relationship, as well as the completion.

Case 2: Now suppose that for voter `, no element in a ∈ a is known to be preferred to

w. If w ∈ u`(a) then PMR(u`(a), {w}, p`) = 0, since any adversarial completion can place

w above all alternatives in u`(a) \ {w} (otherwise regret would be negative). Otherwise

the desired completion must maximize the gap between w and any alternative in u`(a).

The following alternatives can be placed between w and a:

B′`(a, w) = {b ∈ A \ a : b 6�` w and ∀a ∈ u`(a), a 6�` b}.

The relative ordering of these alternatives does not impact regret. With B′`(a, w) placed

below w, some alternative from u`(a) must lie immediately below the last element of this

set (becoming the most preferred a ∈ a). Thus, we have:

PMR(u`(a), {w}, p`) =

1 + |B′`(a, w)| if w 6∈ u`(a),

0 otherwise.
(4.11)

See Figure 4.1 (case 2) for an illustration (where w 6∈ u`(a)).

In both cases, the undominated sets u`(a) and u`(w) can be computed in O(K2) time.

2For “nonlinear” scoring rules, where the score difference for two alternatives depends not just on
relative rank position, but also absolute rank position, placement of alternatives above or below a and
w requires more care, but is straightforward in most cases.
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In case 1, u`(a)+
w can be computed in O(K) time once u`(a) is known, and B`(a, w) can

be computed in O(mK) time by checking if each b ∈ A satisfies the constraints with

respect to u`(a)+
w and w. For case 2, B′`(a, w) can be found in time O(mK) by checking

each b ∈ A with w and the alternatives in u`(a). Using Eqs. 4.9 and 4.8, PMR(a, w,p)

can be computed in O(n(K2 + K(K + mK))) = O(nmK2) time. Note that for K = 1,

the approach is identical to PMR computation for the single-winner Borda rule. Putting

this together we have:

Theorem 8. PMR(a, w,p) is given by:

∑
`∈N

max
w∈u`(w)


−|u`(a)+

w | − |B`(a, w)| if ∃a ∈ a : a �` w,
1 + |B′`(a, w)| otherwise, and w 6∈ u`(a),

0 otherwise,

and is computable in O(nmK2) time.

The minimax optimal slate a∗p can be constructed by computing max regret MR(a,p)

for each slate a of size K, and then selecting the slate a∗p that minimizes max regret. In

turn, MR(a,p) can be computed by determining the PMR of slate a for each witness set

w of size K. Hence:

Proposition 3. The minimax regret optimal slate a∗p can be computed in time O(nm2K+1K2).

The additive decomposability of PMR has the nice computational consequence that,

during the course of incremental elicitation (see Section 4.3), one need only update the

contributions to PMR of those agents who have their partial preferences updated by

responding to a query. For slates of small bounded size K, enumeration of alternative

sets may be practical. Indeed, if K is bounded, minimax optimal slates can be computed

in polynomial time (in n and m). In other words, the problem is fixed-parameter tractable

with respect to slate size K.

However, in general, since this form of proportional representation and budgeted social

choice is an NP-hard optimization problem [84] (as are related forms [103]), finding the

minimax optimal slate is also NP-hard (simply let p be a full preference profile). Indeed,

even simply computing MR(a,p) is NP-hard:

Theorem 9. Given threshold r ≥ 0, partial profile p, set size K, and set a of size

at most K, deciding if MR(a,p) ≥ r (i.e., does some set w of size at most K satisfy

PMR(a, w,p) ≥ r) is NP-complete.
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Proof. This problem belongs in NP as we can check whether a (polynomially sized)

certificate w has the property that PMR(a, w,p) ≥ r in polynomial time by Theorem 8.

NP-hardness is easy to see using a simple reduction from the limited choice (LC) problem

with Borda scoring (see Section 2.3), which is NP-hard [83]. Given any LC instance with

budget K and complete profile v over m alternatives, we transform it into a partial profile

p with m + K alternatives (the m original alternatives plus K “dummy” alternatives).

Set a to be the dummy alternatives. Define each partial p` to be identical to v` on the top-

m ranked alternatives, while the rest of the ranking is unspecified. Computing whether

some slate w of size at most K has PMR(a, w,p) ≥ r can then be used to determine if

there is a slate w′ with score above a threshold in the LC instance.

4.2.2 A Greedy Algorithm for Robust Slate Optimization

Given the intractability of computing a minimax optimal slate a∗p for a partial profile p

in general, we investigate the possibility of an efficient algorithm for approximating the

problem that will be practical even for large values of K. It turns out that a relatively

simple greedy optimization procedure can be used for this purpose.

To develop this greedy approach, we first define the following problem, which we call

the additional alternative problem. Assume a partial profile p and a fixed set a of k − 1

alternatives; if one can add a kth alternative to the set, which next alternative minimizes

maximum regret under the PR/limited choice model? We define this problem in the

obvious way:

PMR(a, w,p|a) = PMR(a ∪ {w}, a ∪ {a},p) (4.12)

MR(a,p|a) = max
w∈A

PMR(a, w,p|a) (4.13)

MMR(p|a) = min
a∈A

MR(a,p|a) (4.14)

a∗a,p ∈ argmin
a∈A

MR(a,p|a). (4.15)

Here PMR(a, w,p|a) denotes the pairwise max regret of extending slate a by adding a

rather than w, while MR(a,p|a) denotes the regret of extending a with a rather than

some other alternative in the worst-case (over completions of p). Minimax regret and

the minimax optimal “extension” of a, i.e., a∗a,p, are defined in the obvious way. Note

that setting k = 1 gives the single-winner robust voting problem addressed earlier.

The additional alternative problem can be solved in polynomial time. We can ex-

plicitly compute the pairwise max regret PMR(a, w,p|a) of all m(m − 1)/2 pairs of

alternatives (a, w) (where a is a proposed additional alternative and w is an adversarial
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witness), using intuitions very similar to those above (as we discuss below). Note that

while we can apply our previous algorithm for finding the pairwise max regret for arbi-

trary pairs of slates (a, w), the algorithm and analysis of PMR(a, w,p|a) that we provide

below offers a factor k speedup over the direct application of our earlier algorithm.

With PMR in hand, we can readily determine minimax regret using Eqs. 4.13 and 4.14.

Hence, we need only show that PMR can be computed in polynomial time. As above,

we can compute each voter `’s contribution PMR(a, w, p`|a) independently. We again

consider two cases.

Case 1: If a �` w, then PMR(a, w, p`|a) ≤ 0 since adding w to a cannot improve

`’s score any more than adding a. Assuming a �` w, if there is some b ∈ a such that

a 6�` b, then b can be ordered over a and PMR(a, w, p`|a) = 0. However, if a �` b for all

b ∈ a, regret must be negative. PMR(a, w, p`|a) is then maximized (or negative regret

minimized) by placing as few alternatives as possible between a and the best element of

a ∪ {w}. For any a �` b, define

T`(a, b) = {b′ : a �` b′ �` b}.

Then regret is maximized by ordering the alternatives in u`(a∪{w}) such that the element

with the fewest possible alternatives between it and a is ranked first. This gives:

PMR(a, w, p`|a) = max
b∈u`(a∪{w})

−|T`(a, b)| − 1.

Case 2: If a 6�` w, then PMR(a, w, p`|a) ≥ 0. In this case, if there is some b ∈ a

such that b �` w, then w can never be selected; but since w can be ordered over a,

PMR(a, w, p`|a) = 0. However, if there is no b ∈ a with b �` w, then regret is maximized

by maximizing the gap between w and the best element of a ∪ {a}. In particular, the

alternatives B′`(a∪ {a}, w), as defined above, can all be ordered between w and the best

such alternative. This gives us:

PMR(a, w, p`|a) = |B′`(a ∪ {a}, w)|+ 1.

Taken together, this shows:

Theorem 10. Given a (partial) slate a, partial vote p`, and two alternatives a, w ∈
A, pairwise max regret PMR(a, w, p`|a) for the additional alternative problem can be

computed in polynomial time.

This gives rise to a very simple greedy algorithm for approximating a minimax optimal
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Algorithm 2 Greedy algorithm

1: a← ∅
2: for k = 1 to K do
3: MMR ←∞
4: for a ∈ A do
5: MR ← −∞
6: for w ∈ A : w 6= a do
7: for ` ∈ N do
8: if a �` w then
9: PMR ← PMR+maxb∈u`(a∪{w})−|T`(a, b)| − 1

10: else
11: PMR ← PMR+|B′`(a ∪ {a}, w)|+ 1
12: end if
13: end for
14: if PMR > MR then
15: MR ← PMR
16: end if
17: end for
18: if MR < MMR then
19: MMR ← MR
20: a∗ ← a
21: end if
22: end for
23: a← a ∪ {a∗}.
24: end for
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K-set: starting with the empty slate a0 = ∅, at each of iteration k ≤ K we add alternative

a∗k = a∗ak−1,p
, i.e., the alternative with least max regret given the prior alternatives, to

slate ak−1. The method is detailed in Algorithm 2. While this algorithm comes with no

strong approximation guarantees—though we provide some weaker guarantees below—we

show in Section 4.4 that it works extremely well in practice.

In terms of run time, case 1 takes O(mk) time (at the kth iteration) and case 2, as

discussed previously, takes O(k2 + mk) = O(mk) time. Computing pairwise max regret

for all pairs (a, w), across all agents, and finding the next best alternative a∗ak,p for each

of the K spots on slate a results in a total running time of O(nm3K2).

There are two reasons the greedy algorithm is not guaranteed to find the minimax

optimal slate. The first is unrelated to preference uncertainty: even with complete pref-

erence information, the greedy algorithm is unable to provide an optimal K-slate in

general. In other words, it can produce a slate that has positive max regret. However,

the greedy algorithm does provide a 1− 1
e

approximation in the full information setting.

It is not hard to see that if we have sufficient information to make the “optimal greedy

choice” at each stage, then the regret-based approach will correspond to the exact greedy

algorithm described by Lu and Boutilier [83]:

Proposition 4. If MR(a∗k,p|ak−1) = 0 for all k ≤ K, then the greedy-MMR set aK is

identical to the set produced by the (full-information) greedy algorithm given any v ∈
C(p).

Proof. We prove this by induction on the number of greedy-MMR iterations k. In the

base case, the full information greedy algorithm will select a single alternative, that with

highest score (i.e., the winner under a positional scoring rule). If MR(a∗1,p) = 0, this

implies a∗1 is a necessary winner and hence must have the greatest score, so greedy-MMR

selects the score optimal alternative.

Let v∗ be the true but unknown completion of p. Now for some k < K, suppose

that the following holds of the greedy-MMR slate ak: each a∗i added to the greedy-MMR

slate at iteration i, for i ≤ k, satisfies a∗i ∈ argmaxa′∈A s(ai−1 ∪ {a′},v∗), where ai−1 =

{a∗1, . . . , a∗i−1}. Consider the k+ 1-st iteration: at that point, the chosen alternative a∗k+1

has conditional max regret is zero, i.e., MR(a∗k+1,p|ak) = 0. By definition of conditional

max regret, any other alternative a′ ∈ A satisfies s(ak−1 ∪ {a′},v) ≤ s(ak,v) for any

completion v ∈ C(p). In particular, this holds for v = v∗, which implies, by definition,

that a∗k+1 is a full-information greedy optimal choice at iteration k + 1.

If the last alternative added has non-zero max-regret, we are assured that true mini-

max regret is also nonzero:
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Observation 4. If MR(a∗K ,p|aK−1)>0, then MMR(p)>0.

Unfortunately, we cannot be sure that if only the last element has zero regret that we

have found the greedy-optimal slate. But even if the minimax-optimal alternative a∗i does

not have zero max regret, we can still obtain bounds on the quality of the solution. We

can consider each iteration of our greedy algorithm for adding alternatives to the slate

under partial information as approximating the corresponding full-information greedy

algorithm—it is only able to approximate the choice of alternative at each iteration

because it is working with the partial profile p rather than the true, unknown profile v.

However, using known results for bounding the quality of approximate greedy optimization

[57], we can provide a bound on the quality of the slate agrdK (p) produced by the greedy

algorithm under partial information (with respect to the true profile v) relative to the

true optimal slate a∗K(v) given full information. Specifically:

Proposition 5. Let p be a (known) partial profile and v ∈ C(p) be any (unknown)

complete preference profile. Let agrdK (p) denote the size K slate produced by the regret-

based greedy algorithm using partial profile p, and a∗K(v) be the optimal K-slate. Let

mk be any lower bound on the marginal value of the kth alternative added to a slate by

the full information greedy algorithm; that is, mk ≤ s(afk−1 ∪ {afk},v)− s(afk−1,v) where

afk−1 consists of the first k − 1 greedily selected alternatives using the full profile v. If

MR(apk,p|ak−1) ≤ α−1
α
mk for all k ≤ K, for some α ≥ 1, where apk is the alternative

added by the greedy algorithm with partial profile p, then

s(agrdK (p),v) ≥ (1− 1

e1/α
)s(a∗K(v),v).

In other words, the greedy regret-based algorithm constructs a slate that is within a fac-

tor of 1 − 1
e1/α

of the optimal (full-information) slate despite working with incomplete

information.

Proof. We prove this bound by relating the marginal improvement offered at the kth

iteration of the greedy algorithm when run using full information v (call this the full-

information greedy algorithm) with that when using conditional max regret to add an

alternative to the slate (call this the partial-information algorithm). Let apk−1 denote

the slate constructed by the partial-information algorithm at iteration k − 1. Let afk be

the alternative that would be added by full-information greedy to slate apk−1 constructed

to that point, and let FI k = s(apk−1 ∪ {afk},v) − s(apk−1,v) denote its marginal value.

Similarly, let apk denote the alternative added by the partial-information algorithm, and

PI k = s(apk−1∪{apk},v)−s(apk−1,v) denote its marginal value. Note that we are measuring
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marginal value relative to the true underlying profile v (notwithstanding the fact that

the partial-information algorithm does not have access to this profile). Finally, let agrdK (p)

denote the K-slate produced by the partial-information algorithm and PI = s(agrdK (p),v)

denotes its value under v, and let OPT = s(a∗K(v),v) be the value of the optimal slate

a∗K(v).

At stage k the partial-information algorithm adds an alternative apk that minimizes

conditional max regret. By definition of conditional max regret, the marginal value of

apk w.r.t. apk−1 must be within an additive factor MR(apk,p|ak−1) of the marginal value of

afk . Thus we have:

FI k ≤ PI k + MR(apk,p|ak−1) (4.16)

≤ PI k +
α− 1

α
mk (4.17)

≤ PI k +
α− 1

α
FI k (4.18)

(where the second and third inequalities follow by the statement of the theorem). This im-

plies 1
α

FI k ≤ PI k; i.e., the partial-information greedy algorithm offers an 1
α

-approximation

of the full-information algorithm with respect to the additional alternative problem.

It can be shown that a greedy algorithm applied to a submodular optimization prob-

lem in which the alternative added at each step does not maximize marginal improvement,

but does provide a γ-approximation of the maximal marginal improvement, provides a

(1 − 1
eγ

) approximation to the submodular optimization problem [57]. Since slate opti-

mization for the full information problem is submodular [83], we have

PI ≥ (1− 1

e1/α
)OPT .

4.3 Preference Elicitation

We now turn our attention to the question of incremental elicitation of voter preferences.

When attempting to find an optimal K-slate with a partial preference profile p, we cannot

guarantee that an optimal slate can be obtained (regardless of whether we resort to greedy

or exact optimization)—specifically, if MMR(p) > 0, no slate can be guaranteed to be

optimal. To improve the quality of the slate, further information must be elicited from

one or more voters. Our goal is to reduce relevant uncertainty, i.e., find those queries that
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have the greatest potential to reduce minimax regret. To do this we adapt the principles

of the single-winner current solution strategy (CSS), introduced in Section 3.3, to work

with slates. We first define CSS in this new context, then provide empirical evaluation

of CSS, both in terms of its the number of queries required to reach solutions with low

minimax regret, and its running time.

The Current Solution Strategy (CSS)

We focus here on pairwise comparison queries, in which some voter ` is asked whether

a �` a′; but the basic principles can be applied to other forms of queries (e.g., top-k

queries, as discussed in Section 3.3). The use of CSS differs depending on whether we

are using the greedy heuristic or optimal MMR computation to determine our K-slates.

We present our approach in the context of greedy MMR computation since it is the more

practical method for problems involving slates of reasonable size. The general principles

can be readily adapted to optimal MMR computation as well.

Our elicitation scheme works by using the greedy algorithm to compute an (approx-

imately) minimax optimal slate a∗p = 〈a∗1, . . . , a∗K〉 given the current partial profile p. If

MR(a∗K ,p|a∗K−1) = 0, we treat this as an (approximately) minimax optimal slate and

stop. Otherwise, we know that MMR(p) > 0, so we select a voter ` and pairwise com-

parison query a �` a′ with the greatest potential to reduce MR(a∗K ,p|a∗K−1), using CSS.

Let a∗K be the last alternative added to the slate and wK be the witness alternative (i.e.,

where MR(a∗K ,p|a∗K−1) = PMR(a∗K , wK ,p|a∗K−1). CSS identifies the appropriate query

(and its potential) for a particular voter i based on several specific cases/sub-cases.

Case 1: Suppose a∗K �` wK . Then `’s contribution PMR` to PMR(a∗K , wK ,p|a∗K−1)

must be PMR` ≤ 0. If PMR` = 0, then either: (i) a∗K is dominated in `’s partial order p`

by some aj ∈ a∗K−1, or (ii) a∗K is not dominated by any such aj. In case (i), no query can

reduce MR(a∗K ,p|a∗K−1) since voter ` would never select either of a∗K or wK given the rest

of the slate a∗K−1, so no query is asked of `. In case (ii), the adversary can set PMR` = 0

by ordering some alternative aj ∈ a∗K−1 over a∗K (if no such alternative were possible,

PMR` would have to be negative). In this case, any query that prevents aj from being

orderable above ak can reduce PMR` (by making it negative). Specifically, any query of

the form b �` c for b ∈ a∗K ∪ {a : a∗K �` a} and c ∈ aj ∪ {a : a �` aj} will suffice. Since

the degree of PMR` is determined by the relationship of a∗K to wK and not the gap with

aj, we choose query a∗K �` aj since it is implied by any other.

If PMR` < 0, then (iii) a∗K dominates each aj ∈ a∗K−1 as well as wK . Queries that

can extend the advantage over the best alternative of w∗ ∈ u`({wK} ∪ a∗K−1) (i.e., make
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PMR` even smaller) take two forms: learning that a∗K �` c for some ancestor c of w∗

(since we do not know w∗, we choose an arbitrary alternative in u`({wK} ∪ a∗K−1)); or

learning that d �` w∗ for some descendant d of a∗K . The query with the greatest potential

is that with the largest number of descendants (resp. ancestors) lying between it and c

(resp. d) in p`.

Case 2: Suppose a∗K 6�` wK . Then `’s contribution PMR` to PMR(a∗K , wk,p|a∗K−1)

must be PMR` ≥ 0. (i) If PMR` = 0, then we must have wK dominated by some

aj ∈ a∗K−1. In this case we ask no query. (ii) If PMR` > 0, then wK is not dominated by

any aj ∈ a∗K (i.e., by none of the K alternatives). Then regret can be reduced only by

asking a query that removes elements from the set B′`(a
∗
K , wK) by either placing wK (or

one of its ancestors) below some aj (it is only necessary to consider those in u`(a
∗
K)); by

placing some aj ∈ u`(a∗K) (or one of its descendants) above wK ; or placing some element

that is incomparable to both a∗K and wK either above wK (hence placing its ancestors

above as well) or below a∗K (hence placing its descendants below as well). In the case

that wK dominates all of a∗K , one can ask queries that either (a) move a descendant d

of wK , where d is not an ancestor of some aj ∈ a∗K , below such an aj; or (b) move an

ancestor c of some aj, where c is not a descendent of wK , above wK . The potential of a

query to reduce PMR` is measured by the number of elements it removes from the set

B′`(a
∗
K , wK).

4.4 Empirical Evaluation

We now describe experiments designed to test the ability of our greedy slate optimization

method, when coupled with the CSS elicitation strategy, to find good (or even optimal)

slates of alternatives with few voter queries. We evaluate the approach on two real

datasets as well as on more systematically generated random data. As in single-winner

problems, we use the Sushi data set and the Irish dataset, and draw profiles of 100 random

users/voters from these sets as described in Section 3.4). In the Sushi experiments we

set the slate size to be K = 3, while in the Irish experiments we set K = 4. We also test

CSS by generating random profiles of 100 voter rankings over 10 alternatives, with voter

rankings drawn i.i.d. from a Mallows distribution, again using the same methodology

as in Section 3.4. In the Mallows experiments, we set K = 3 and analyze elicitation

performance as we vary the dispersion parameter φ.

Experimentally, each instance consists of a full profile. We start each run with no voter

preference information, then, using CSS to generate queries, elicit pairwise comparisons

from voters (who respond accurately based on their underlying preferences). After each
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Figure 4.2: Performance of Greedy/CSS on Sushi (20 trials).
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Figure 4.3: Performance of Greedy/CSS on Irish (20 trials).
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Figure 4.4: Performance of Greedy/CSS on Mallows (20 trials).

query/round, we use the greedy algorithm to compute an (approximately) optimal K-

slate. Elicitation terminates once the conditional max regret (CondMR) of the Kth

alternative added to the slate, MR(a∗K ,p|a∗K−1), is zero. (Note that after each elicitation

round a “fresh” slate is constructed; elicitation is terminated at that round if the Kth

alternative added to the slate at that round has zero conditional max regret.) We also

compare this to the use of exact minimax regret computation at each round of elicitation

to determine the truly optimal K-slate.

Results in Figures 4.2 and 4.3 show performance for the Sushi and Irish datasets.

The plots show, for the slate produced by the Greedy algorithm after each query:

• its conditional max regret (CondMR), i.e., that of the last element added to the

slate;

• its true max regret;

• and one sample standard deviation above and below (dotted lines) its regret values

(results are averaged over 20 randomly drawn profiles).

We also show the performance of CSS when exact MMR is computed and the optimal slate

is generated at each iteration. Finally, we compare CSS with a baseline random strategy



Chapter 4. Optimization and Elicitation for Multi-Choice Problems 74

m K = 2 K = 3 K = 4 K = 6 K = 8
10 0.015 0.020 0.023 0.028 0.033
20 0.105 0.152 0.194 0.275 0.345
30 0.342 0.508 0.642 0.987 1.282
50 1.577 2.042 2.247 4.439 6.344

Table 4.1: Average Greedy runtime (sec.), on random Mallows profiles.

that randomly picks a voter and pairwise comparison query (ensuring this response to

this query is not implied by that voter’s partial ranking, i.e., it is not contained in the

transitive closure of previous responses), using Greedy to compute the slate at each round

and measuring its max regret. Again, a range of one standard deviation is shown.

These plots indicate that that CSS works very well. It finds a slate with zero max

regret “per voter” with only about 20 queries per user in Sushi (resp., 15 in Irish), even

with the relatively large ratio of K to m in each setting (30% and 44%, respectively).

CSS also reaches near-zero regret in about 10 queries (resp., 8) per user; thus, its anytime

profile is very encouraging for settings where approximately optimal solutions are permis-

sible, especially if approximation provides a significant reduction in elicitation burden.

Note that the true regret may be zero even if max regret is not. We contrast the number

of queries needed by CSS with the demands of complete sorting to provide a full rank-

ing, which requires ≈ m log2(m) pairwise comparisons using methods with good average

case performance, or equivalently 34 (resp., 29) queries. Random requires 25 (resp., 22)

queries per user to reach zero regret, and has a much worse anytime profile.

Notice that the greedy algorithm itself works extremely well: it almost always finds

the minimax optimal slate—the MR Greedy and MMR curves coincide almost exactly—

and in the rare cases that it does not, Greedy MR is very close to true MMR. MR may not

decrease monotonically, as preference updates may “mislead” Greedy into choosing an

inferior slate (by contrast, true MMR is non-increasing). CondMR is also a good proxy

for true max regret: in Sushi, the per-voter difference is at most 0.41 and in Irish at most

0.24. Thus, CondMR—which can be computed efficiently—is an excellent surrogate for

MR—which is NP-hard—as a quality measure and a stopping criterion for elicitation.

Mallows results in Figure 4.4 show how the same quantities change as a function of

the total number of queries, for different dispersion values φ. The results show that, un-

surprisingly, more concentrated preference distributions (smaller φ) require fewer queries

to find good slates. This is consistent with results for in single winner voting (see Section

3.4).

Table 4.1 shows wall clock runtimes for Greedy with different values of m (alterna-
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tives) and K (slate size) on a 3.0GHz Intel Xeon processor. Results are averaged over

“complete” CSS elicitation runs (i.e., over all optimizations solved until elicitation reaches

a slate whose CondMR is zero), on random profiles of n = 40 voters drawn from a Mal-

lows distribution with φ = .7. Average runtime increases significantly with the number

of candidates m, but less dramatically with K. This is consistent with the “quadratic

in K” and “cubic in m” computational analysis described above. Still, Greedy is very

practical, taking only 6.3s. to find optimal slates for m = 50 candidates and slates of size

K = 8.

4.5 Conclusion

In multi-winner settings, we extended our approach to deal with proportional represen-

tation schemes. We developed algorithms for both the exact and greedy optimization of

slates with respect to minimax regret. The greedy method is especially practical from a

computational perspective. We provided some theoretical bounds on the performance of

the greedy method, but more importantly demonstrated that it often outputs slates that

are either minimax optimal or very close to optimal. We also adapted the CSS elicitation

heuristic and showed that, when coupled with the greedy slate algorithm (even when

using conditional max regret as surrogate for max regret), it finds very good slates while

asking for relatively little preference information. As with single-winner CSS, it has a

desirable anytime profile.

For future work, we would like to apply the robust optimization and elicitation frame-

work to more multi-winner voting rules. This includes natural rules based on positional

scoring functions, such as selecting a slate of alternatives with the highest number of

approval votes, or taking the top-K candidates ranked by their Borda scores, etc. Such

rules would have a scoring function that is additive with respect to the slates’ alterna-

tives. Determining the optimal slate with a full preference profile with respect to these

voting rules is computational easy. However, algorithms for computing the minimax op-

timal slate might be computational intractable and more involved than the single-winner

case. Nevertheless, developing heuristics, such as greedy algorithms, would be of prac-

tical value. Effective elicitation algorithms may also be subtly different from the CSS

strategy developed in this chapter. As the score of a slate would be additive (as opposed

to a max over each alternative’s score within the slate), the elicitor may require more

preference information before reaching a slate of the same MMR quality.

Another direction is to incorporate probabilistic information of agent preferences to

improve the quality or confidence of the recommended slate. Many multi-winner problems
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appear in recommender systems, and therefore are of practical interest in low-stakes

domains. Because MMR provides robust, worst guarantees, in low-stakes settings one

may not need such stringent guarantees. Using probabilistic models of preferences may

help in the selection of slates that are of high quality/score in expectation (or are of low

regret in expectation). The use of such side information can not only improve estimates of

the true quality of a slate, but also reduce the amount of information that must be elicited

from the agents. Such probabilistic models can also be of use when MMR is the required

solution concept. One can use preference models to guide in the elicitation of preferences.

Such probabilistic information may help identify particular agents that are of a certain

type, then elicitation can proceed to query an agent who would reveal information that

reduces MMR the most in expectation. Before we can use such preference models, we

need to devise algorithms that can learn these models from data. This is the topic of the

following chapter.



Chapter 5

Learning Rankings with Pairwise

Preferences

In this chapter, we focus on developing algorithms for learning mixture models to fit

distributions over rankings—using only pairwise comparison data—a technical challenge

that had been previously unsolved. Having these learned models allows us to tackle a

variety of social choice problems including elicitation, recommendation, prediction, vote

manipulation and the design of optimal social choice rules.

Many existing learning and inference methods impose restrictive assumptions on the

form of user preferences that can be admitted as evidence. We develop the first algorithms

for learning Mallows models (and mixtures thereof) from pairwise comparison data—the

fundamental building blocks of partial orders. At the heart of our technique is a new

algorithm, the generalized repeated insertion model (GRIM), which allows sampling from

arbitrary ranking distributions, and conditional Mallows models in particular. While we

show that sampling from a Mallows model with pairwise evidence is computationally

difficult in general, we develop approximate samplers that are exact for many important

special cases—and have provable bounds with pairwise evidence—and derive algorithms

for evaluating log-likelihood, learning Mallows mixtures, and non-parametric estimation.

Experiments on real-world datasets demonstrate the effectiveness of our approach.

The remainder of this chapter is organized as follows. In Section 5.1 we provide

some background and motivation for the preference learning problem. In Section 5.2

we describe the necessary preliminaries and discuss related work on learning probabilis-

tic preference models. We introduce our main technical tool, the generalized repeated

insertion method (GRIM), in Section 5.4. We show how it can be used to sample from

Mallows mixtures conditioned on incomplete preferences by first defining an approximate,

but direct sampler AMP that is exact for important special cases, and analyzing its com-

77
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putational and statistical properties. We then develop Metropolis and Gibbs sampling

methods that exploit AMP to soundly sample any Mallows or Mallows mixture poste-

rior. In Section 5.5 we develop an EM algorithm for learning a Mallows mixture from

arbitrary pairwise comparison data that leverages our sampling algorithms, and provide

experimental results of this procedure on several real-world data sets in Section 5.6. Sec-

tion 5.7 extends the framework of Lebanon and Mao [79] for non-parametric estimation to

handle evidence in the form of arbitrary ordinal preferences. We conclude in Section 5.8

with a discussion of future directions.

5.1 Motivation

With the abundance of preference data from search engines, review websites, etc., there

is tremendous demand for learning detailed models of user preferences to support per-

sonalized recommendation, information retrieval, social choice, and other applications.

Much work has focused on ordinal preference models and learning user or group rankings

of alternatives. Within this setting, we can distinguish two classes of models. First,

we may wish to learn an underlying objective (or “correct”) ranking from noisy data or

noisy expressions of user preferences (such as in web search, where user selection suggests

relevance), a view adopted frequently in IR and “learning to rank” [21] and occasionally

in social choice [126]. Second, we might assume that users have different types with

inherently distinct preferences, and learn a population model that explains this diversity.

Learning preference types (e.g., by segmenting or clustering the population) is key

to effective personalization and preference elicitation in recommender systems, social

choice, and numerous other domains. For example, with a learned population preference

distribution, choice data obtained from a specific user allows inferences to be drawn about

her unobserved preferences, or preference queries to identified that drive down minimax

regret. In this work, we focus on the latter setting, learning preference distributions when

users have genuinely distinct preferences.

Considerable work in machine learning has exploited ranking models developed in

the statistics and psychometrics literature, such as the Mallows model [87], the Plackett-

Luce model [101, 85], and others [88], as well as their non-parametric representations

[79]. However, most prior research provides methods for learning preference distributions

using very restricted forms of evidence about individual user preferences, whether pas-

sively observed or actively elicited, ranging from complete rankings, to top-t or bottom-t

alternatives, to partitioned preferences [79]. Missing from this list are (sets of) arbi-

trary pairwise comparisons of the form “alternative a is preferred to alternative b.” Such
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pairwise preferences form the building blocks of almost all reasonable evidence about pref-

erences, and subsumes the most general evidential models proposed in the literature. For

instance, top-k preferences (e.g., if a, b, c are the top-3 alternatives) can be represented by

m−1 pairwise comparisons: k−1 comparisons represent the relative ranking of the top-k

alternatives while m−k comparisons are needed for indicating the preference of the k-th

ranked alternative to all other m− k alternatives (e.g., a � b, b � c, c � d, c � e, . . .).1

Furthermore, preferences in this form naturally arise in active elicitation of user pref-

erences and choice contexts (e.g., web search, product comparison, advertisement clicks),

where a user selects one alternative over others in some set [81]. In general, data about

a user’s preferences will often take the form of arbitrary choice sets as is common in web

search, online advertising, product comparison, etc. But none of the prior techniques

and algorithms developed can learn from such choice sets. These preferences can be as

simple as a single pairwise comparison: “I like alternative a better than b,” or as complex

as a set of comparisons: “I like a better than b, c, . . ., and I like z better than y, x, . . .”

In this sense, pairwise comparisons should be viewed as the fundamental building block

of ordinal preference ranking. Of course, ordinal preferences do not capture strength

of preference; but real-valued or scaled preferences (e.g., movie or book ratings) can be

converted to pairwise preferences readily, albeit with some loss of information.

While learning with pairwise preferences is clearly of great importance, it is widely

believed that learning probabilistic models of ordinal preference using pairwise compar-

ison data is impractically difficult (indeed, we show this formally in this chapter). As

a consequence, the Mallows model is often not used in favour of more inference-friendly

models (e.g., Plackett-Luce, which accommodates more general, but still restrictive, pref-

erences [26, 58]). To date, no methods have been proposed for learning from arbitrary

collections of consistent pairwise preferences in any of the commonly used ranking mod-

els in machine learning. We tackle this problem directly by developing techniques for

learning Mallows models, and mixtures thereof, from pairwise preference data.

Our core contribution is the generalized repeated insertion model (GRIM), a new

method for sampling from arbitrary ranking distributions—including conditional Mallows—

that generalizes the repeated insertion method for unconditional sampling of Mallows

models [43]. We show that even evaluating the log-likelihood under a Mallows model

with respect to arbitrary ordinal data is #P-hard, implying that learning will be at least

as difficult. However, we derive another method, which we call AMP, which efficiently,

1One exception to this is information about preferences that involve “disjunctive” constraints. For
instance, a response to the question “What alternative is ranked tth?” cannot be mapped to a set of
pairwise preferences unless the positions t are queried in ascending or descending order (hence inducing
top-t or bottom-t preferences).
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though approximately, samples from any conditional Mallows distribution given arbi-

trary pairwise evidence. Moreover, we show that AMP is exact for important classes of

evidence (including partitioned preferences), and that empirically it provides very close

approximations given general pairwise evidence. We use this sampler as the core of a

Monte Carlo Expectation Maximization (EM) algorithm to learn Mallows mixtures, eval-

uate log-likelihood, and make predictions about missing preferences. We also extend the

non-parametric framework of Lebanon and Mao [79] to handle unrestricted ordinal pref-

erence data. Experiments show our algorithms can effectively learn Mallows mixtures,

with reasonable running time, on datasets with hundreds of alternatives and thousands

of users. Our sampling algorithm can be adapted rather easily to other models as well

(e.g., we show how a simple modification allows sampling from Mallows models with a

weighted Kendall-tau metric).

5.2 Preliminaries

We begin by describing the ordinal preferences (rankings) used in the work, providing

a brief overview of several common probabilistic preference models, with an emphasis

on the Mallows φ-model (and mixtures). We then outline the repeated insertion model

(RIM) [43] for sampling preferences from a Mallows distribution (and draw connections

to older models for sampling rankings proposed by Condorcet, Kemeny and Young). We

also briefly discuss related work on learning probabilistic preference models.

5.2.1 Ordinal Preferences

For an overview of preference relations and partial preferences, see Section 2.1. In this

chapter, we assume that we generally do not have access to the complete preferences of

agents, but only partial information about their rankings (e.g., based on choice behavior,

query responses, etc.). We assume this data has a very general form: for each agent ` we

have a set of revealed pairwise preference comparisons over A, or simply preferences :

v` = {x`1 �` y`1, . . . , x`k` �` y
`
k`
}.

Intuitively, these reflect information about `’s preferences revealed by some process. For

example, this could represent product-ratings data; preference revealed by selection or

purchase of certain items (e.g., web links, products) over others, or responses to survey

data. It could also represent information elicited using a process similar to what is

described in Chapter 3.
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We assume that the transitive closure of v` is acyclic, in other words, the pairwise

comparisons do not collectively contradict one another. Many of the concepts for proba-

bilistic modeling, inference and learning developed in this chapter can be applied mutatis

mutandis to models where revealed preferences are noisy; however, we leave this topic

to future research. Recall that preferences v` are complete if and only if tc(v) is a to-

tal order on A. We let C(v) denote the set of complete preferences (rankings) that are

(consistent) extensions of v, and we let C denote the set of all rankings for some fixed

number of alternatives m. We assume that the observed data from agents or users used

for inference and learning purposes form a partial preference profile.

We briefly recall the discussion in Section 2.1.3 on distances over preferences. Given

ranking σ = σ1σ2 · · · σm and preference v, we denote by d(v, σ) the disagreement between

the two preferences. This is an extension of the Kendall-tau distance that counts the

number of pairwise misorderings with respect to tc(v) and σ. That is, dissimilarity

between a partial preference and a ranking is the number of pairwise disagreements

among the relative ranking of alternatives, i.e., those pairs in v that are misordered

relative to σ. If v is a complete ranking, d(v, σ) is the classic Kendall-tau metric on

rankings. Likewise, s(v, σ) denotes the number of pairwise agreements with respect to

tc(v) and σ.

Arbitrary sets v of pairwise comparisons can be used to model a wide range of realistic

revealed preferences:

• Complete rankings require m − 1 pairwise comparisons (e.g, a1 � a2, a2 � a3,

. . . , am−1 � am), and can be elicited with at most m(m−1)/2 pairwise comparison

queries.

• Top-k preferences [24] require that users provide a complete ranking of their top

k most preferred alternatives. These can be represented using m − 1 pairs: k − 1

comparisons to order the top k alternatives, and m − k pairs to ensure the kth

alternative is ranked above the remaining m−k alternatives. Bottom-k preferences

are similar.

• Complete rankings of subsets X ⊆ A [58, 26] are also representable in the obvious

fashion (requiring k − 1 comparisons if |X| = k).

• Preferences revealed by the choice of an alternative a from X ⊆ A [81] can also

be represented using k − 1 pairs of the form a � b for each b ∈ X \ {a} (where

|X| = k). Sets of such choices are captured in the obvious way.

• Ordinal ratings data: if alternatives are scored on an ordinal scale s (e.g., a scale

of 1–5 where 5 is most preferred), we simply include a � b whenever s(a) > s(b),
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assuming that alternatives with the same rating cannot be compared using the level

of granularity provided.

Much of the existing work in learning or modelling distributions over ordinal prefer-

ences restricts the class of representable preferences. Much work has focused on top-k

preferences [24, 90, 55, 47, 48], and its generalizations [79]; other papers have worked

with rankings of a subset of alternatives [58, 26]. The main issue in allowing arbitrary

consistent collections of pairwise preferences, which can represent all of the above special

cases, is the difficult inference problem that results. The primary aim of this chapter is

to develop tractable inference algorithms for a much broader and realistic class of pref-

erences. Before closing our discussion of ordinal preferences, we define a recently studied

and relatively expressive class of preferences

Definition 18 (Lebanon and Mao [79]). A partial preference v is a partitioned preference

if A can be partitioned into subsets A1, . . . , Aq such that:

(a) for all i < j ≤ q, if x ∈ Ai and y ∈ Aj then x �tc(v) y; and

(b) for each i ≤ q, alternatives in Ai are incomparable under tc(v).

Partitioned preferences are quite general, subsuming some of the special cases above,

including top-t or bottom-t preferences, or ratings data. However, they cannot represent

many naturally occurring preferences, including those as simple as a single pairwise

comparison a � b. We demonstrate in this chapter that our techniques can be applied

effectively to such preferences.

5.2.2 Mallows Models and Sampling Procedures

There are many distributional models of rankings that have been developed in psycho-

metrics, statistics and econometrics to explain choice behavior (Marden [88] provides a

good overview). Two of the more popular in the machine learning community are the

Mallows model [87] and the Plackett-Luce model [101, 85]. We focus on Mallows in this

work, though we believe our methods can also be extended to other models.

5.2.2.1 The Mallows Model

The Mallows φ-model (which we simply call the Mallows model hereafter) is typical of a

wide-range of distance-based ranking models [87, 88]. As above, let d be the Kendall-tau
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distance. The Mallows model is parameterized by a modal or reference ranking σ and a

dispersion parameter φ ∈ (0, 1]. For any ranking r, the Mallows model specifies:

P (r) = P (r |σ, φ) =
1

Z
φd(r,σ) , (5.1)

where Z =
∑

r′∈C φ
d(r′,σ) is the normalization constant. Note the use of the conditional

probability notation, this is only for readability purposes with regards to the distri-

butional parameters, and we assume in this chapter that no prior is placed on model

parameters. It can be shown that

Z = 1 · (1 + φ) · (1 + φ+ φ2) · · · (1 + · · ·+ φm−1). (5.2)

When φ = 1 we obtain the uniform distribution over C (in the social choice literature,

this model is known as impartial culture). As φ → 0, the distribution concentrates

all mass on σ. The model can also be expressed as P (r|σ, λ) = 1
Z

exp(−λd(r, σ)), where

λ = − lnφ ≥ 0. Various extensions and generalizations of this model have been developed

(e.g., using other distance measures) [88].

5.2.2.2 Condorcet’s Decision Problem

We describe a simple sampling procedure proposed by Mallows, Condorcet and further

analyzed by Young, since this will motivate the RIM sampler discussed in Section 5.2.2.3.

Mallows [87] explained his model using process in which a judge assesses alternatives by

repeatedly making pairwise comparisons. The outcome of such a comparison is stochastic

and depends on the reference ranking σ. If x and y are compared and x is preferred

to y in σ, then the judge “correctly” assesses x � y with probability 1 − pxy, and

erroneously assesses y � x with probability pxy < 1/2. Each assessment is independent

of other comparisons. Mallows’ process generated a pairwise comparison for each pair of

alternatives as described: after all paired comparisons are made, if the result is consistent

(i.e., corresponds to a ranking), it is accepted; otherwise the process is repeated. While

the error probability pxy can depend in a fairly general way on their positions in σ, if

pxy = p for all x, y then we obtain the Mallows model.

Such a probabilistic view of rankings was studied two centuries earlier by Nicolas de

Condorcet in the context of collective political decision making [30]. He modeled his view

of the role of government, that of making the “right decisions,” by considering the selec-

tion from a set of choices (e.g., policies), one that maximizes benefit to society. Members

of society, or voters, express their opinion in the form of a ranking over choices. He
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assumed that some (latent) objective ranking orders choices from most to least beneficial

to society and that each voter is able to provide an independent, random assessment of

relative rank of any pair of choices: if a � b, in the objective ranking a voter will assess

that to be the case with probability 1− p, with a error probability less than 1/2. Instead

of studying the probabilistic model per se, Condorcet addressed the decision problem:

how to find the ranking most likely to be correct. For the case of three alternatives, he

proved that the ranking which minimized the total number of pairwise preference dis-

agreements (i.e., Kendall-tau distance) with respect to the stated voter rankings was the

most likely to be correct.

In modern parlance, Condorcet showed how to compute the maximum likelihood es-

timator (MLE) of the objective or reference ranking. Kemeny [71] proposed the Kemeny

ranking as a general method for aggregating noisy voter rankings, extending Condorcet’s

approach to accommodate any number of alternatives. The Kemeny ranking is that

which minimizes the total number of pairwise preference disagreements with the set of

voter rankings, which Kemeny justified axiomatically (showing it to be the only aggre-

gate ranking that satisfies certain intuitive axioms). A statistical rationale for Kemeny’s

approach was provided by Young [126], who extended Condorcet’s analysis, showing that,

for any number of alternatives, under Condorcet’s noise model, the MLE of the reference

ranking is in fact the Kemeny ranking. These two independent threads (Condorcet-

Kemeny-Young and Mallows) can both be viewed as statistical estimation of a noisy

ranking model. We tie these threads together, showing that Condorcet’s noise model for

any number of alternatives corresponds to the Mallows models (which implies, by Young’s

result, that the Kemeny ranking is the MLE for the Mallows model). The Condorcet-

Mallows noisy ranking process can be formalized as follows:

Pairwise Comparison Sampling of Mallows

1. Let σ be the reference ranking and 0 ≤ p ≤ 1/2.

2. Initialize v ← ∅.
3. For each pair of items x, y in A, such that x �σ y,

(a) with probability 1− p add x � y to v,

(b) otherwise add y � x to v.

4. If v is intransitive, go back to step 1 and start over.

5. v is transitive and corresponds to a ranking.

This pairwise comparison process generates rankings in accordance with the Mallows

model (Eq. 5.1), a fact shown by Mallows [87], but which we derive here (since it will be
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instructive below). Consider the following distribution over rankings v.

P ′(v | σ, p) =
1

Z ′

∏
{x,y}⊆A

p if v and σ disagree on x, y

1− p otherwise,
(5.3)

where Z ′ is the normalization constant (i.e., the sum of the probabilities generated by the

above procedure, over all transitive, complete preferences). The form of this distribution

corresponds exactly to the rankings generated. This can be seen by noticing that the

generating procedure independently decides for each pair of alternatives x, y, with a flip

of p-biased coin, whether to order them according to σ. Since intransitive preferences

v are discarded by the procedure, the generating procedure corresponds to P ′. We can

simplify the expression for P ′ to:

P ′(v | σ, p) =
1

Z ′
pd(v,σ)(1− p)s(v,σ)

=
1

Z ′
pd(v,σ)(1− p)(m2 )−d(v,σ)

=
1

Z ′
(1− p)(m2 )

(
p

1− p

)d(v,σ)

(5.4)

By setting φ = p
1−p , recalling the definition of Z (Eq. 5.2), and noticing that

Z ′ = (1− p)(m2 )Z (5.5)

= (1− p)(m2 )
(

1 +
p

1− p

)(
1 +

p

1− p +

(
p

1− p

)2
)
· · · (5.6)(

1 + · · ·+
(

p

1− p

)m−1
)
, (5.7)

we obtain Eq. 5.1. The log-likelihood, given observed complete rankings r1, . . . , rn, is

n∑
`=1

[d(r`, σ) lnφ− lnZ] .

Hence, the MLE ranking is the minimizer of
∑n

`=1 d(r`, σ), namely, the Kemeny ranking.

5.2.2.3 The Repeated Insertion Model

The Condorcet/Mallows sampling procedure for drawing rankings from the Mallows dis-

tribution can be very inefficient, since it relies on rejection of partially constructed rank-
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ings as soon as a single circular triad (a � b � c � a) is drawn. While the original

motivation for these models was not computational, efficient sampling is important for a

variety of inference and learning tasks. Doignon et al. [43] introduce the repeated inser-

tion model (RIM) for the analysis of probabilistic models of approval voting, but which

also provides a much more effective means of sampling from a Mallows distribution.

RIM is a generative process that gives rise to a family of distributions over rankings

and provides a practical way to sample rankings from a Mallows model. The model

assumes some reference ranking σ = σ1σ2 · · ·σm, and insertion probabilities pij for each

i ≤ m, j ≤ i. RIM generates a new output ranking using the following process, proceeding

in m steps. At step 1, σ1 is added to the output ranking. At step 2, σ2 is inserted above σ1

with probability p2,1 and inserted below with probability p2,2 = 1− p2,1. More generally,

at the ith step, the output ranking will be an ordering of σ1, . . . , σi−1 and σi will be

inserted at rank j ≤ i with probability pij. Critically, the insertion probabilities are

independent of the ordering of the previously inserted alternatives.

It is easy to see that one can generate any ranking with the appropriate insertion

positions. As we describe below, Doignon et al. [43] show that one can sample from

a Mallows distribution using RIM with appropriate insertion probabilities. We now

introduce several concepts that can be used to more easily formalize and analyze RIM,

and our subsequent extensions of it.

Definition 19. Let σ = σ1 · · ·σm be a reference ranking. Let an insertion vector be

any positive integer vector j = (j1, . . . , jm) satisfying ji ≤ i,∀i ≤ m; and let I be the set

of such insertion vectors. A repeated insertion function Φσ : I → C maps an insertion

vector j into a ranking Φσ(j) by placing each σi, in turn, into rank ji, for all i ≤ m.

This definition is best illustrated with an example.

Example 2. Consider the insertion vector (1, 1, 2, 3) and reference ranking σ = abcd. In

this case, Φσ(1, 1, 2, 3) = bcda because:

1. we first insert a into rank 1 and obtain ranking a,

2. we then insert b into rank 1, shifting a down to obtain partial ranking ba,

3. we then insert c into rank 2, leaving b in place, but moving a down, obtaining

ranking bca;

4. finally, we insert d at rank 3, giving bcda.

By the same process we obtain Φσ(1, 2, 3, 4) = abcd, and Φσ(1, 1, 1, 1) = dcba.
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Given reference ranking σ, there is a one-to-one correspondence between rankings and

insertion vectors.

Observation 5. For any reference ranking σ, the repeated insertion function Φσ is a

bijection between I and C.

Sampling using RIM can characterized as follows:

Definition 20. The repeated insertion model is a probabilistic model over rankings de-

fined by

• A reference ranking σ

• The repeated insertion function Φσ(j1, . . . , jm)

• A sequence of insertion probabilities piji for i ≤ m, ji ≤ i, such that

i∑
j=1

pij = 1, ∀i ≤ m

A ranking is generated at random by first drawing an insertion vector j = (j1, . . . , jm) ∈ I,

where each ji is drawn independently with probability piji , and then applying the insertion

function Φσ(j).

Let Φ−1
σ (r) = (j′1, . . . , j

′
m). Then the probability of generating a particular ranking

r under RIM is
∏

i≤m pij′i . It is easy to see that the Kendall-tau distance between the

reference ranking and the ranking induced by an insertion vector is the sum of the number

“insertion misorderings” over all alternatives:

Proposition 6. For any insertion vector j = (j1, . . . , jm) ∈ I, we have that

m∑
i=1

i− ji = d(Φσ(j), σ). (5.8)

Proof. Observe that whenever σi is inserted at the jith position, it creates i− ji pairwise

misorderings with respect to alternatives σ1, . . . , σi−1. All pairwise misorderings can be

accounted for this way. Summing over all i ≤ m gives the Kendall-tau distance.

Doignon et al. [43] show that by setting the insertion probabilities pij appropriately,

the resulting generative process corresponds to the Mallows model. We reprove their

Theorem here, since the proof will be instructive later.
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Theorem 11 (Doignon et al. [43]). By setting insertion probabilities

pij =
φi−j

(1 + φ+ · · ·+ φi−1)
,

for j ≤ i ≤ m, the distribution induced by RIM with insertion function Φσ is identical to

that of the Mallows model with reference ranking σ and dispersion parameter φ.

Proof. We reprove the Doignon et al. [43] theorem. Let r be any ranking and σ the

reference ranking of the Mallows model. Let Φ−1
σ (r) = (j1, . . . , jm) be the insertion

ranks. If we multiply the factors φi−ji across i ≤ m this gives φ
∑m
i=1 i−ji = φd(r,σ) by

Proposition 6. This term φd(r,σ) is exactly the proportional probability of r in Mallows.

The denominator of
∏m

i=1 piji is (1 + φ)(1 + φ + φ2) · · · (1 + φ + · · · + φm−1) regardless

of r—this is exactly the normalizing constant in Mallows model. Interestingly, this gives

an alternate proof of the normalization constant in the Mallows model.

Thus RIM offers a simple, useful way to sample rankings from the Mallows model

while maintaining consistent partial rankings at each stage. In contrast to the rejection

sampling approach of Condorcet/Mallows, RIM can be much more effective since it does

not require the rejection of intransitive triads (which may occur with high probability if

φ is large). We summarize the RIM approach from Mallows model:

RIM Sampling of Mallows

1. Let σ = σ1 · · · σm be the reference ranking and φ the dispersion.

2. Start with an empty ranking r.

3. For i = 1..m:

• Insert σi into r at rank position j ≤ i with probability

φi−j/(1 + φ+ · · ·+ φi−1).

RIM has worst-case quadratic running time (required number of draws from a Bernoulli

distribution) when sampling from a Mallows model (this can be explained in much the

same way as the complexity of insertion sort). However, the average-case time complexity

can be much smaller, since insertions at each stage of the algorithm are likely to occur

near the bottom of the partial ranking.

Proposition 7. The expected time complexity of repeated insertion sampling for a Mal-

lows model (σ, φ) is

O

(
min

{
m(1 + φm+1)

1− φ − φ(1− φm)

(1− φ)2
,m2

})
.
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Proof. Suppose we have O(1) access to biased coin flips. The implementation will be as

follows. Place σ1 in the first rank. Then loop for i = 2 to m. Let pij = φi−j/
∑i−1

j′=0 φ
j′ .

Sample a rank position j to insert σi: start with j = i, flip a coin with probability

pij, if success insert at rank j. Otherwise decrease j by 1, flip a coin with probability

pij/(1−
∑

j′>j pij′), if success, insert at rank j, otherwise decrease j by 1 and repeat this

process until j = 1. By the chain rule, the probability of insertion at rank j is exactly

what Mallows model requires. For each σi, when the sampled insertion rank position is

j, it would require at most i − j + 1 coin flips. The expected running time, i.e., total

number of coin flips, if φ < 1, is proportional to

m∑
i=1

∑i−1
j=0(j + 1)φj∑i−1

j=0 φ
j

=
m∑
i=1

1

1− φ − iφ
i

≤ m(1 + φm+1)

1− φ − φ(1− φm)

(1− φ)2
.

This means one can effectively sample in linear time if φ is not too close to 1. If φ = 1,

the expected running time is O(m2).

5.2.2.4 Sampling with Weighted Kendall-tau

To illustrate the flexibility of RIM, we show it can be used to sample from a Mallows

model using a weighted Kendall-tau distance. For two rankings r and σ and insertion

vector j = (j1, . . . , jm) such that Φσ(j) = r, one can define a weighted Kendall-tau distance

[111] with respect to positive weights w = (w1, . . . , wm) as follows

dw(r, σ) =
m∑
i=1

wi(i− ji).

Recall that by Proposition 6, if w = 1 (the all-1 vector), then dw is the standard Kendall-

tau distance. Otherwise, this weighted Kendall-tau is sensitive to the pairwise misorder-

ings of top-ranked alternatives in σ.

One can sample from a Mallows model defined by Pw(r) ∝ exp(−dw(r, σ)) using RIM

as follows. Let φi = exp(−wi) for i ≤ m. If we define the insertion probability of σi at

position ji ≤ i to be
φi−jii

(1 + φi + · · ·+ φi−1
i )

,
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then the probability of generating r is proportional to

exp

(
m∑
i=1

(i− ji) lnφi

)
= exp (−dw(r, σ)) .

5.2.3 A Mallows Mixture Model for Incomplete Preferences

While distributions such as Mallows or its mixture formulation [95] give rise to complete

rankings, there is relatively little work on generative models for partial rankings, and

in particular, models that generate arbitrary (consistent) sets of pairwise comparisons.

We introduce such a generative model in this section upon which to base our subsequent

learning and inference procedures given such pairwise evidence.

A Mallows mixture distribution with K components is parameterized by mixing pro-

portions π = (π1, . . . , πK), reference rankings σ = (σ(1), . . . , σ(K)), and dispersion pa-

rameters φ = (φ1, . . . , φK). Rankings are generated randomly by selecting one of the K

components according to the multinomial distribution with parameters π. We sometimes

represent this with a unit component indicator vector z = (z1, . . . , zK) ∈ {0, 1}K in which

the only entry of z set to 1 is that of the selected component. If zk = 1, then ranking r

is drawn from the Mallows distribution with parameters σ(k), φk.

In our model for partial preferences, we assume that each agent ` possesses a latent

ranking r, where r is drawn from a mixture of Mallows distributions. We obtain the set of

pairwise comparisons for ` by assuming a single additional parameter α which generates

random pairs of alternatives. Intuitively, this reflects a process in which, given `’s latent

ranking r, each pair of alternatives is selected independently with probability α, and `’s

preference for that pair, as dictated by r, is revealed. That is,

P (v | r, α) =

α|v|(1− α)(
m
2 )−|v| if r ∈ C(v),

0 otherwise.
(5.9)

This model reflects the relatively straightforward missing at random assumption [53], in

which there is no correlation among those pairwise preferences that are missing/observed,

nor any between observed pairs and the underlying ranking (e.g., the positions of the ob-

served pairs). The missing at random assumption is not always realistic [89]. We also note

that this model assumes a single global parameter α that indicates the expected degree

of completeness of each agent `’s partial preferences. Allowing agent-specific complete-

ness parameters α` and moving beyond “missing at random” are important directions.

However, this model serves as a reasonable starting point for investigation. Figure 5.1



Chapter 5. Learning Rankings with Pairwise Preferences 91

π

z

r

v

n
σ

φ

α

Figure 5.1: The generative model of partial preferences. Observed data v, a set of pairwise
comparisons, is shaded.

illustrates a graphical model for the entire process. The resulting joint distribution is:

P (v, r, z | π,σ,φ, α) = P (v | r, α)P (r | z,σ,φ)P (z | π). (5.10)

In our basic inference and learning problem, we take the observed data to be a preference

profile v = (v1, . . . , vn) of n agents, and we let Z = (z1, . . . , zn) denote the corresponding

latent component memberships (i.e., zi indicates the mixture component from which vi

is generated).

5.3 Related Work

There is a large literature on ranking in the machine learning, statistics, economics,

and theory of computation communities. It includes a variety of approaches, evaluation

criteria, heuristics and applications, driven by several distinct motivations. In this section

we briefly review two somewhat distinct lines of research.

The first body of work is that on rank aggregation. Roughly speaking, the aim is to

find the best objective ranking given complete or partial observations generated by some

noisy process involving the (latent) objective ranking. For example, such a ranking may

be a ranking of web pages expressing a typical user’s (relative) degree of satisfaction with

the pages. Observed information may consist of feedback, in the form of expert ratings or

user preferences expressed implicitly via web page clicks on a search results page. In other

applications, observed data may include partial rankings (e.g., in political elections), or

pairwise comparisons (e.g., in sports leagues). Given such feedback, the ranking system

will aggregate and optimize some objective function that attempts to capture user or
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population satisfaction such as NDCG—common in the IR field—[22, 119], misordered

pairs [29, 50, 68, 60], binary relevance [1, 108], and objectives from social choice theory

(e.g., Kemeny, Borda rankings). For example, in machine learning, the area of learning to

rank (LETOR) has been a topic of much research since the late 1990s, starting with the

work of Cohen et al. [29]. Research into ranking systems often seeks strong generalization

capabilities, in the sense that it can produce an objective ranking given a previously

unencountered ranking problem using new attributes (e.g., rank web pages given a new

search query). Much of this research has indeed been focused on web ranking applications

(e.g., the Yahoo! Learning To Rank Challenge [21]). Recently Busa-Fekete et al. [23]

have developed active learning algorithms for inferring certain distributional properties

of the Mallows model.

There are also communities in statistics and computational social choice that are

concerned with estimating the maximum likelihood ranking under some distributional

assumptions. Often such models—for example, the Mallows and Plackett-Luce models

discussed above—assume a central, modal or reference objective ranking at which the

distribution is peaked. A fundamental problem is estimation of this objective ranking

from a collection of ordinal preference data. For example, the Kemeny ranking can be

interpreted as a maximum likelihood estimate of the modal ranking in a Mallows model

[126]. Other such interpretations of common rank aggregation rules also exist [33, 37].

The above perspective, that of computing an objective ranking, applies to many situ-

ations (e.g., one would expect the ranking of web pages for a search query in “norovirus

symptoms” to be objectively stable, since users will largely agree the informativeness of

retrieved web pages). However, in many settings this is entirely inappropriate. When a

group of individuals plans an activity together, such as going to a restaurant for dinner,

the ranking of restaurants should clearly depend on the personal tastes and preferences of

the individuals involved. In such cases, a distribution over a population’s subjective pref-

erences better reflects reality. A second, growing, body of work aims to assess (individual

or aggregate/group) rankings of options, or decisions, by explicitly using, modelling or

reasoning about the diversity of user preferences. This is a more general problem than

that of objective rank aggregation. For example, the Netflix collaborative filtering com-

petition has initiated much research on predicting a user’s movie ratings given the ratings

for other movies, including their own and those of other users. Other relevant research on

such ranking work includes label ranking [64], which seeks to aggregate sparse preference

data of “similar users” into personalized preferences.

In recent years there has been growing interest in applying probabilistic models of

preferences from statistics, psychometrics, and econometrics to model a population’s
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preferences. This is the context in which our work is situated. We focus on learning

such preference distributions, including multimodal distributions over preferences where

each mode (cluster) corresponds to a “sub-type” within the population. Much recent

research has focused on using the single-peaked Mallows model as a basis for multimodal

mixture distributions. One of the first papers to propose an algorithm for learning

Mallows mixtures is that of Murphy and Martin [95]. Their method assumes that training

data takes the form of complete preference rankings (individual preferences), and has a

running time that is factorial in the number of alternatives. Busse et al. [24] develop a

tractable EM algorithm for Mallows mixtures where preferences are restricted to be of

the top-t type. A recent extension by Meila and Chen [90] of Mallows mixtures allows

for a Bayesian treatment in choosing the number of components using Dirichlet process

mixtures, and offers experiments on considerably larger datasets. Recent work has also

studied fitting temporal mixture models (a variation on the Bradley-Terry model) using

EM [49].

Aside from mixture models, Lebanon and Mao [79] propose a non-parametric kernel

density estimator for rankings, which places a “smooth Mallows bump” on each training

preference. They derive an efficiently computable, closed-form formula for the evaluation

of the estimator. However, they restrict their training data to partitioned preferences

(see above), a more general concept than top-t rankings, but significantly less expressive

than arbitrary pairwise comparisons. In contrast to our work, they do not address how

to learn the kernel bandwidth parameter (see Section 5.7 for further discussion). There

has been recent work on sampling algorithms for rankings that shares some similarities

with the GRIM algorithm we develop here. This includes a sampling algorithm based

on a generalization of the Plackett-Luce model [120], inspired by bipartite matching

problems that occur in certain application domains. Biernacki and Jacques [9] propose

a noisy insertion-sort model of rankings and develop EM algorithms for estimating its

parameters. This is related to RIM but with some minor differences. However, none of

this work addresses the question of sampling from a posterior distribution given partial

preferences as evidence.

Apart from the Mallows model, the Plackett-Luce model has also been popular as

a representation of preferences. Recent work on learning and inference with this model

includes: an approach to Bayesian inference of the modal ranking [58], but where training

preferences are limited to ranking of all of alternatives in some subset of alternatives; and

a method for learning a mixture model given top-k preferences [56], with application to

political voting data.

Huang and Guestrin [61] develop the riffle independence model, which partitions a
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set of alternatives into two sets: a ranking of each set is generated stochastically (and

independently); then a stochastic process is used to interleave or “riffle” the two resulting

rankings to produce a combined ranking. The model can applied hierarchically, with the

same process used to generate the required subrankings. Huang et al. [63] show that

inference in this model is tractable for certain classes of observations. Of particular

note is that fact that conditioning on partitioned preferences (which they term “partial

ranking observations”) can be accomplished efficiently.

5.4 Generalized Repeated Insertion Model

Our ultimate goal is to support effective learning and inference with Mallows models

(and by extension, Mallows mixtures) given observed data or evidence in the form of

partial preference profiles consisting of arbitrary pairwise comparisons. Sampling is, of

course, an important aspect of this. The rejection sampling models discussed above

can obviously be extended to accommodate pairwise observations, but are likely to be

extremely inefficient. By contrast, while RIM provides a powerful tool for sampling from

Mallows models (and mixtures), it samples unconditionally, without allowing for (direct)

conditioning on evidence. In this section, we describe and analyze a generalized version

of the RIM technique that permits conditioning at each insertion step. In fact, our

generalized repeated insertion model (GRIM) can be used to sample from arbitrary rank

distributions. We begin in Section 5.4.1 by describing GRIM in this general, abstract

fashion. The primary focus of our theoretical and computational analysis will focus on

its use for Mallows distributions.

5.4.1 Sampling from Arbitrary Ranking Distributions

We first present the generalized repeated insertion model (GRIM) abstractly as a means

of sampling from any distribution over rankings. GRIM is based on a relatively simple

insight, namely, that the chain rule allows us to represent any distribution over rankings in

a concise way, as long as we admit dependencies in our insertion probabilities. Specifically,

we allow the insertion probabilities for any alternative σi in the reference ranking to be

conditioned on the ordering of the previously inserted alternatives (σ1, . . . , σi−1).

Let Q be any distribution over rankings and σ an (arbitrary) reference ranking. Recall

that we can (uniquely) represent any ranking r ∈ C using σ and an insertion vector

jr = (jr1 , . . . , j
r
m) ∈ I, where r = Φσ(jr). Thus Q can be represented by a distribution Q′

over the space I of insertion vectors, i.e., Q′(jr) = Q(r). Similarly, for k < m, any partial
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ranking r[k] = (r1, . . . , rk) of the alternatives S = {σ1, . . . , σk}, can be represented by a

partial insertion vector j[k] = (jr1 , . . . , j
r
k). Letting

Q(r[k]) =
∑
r′∈C

Q(r′) · 1[r1 � r2 � · · · � rk = r′|S]

and

Q′(j[k]) =
∑
j′∈I

Q′(j′) · 1[j′[k] = j[k]],

we have Q′(j[k]) = Q(r[k]). We define conditional insertion probabilities

pij | j[i−1] = Q′(ji = j | j[i− 1]). (5.11)

This denotes the probability with which the ith alternative σi in the reference ranking

is inserted at position j ≤ i, conditioned on the specific insertions (jr1 , . . . , j
r
i−1) of all

previous alternatives. By the chain rule, we have

Q′(j) = Q′(jm|j[m− 1])Q′(jm−1|j[m− 2]) · · ·Q′(j[1]).

Suppose we apply RIM with conditional insertion probabilities pij|j[i−1] defined above;

that is, we draw random insertion vectors j by sampling j1 through jm, in turn, but with

each conditioned on the previously sampled components. The chain rule ensures that

the resulting insertion vector is sampled from the distribution Q′. Hence the induced

distribution over rankings r = Φσ(j) is Q. We call the aforementioned procedure the

generalized repeated insertion model (GRIM). Based on the arguments above, we have:

Theorem 12. Let Q be any ranking distribution and σ a reference ranking. For any

r ∈ C, with insertion vector jr (i.e., r = Φσ(jr)), GRIM, using the insertion probabilities

in Eq. 5.11, generates insertion vector jr with probability Q′(jr) = Q(r).

For instance, GRIM can be used to sample from a (conditional) Mallows model given

evidence in the form of pairwise comparisons, as shown in the following example.

Example 3. We illustrate GRIM using a simple example, sampling from a (conditional)

Mallows model over A = {a, b, c}, with dispersion φ, given evidence v = {a � c}.
Table 5.1 shows describes the steps in the process.

The resulting ranking distribution Q is given by the product of the conditional insertion

probabilities: Q(abc) = 1/(1 + φ)2; Q(acb) = φ/(1 + φ)2; and Q(bac) = φ/(1 + φ). As

required, Q(r) = 0 if and only if r is inconsistent with evidence v.
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Insert a, b Insert c given ab Insert c given ba
r Insertion Prob. r Insertion Prob. r Insertion Prob.
a P (ja=1)=1 cab P (jc=1)= 0 cba P (jc=1)=0

ab P (jb=1)= 1
1+φ

acb P (jc=2)= φ
1+φ

bca P (jc=2)=0

ba P (jb=2)= φ
1+φ

abc P (jc=3)= 1
1+φ

bac P (jc=3)=1

Table 5.1: Example of using GRIM to sample from a conditional Mallows model.

5.4.2 Sampling from Mallows Posteriors

We now develop and analyze several techniques for sampling from (mixtures of) Mallows

models given partial preference profiles as evidence. We use the term Mallows posterior

to refer to the conditional distribution that arises from incorporating evidence—in the

form of a set of pairwise comparisons—into a known Mallows model. This is the primary

inference task facing a system making predictions about a specific user’s preferences given

pairwise evidence from that user, assuming a reasonably stable population model. This

stands in contrast to the more general problem of learning the parameters of a Mallows

model (a problem we address in Section 5.5).

5.4.2.1 Intractability of Sampling

One key difficulty with enabling inference conditioned on pairwise comparisons is the in-

tractability of the posterior. In the above model (Eq. 5.10), where agent `’s incomplete

preference v` is observed, it is intractable to work with the posterior P (r, z|v`,π,σ,φ, α)

even when the mixture model has a single component, a fact we prove below. One

typical approach is to rely on sampling to estimate the posterior. To this end, we de-

velop a polynomial-time posterior sampling algorithm based on GRIM, but relying on

approximation of the relevant conditional insertion probabilities.

While GRIM allows sampling from arbitrary distributions over rankings, as presented

above it is largely a theoretical device, since it requires inference to compute the required

conditional probabilities. Thus to use GRIM to sample from a Mallows posterior, given

arbitrary pairwise comparisons v, we must first derive these required terms. The Mallows

posterior is given by:

Pv(r) = P (r | v) =
φd(r,σ)∑

r′∈C(v) φ
d(r′,σ)

· 1[r ∈ C(v)], (5.12)

which requires summing over an intractable number of rankings to compute the normal-

ization constant.



Chapter 5. Learning Rankings with Pairwise Preferences 97

We could use RIM for rejection sampling: sample unconditional insertion ranks, and

reject a ranking at any stage if it is inconsistent with v. However, this is impractical

because of the high probability of rejection. One can also modify the pairwise compar-

ison sampling model (see Section 5.2.2.2) to reject inconsistent pairwise comparisons.

However, if |v| is small relative to m, then for values of φ that are not too small, the

probability of rejection is very high. For instance, if φ is close to 1, m = 120 and 30

alternatives appear in v, any three alternatives the probability of a cyclic triad for any

triple (e.g., a � b, b � c, c � a) is ≈ 1/4. The 90 alternatives unconstrained by v can

be divided into 30 groups of 3 alternatives, hence the probability that a cycle occurs

among at least one triad is at least 1 − (3/4)30 ≈ 0.9998. This is a lower bound on the

probability of rejection, showing rejection sampling to be impractical in many settings.

The main obstacle to using GRIM for sampling is computation of the insertion prob-

abilities of a specific alternative given the inserted positions all previous alternatives, as

given by Eq. 5.11, when Q′ (more precisely, the corresponding Q) is the Mallows poste-

rior. This essentially involves computing a high-order marginal over rankings, and turns

out to be #P-hard, even with a uniform distribution over C(v). The following result on

the complexity of counting linear extensions of a partial order will be useful below:

Theorem 13 (Brightwell and Winkler [20]). Given a partial order v, computing the

number of linear extensions of v, that is |C(v)|, is #P-complete.

To show that computing a function f(x) is #P-hard for input x, it is sufficient to

show that a #P-complete problem can be reduced to it in polynomial time.

Proposition 8. Given v, a reference ordering σ, a partial ranking r1 · · · ri−1 over σ1, . . . , σi−1,

and j ≤ i, computing the probability of inserting σi at rank j with respect to the uniform

Mallows posterior P (i.e., computing P (r) ∝ 1[r ∈ C(v)]) is #P-hard.

Proof. We reduce the problem of counting the number of linear extensions of incom-

plete preferences v, which is a #P-complete problem, to that of computing the de-

sired insertion probabilities, showing the problem to be #P-hard. Given v, notice

that any r = r1 . . . rm ∈ C(v) has a uniform posterior probability of 1/|C(v)|. Let

Φ−1
σ (r) = (j1, . . . , jm). Assume the existence of an algorithm f to compute the required

insertion probabilities. We can use it to solve the counting problem as follows: we use

f to compute piji = Pr(insert σi at rank ji | r|{σ1,...,σi−1}) with partial order v for each

i ∈ {2, . . . ,m} (i.e., m − 1 applications of f). By Theorem 12, we know the posterior

probability of r is 1/|C(v)| = ∏i piji ; thus we can compute |C(v)| by inverting the product

of the insertion probabilities. Note that this reduction can be computed in polynomial
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b a d c

e

l5 = 2 h5 = 3
v = {b � e, e � d}

Figure 5.2: Valid insertion ranks for e are {l5, . . . , h5} = {2, 3} given previous insertions
and constraints v.

time: we can construct any r ∈ C(v) by using a topological sort algorithm, and we require

only m− 1 calls to the algorithm insertion algorithm f .

This suggests it is hard to sample exactly, and that computing the normalization

constant in a Mallows posterior is difficult. This would also imply a computational

complexity obstacle in the work on non-parametric estimators with a Mallows kernel [79]

for an arbitrary set of pairwise comparisons. Nevertheless we develop an approximate

sampler AMP that is computationally very efficient. While its approximation quality

can be quite poor in the worst-case, we see below that, empirically, it produces excellent

posterior approximations. We also derive bounds that delineate circumstances under

which it will provide approximations with low error.

5.4.2.2 AMP: An Approximate Sampler

AMP is based on the same intuitions as those illustrated in Example 3, where instead

of computing the correct insertion probabilities, we use the (unconditional) insertion

probabilities used by RIM, but subject to constraints imposed by v. First, we compute

the transitive closure tc(v) of v. Then we use a modified repeated insertion procedure

where at each step, the alternative being inserted can only be placed in positions that do

not contradict tc(v). We can show that the valid insertion positions for any alternative,

given v, form a contiguous region of the ranking (see Figure 5.2 for an illustration).

Proposition 9. Given partial preference v, let the insertion of i−1 alternatives σ1, . . . , σi−1

induce a ranking r1 · · · ri−1 that is consistent with tc(v). Let Li = {i′ < i|ri′ �tc(v) σi}
and Hi = {i′ < i|ri′ ≺tc(v) σi}. Then inserting σi at rank j is consistent with tc(v) if and
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Algorithm 3 AMP Approximate Mallows Posterior

Input: v, σ, φ
1: r ← σ1

2: for i = 2..m do
3: Calculate li and hi from Eq. 5.13 and 5.14.
4: Insert σi in r at rank j ∈ {li, . . . , hi} with probability φi−j∑

li≤j′≤hi
φi−j′

.

5: end for
Output: r

only if li ≤ j ≤ hi, where

li =

1 if Li = ∅
max(i′ ∈ Li) + 1 otherwise,

(5.13)

hi =

i if Hi = ∅
min(i′ ∈ Hi) otherwise.

(5.14)

Proof. Inserting σi at any rank position less than li is impossible since either li = 1 (we

can’t insert in rank 0) or σi lies above rli , which contradicts the requirement imposed by

tc(v) that rli must be ranked higher. A similar argument can be made for inserting in

rank below hi since rhi needs to be below σi. Finally, inserting into any rank in {li, . . . , hi}
does not violate tc(v) since the alternative will be inserted below all alternatives that

must precede it in tc(v) and all alternatives that must succeed it.

Proposition 9 immediately suggests an implementation of the GRIM algorithm, AMP,

for approximate sampling of the Mallows posterior—AMP is outlined in Alg. 3. It first

initializes ranking r with σ1 at rank 1. Then for each i = 2 . . .m, it computes li, hi

and inserts σi at rank j ∈ {li, . . . , hi} with probability proportional to φi−j. Note that

tc(v), which is required as part of the algorithm, can be computed via a modified depth-

first search. AMP induces a sampling distribution P̂v that does not match the posterior

Pv exactly: indeed the KL-divergence between the two can be severe, as the following

example shows.

Example 4. Let A = {a1, . . . am} and v = a2 � a3 � · · · � am. Let P be the uniform

Mallows prior (φ = 1) with σ = a1 · · · am. There are m rankings in C(v), one ranking

ri for each placement of a1 into rank position 1 ≤ i ≤ m. That is, r1 = a1a2 · · · am and

ri = a2 · · · aia1ai+1 · · · am for i ≥ 2. The true Mallows posterior Pv is uniform over C(v).

But AMP induces an approximation with P̂v(ri) = 2−i for i ≤ m−1 and P̂v(rm) = 2−m−1.

To see this, note that to construct ri, AMP would need to insert alternatives a2, . . . , ai
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successively, each with probability 1/2, above a1. Then ai+1 must be inserted below

a1 with probability 1/2, and finally the remaining alternatives ai+2, . . . , am can only be

inserted at the bottom (with probability 1). Hence, the KL-divergence between Pv and

P̂v is

KL(Pv||P̂v) =
m∑
i=1

Pv(ri) log2

(
Pv(ri)

P̂v(ri)

)

=

[
m−1∑
i=1

1

m
log2

1/m

2−i

]
+

1

m
log2

1/m

2−m+1

= 1− 1

m
+
m− 1

2
− log2m .

5.4.2.3 Statistical Properties of AMP

Example 4 shows that AMP may provide poor approximations in the worst-case; however

we will see below (Section 5.6) that it performs very well in practice. We can also prove

interesting properties, and provide theoretical guarantees of exact sampling in important

special cases.

We first observe that AMP always produces a valid ranking; in other words, valid

insertion positions always exist given any consistent v.

Proposition 10. For all i ≥ 2 and all rankings of alternatives σ1, . . . , σi−1 that is con-

sistent with v, we have that li ≤ hi, where li and hi are defined in Eq. 5.13 and 5.14,

respectively. That is, AMP always has a position at which to insert alternative σi.

Proof. Let r be a ranking of σ1, . . . , σi−1 consistent with v. Let x be the lowest ranking

alternative in r such that x �tc(v) σi and y the highest-ranked alternative in r with

y ≺tc(v) σi. By transitivity, x �tc(v) y. Now if hi < li (as defined in terms of r) this

implies y �r x, but this contradicts the assumption that r is consistent with v.

Furthermore, the approximate posterior has the same support as the true posterior:

Proposition 11. The support of the distribution over rankings as defined by AMP is

equal to C(v) which is equal to the support of the Mallows posterior as given in Eq. 5.12.

Proof. By Proposition 9, the algorithm never violates the constraints in tc(v), and

by Proposition 10, it will always have at least one valid insertion position. Hence

the algorithm always outputs a ranking consistent with v. Now, let r ∈ C(v) and

Φ−1
σ (r) = (j1, . . . , jm) be its corresponding insertion vector. We show that for all i ≤ m,

ji ∈ {li, . . . , hi}. If this is not true, then there exists a smallest i′ ≤ m such that
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ji′ /∈ {li′ , . . . , hi′} (note i′ ≥ 2 since the first alternative is always inserted at the first

position). However, Proposition 9 asserts that this insertion rank would lead to a ranking

inconsistent with v—so this is not possible. Since AMP places positive probability on

any insertion position in {li, . . . , hi} then r has positive probability under AMP.

Proposition 12. For any r ∈ C(v), the probability AMP will output r is

P̂v(r) =
φd(r,σ)∏m

i=1(φi−hi + φi−hi+1 + · · ·+ φi−li)
. (5.15)

Proof. Let Φ−1
σ (r) = (j1, . . . , jm) be the insertion ranks. We have already established in

Proposition 11 that AMP puts positive probability on these valid insertion ranks. In fact

the probability of r under the algorithm (see Alg. 3) is

m∏
i=1

φi−ji

(φi−li + φi−li−1 + · · ·+ φi−hi)
=

φ
∑m
i=1 i−ji∏m

i=1(φi−li + φi−li−1 + · · ·+ φi−hi)

=
φd(r,σ)∏m

i=1(φi−li + φi−li−1 + · · ·+ φi−hi)
,

where the last equality comes from Proposition 6.

Using this result we can show that if v lies in the class of partitioned preferences,

AMP’s induced distribution is exactly the Mallows posterior:

Proposition 13 (Lebanon and Mao [79]). Let σ be a reference ranking. Let v be a parti-

tioned preference (see Definition 18) with partition A1, . . . , Aq of A. Let δ = |{(x, y)|y �σ
x, x ∈ Ai, y ∈ Aj, i, j ∈ [q], i < j}|, which is the number of pairs of alternatives, that span

different subsets of the partition, that are misordered with respect to σ. Then

δ =

q−1∑
i=1

∑
x∈Ai

q∑
j=i+1

∑
y∈Aj

1[y �σ x], (5.16)

∑
r∈C(v)

φd(r,σ) = φδ
q∏
i=1

|Ai|∏
j=1

(1 + φ+ φ2 + · · ·+ φj−1). (5.17)

Notice that Eq. 5.17 represents the normalization constant in Mallows posterior. The

intuition underlying Eq. 5.17 is that, for any r ∈ C(v), the misorderings contributed by

alternatives that span two subsets, as given by δ, are the same (hence the leading factor)

whereas within a subset Ai alternatives can be ordered arbitrarily (hence the product of

normalization constants for |Ai|).
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Proposition 14. Given a partitioned preference v, the distribution induced by AMP, P̂v,

is equal to the true Mallows posterior Pv.

Proof. Since the numerator in Eq. 5.15 (which denotes the probability that AMP outputs

r) is the same as the proportional probability of the Mallows posterior, it is sufficient

to show that the denominator in Eq. 5.15 equals the Mallows posterior normalization

constant given by Eq. 5.17. Suppose σ = σ1 · · ·σm. Let v be a partitioned preference

A1, . . . , Aq. Consider alternatives in Ai such that σ|Ai = σt1σt2 · · · σt|Ai| (i.e., the ranking

of alternatives in Ai according to σ). For any k ∈ {1, . . . , |Ai|}, suppose alternatives

A′ = {σ1, . . . , σtk−1} are inserted. The structure of the resulting ranking is as follows: the

alternatives (A1∪A2∪· · ·∪Ai−1)∩A′ must lie at the top of the ranking; the alternatives

Ai ∩ A′ = {σt1 , . . . , σtk−1
} are in the middle; and Btk = (Ai+1 ∪ · · · ∪ Aq) ∩ A′ are at

bottom. When inserting σtk at rank j, we have j ∈ {ltk , . . . , htk}, where htk = tk − |Btk |
and ltk = htk − |Ai ∩ A′| = tk − (k − 1) − |Btk |. Hence σtk is inserted at rank j with

probability
φtk−j

φtk−htk + · · ·+ φtk−ltk
=

φtk−j

φ|Btk | + · · ·φk−1+|Btk |
.

The denominator can be written φ|Btk |(1 + · · · + φk−1). Observe that Btk consists of

all alternatives from A′ that are above σtk in σ, but are below it in v (since all such

alternatives belong to Ai+1 ∪ · · · ∪Aq). So
∑|Ai|

k=1 |Btk | is the total number of pairs (x, y),

where x ∈ Ai and y ∈ Ai+1 ∪ · · · ∪ Aq, that are misordered with respect to σ. Thus

inserting alternatives in Ai contributes a factor of

|Ai|∏
k=1

φ|Btk |(1 + · · ·+ φk−1) = φ
∑
x∈Ai

∑q
j=i+1

∑
y∈Aj

1[y�σx]
|Ai|∏
k=1

(1 + · · ·+ φk−1)

to the denominator in Eq. 5.15. Once all alternatives have been inserted, the denominator

becomes:

φ
∑q
i=1

∑
x∈Ai

∑q
j=i+1

∑
y∈Aj

1[y�σx]
q∏
i=1

|Ai|∏
k=1

(1 + · · ·+ φk−1).

This is exactly the Mallows posterior normalization constant in Eq. 5.17.

As a consequence, AMP provides exact sampling in the case of partitioned preferences,

In general, this is not the case with arbitrary partial preferences (pairwise comparisons).

We now derive bounds on the relative error of AMP’s posterior, bounding the ratio be-

tween the sample probability of an arbitrary ranking r for AMP and the true posterior

probability. The main technical challenge is deriving a bound on the Mallows poste-

rior normalization constant. We can obtain an upper bound by exploiting the pairwise
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comparison interpretation of the Mallows model (see Section 5.2.2.2).

Theorem 14 (Upper Bound on Normalization Constant). Let σ be a reference ranking,

φ ∈ (0, 1] and v a preference. The Mallows posterior normalization constant is upper

bounded by ∑
r∈C(v)

φd(r,σ) ≤ φd(v,σ)(1 + φ)(
m
2 )−d(v,σ)−s(v,σ). (5.18)

Proof. The LHS of Eq. 5.18 can be written in terms Eq. 5.3, by setting φ = p/(1 − p)
(see Section 5.2.2.2 for derivations of the pairwise comparison interpretation of Mallows)

as follows:∑
r∈C(v)

φd(r,σ) = Z ·
∑
r∈C(v)

P (r|σ, p) (5.19)

= Z · 1

Z ′

∑
r∈C(v)

∏
{x,y}⊆A

p if r and σ disagree on x, y

1− p otherwise,

where p = φ/(1 + φ), Z ′ is given by Eq. 5.5 and Z is given by Eq. 5.2, thus the constant

in front simplifies to 1/(1 − p)(
m
2 ). Since r must be consistent with v, if x and y are

comparable under v, then r must be agree with v on (x, y), i.e., if x �tc(v) y then x �r y.

So

P (r|σ, p) =
1

Z ′
pd(v,σ)(1− p)s(v,σ)

∏
{x,y}/∈tc(v)

p if r and σ disagree on x, y

1− p otherwise.

Hence, since C(v) is contained in the set of all intransitive relations on A that is consistent

with comparisons in tc(v), we must have (for k =
(
m
2

)
− d(v, σ)− s(v, σ))

∑
r∈C(v)

P (r|σ, p) ≤ 1

Z ′
pd(v,σ)(1− p)s(v,σ)

∑
z∈{0,1}k

k∏
i=1

pzi(1− p)1−zi ,

=
1

Z ′
pd(v,σ)(1− p)s(v,σ).

Z ·
∑
r∈C(v)

P (r|σ, p) ≤ 1

(1− p)(m2 )
pd(v,σ)(1− p)s(v,σ). (5.20)

Combining Eq. 5.20 with Eq. 5.19, and noting that p = φ/(1+φ), we obtain Eq. 5.18.

Eq. 5.18 tells us if d(v, σ) increases (i.e., v increasingly disagrees with σ), then the

first factor dominates and upper bound gets smaller—this reflects our natural intuitions



Chapter 5. Learning Rankings with Pairwise Preferences 104

since the set C(v) gets “further away” from reference ranking σ and hence its probability

mass is small. We also see that if |tc(v)| is small, then d(v, σ) + s(v, σ) is small and the

upper bound increases since the second factor dominates. This too makes sense because

C(v) is large and has greater probability mass. If s(v, σ) is large, more constraints are

placed on v, hence Pr[C(v)] is smaller, and likewise the upper bound decreases. The

following example illustrates that this bound may be quite loose in some cases, but tight

in others.

Example 5. Consider again the partial ranking evidence from Example 4, where v =

a2 � · · · � am, the alternatives are {a1, . . . , am}, and our reference ranking is σ =

a1a2 · · · am. Recall that there are m rankings in C(v), one ranking ri for each placement

of a1 into rank position i. Now the term on the LHS of Eq. 5.18, i.e., the true value of

the normalization constant, is

m∑
i=1

φd(ri,σ) = 1 + φ+ φ2 + · · ·+ φm.

Note that d(v, σ) = 0 and s(v, σ) =
(
m−1

2

)
since all pairwise comparisons in tc(v) agree

with σ. Thus, the term on the RHS of Eq. 5.18, i.e., the upper bound is

φ0(1 + φ)(
m
2 )−0−(m−1

2 ) = (1 + φ)m−1.

This upper bound on the normalization constant gets tight as φ → 0, but becomes

exponentially loose in m as φ→ 1.

Before we derive a lower bound, we introduce some notions from order theory.

Definition 21. Let v be a partial preference. An anti-chain of v is a subset X of A such

that for every x, y ∈ X they are incomparable under tc(v). A maximum anti-chain is an

anti-chain whose size is at least the size of any anti-chain. The width of v, w(v) is the

size of a maximum anti-chain of v.

Theorem 15 (Lower Bound on Normalization Constant). Let σ be a reference ranking,

and φ ∈ (0, 1]. Let X be a maximum anti-chain of v, Y = {a ∈ A\X | ∃x ∈ X, a �tc(v) x}
and Z = A\(X ∪Y ). Let δ = |{(x, y)|x ∈ X, y ∈ Y, x �σ y}|+ |{(y, z)|y ∈ Y, z ∈ Z, z �σ
y}|+ |{(x, z)|x ∈ X, z ∈ Z, z �σ x}|. Denote by tc(v)|Y and tc(v)|Z the transitive closure

of v restricted to the subsets Y and Z, respectively. Also let C(tc(v)|Y ) denote those
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rankings over Y that are consistent with tc(v)|Y , and similarly for C(tc(v)|Z). We have,

∑
r∈C(v)

φd(r,σ) ≥ φδ

 ∑
r∈C(tc(v)|Y )

φd(r,σ|Y )

 ∑
r∈C(tc(v)|Z)

φd(r,σ|Z)

 w(v)∏
i=1

i−1∑
j=0

φj (5.21)

Proof. We first show that Z ′ = {a ∈ A\X | ∃x ∈ X, x �tc(v) a} = Z. If a ∈ A\X does

not belong to Y then it must be comparable to at least one element in x ∈ X otherwise

we can add it to Y and obtain a larger anti-chain. Hence, since a is not in Y , then

x �tc(v) a. Also, note that if a ∈ Y then a /∈ Z ′. This is because if a belonged to both Y

and Z, then there exists x1, x2 ∈ X such that x1 �tc(v) a and a �tc(v) x2 this would mean

x1 �tc(v) x2 which contradicts the anti-chain property of X. For a particular alternative

in X, alternatives in Y are either incomparable to it or must be preferred to it, similarly

alternatives in Z are either incomparable or must be dis-preferred to it.

This also implies no alternative in Z can be preferred over alternatives in Y since

if this were to happen, i.e., if z �tc(v) y where z ∈ Z, y ∈ Y , then ∃x ∈ X such that

y �tc(v) x, this implies z �tc(v) x which is impossible from the above observation that

Z ∩ Y = ∅.
Consider all rankings C̃(v) where we place alternatives of Y at the top, X in the

middle and Z at the bottom. Within Y and Z we rank alternatives respecting tc(v) and

since X is an anti-chain, rank these alternatives without restrictions. That is

C̃(v) = {r|∀y ∈ Y, x ∈ X, z ∈ Z, y �r x, x �r z, r|Y ∈ C(tc(v)|Y ), r|Z ∈ C(tc(v)|Z)}.

Now we argue C̃(v) ⊆ C(v). Note that we satisfy preference constraints when ranking

within Y , X and Z. Also as we showed above, alternatives in Y are never dis-preferred

to alternatives in X or Z and alternatives in X are never dis-preferred to alternatives in

Z.

For the lower bound, first observe if r ∈ C̃(v) then d(r, σ) = d(r|Y , σ|Y )+d(r|X , σ|X)+

d(r|Z , σ|Z) + δ where δ is defined in the theorem as the number of misorderings of alter-

natives across X, Y, Z, which is independent of r. Hence,

∑
r∈C(v)

φd(r,σ) ≥
∑
r∈C̃(v)

φd(r,σ) = φδ

 ∑
r∈C(tc(v)|Y )

φd(r,σ|Y )


 ∑
r∈C(tc(v)|X)

φd(r,σ|X)

 ∑
r∈C(tc(v)|Z)

φd(r,σ|Z)

 .
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Finally, it can be seen that the sum inside the third factor is exactly the normalization

constant of an unconstrained Mallows model with |X| = w(v) alternatives, and hence

equal to
∏w(v)

i=1

∑i−1
j=0 φ

j, the second and fourth factors involve sums over rankings of Y

and Z consistent with tc(v). This proves the lower bound.

While the lower bound is not presented in a convenient closed form, it is useful

nonetheless if w(v) is large: if there are few preference constraints in v (e.g., v involves

only a small subset of alternatives) we expect C(v) to be large and hence have higher

probability mass. We recover the true Mallows normalization constant if v = ∅ since

w(v) = m. If v is highly constrained—C(v) has smaller probability mass—then w(v) is

small, but so are the factors involving summations in Eq. 5.21. Note that φδ decreases

as the number of comparisons in v that disagree with σ increases; this again corresponds

to intuition.

With these bounds in hand, we can bound the quality of the posterior estimate P̂v(r)

produced by AMP:

Corollary 1. Let L and U be the lower and upper bound as in Theorems 15 and 14,

respectively. Then for r ∈ C(v), where li and hi are defined in Proposition 9,

L∏m
i=1

∑hi
j=li

φi−j
≤ P̂v(r)

Pv(r)
≤ U∏m

i=1

∑hi
j=li

φi−j
(5.22)

Proof. P̂v(r) has the form given in Proposition 12 while Pv(r) ∝ φd(r,σ). Then apply

upper and lower bounds on the normalizing constant of Pv(r).

5.4.2.4 MMP: An MCMC Sampler Based on AMP

While AMP may have (theoretically) poor worst-case performance, we use it as the basis

for a statistically sound sampler MMP, by exploiting AMP to propose new rankings for the

Metropolis algorithm. With Eq. 5.15, we can derive the acceptance ratio for Metropolis.

At step t+1 of Metropolis, let r(t) be the previous sampled ranking. Ranking r, proposed

by AMP independently of r(t), will be accepted as the t+1st sample r(t+1) with probability
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Algorithm 4 MMP Sample Mallows Posterior using Metropolis

Input: v, σ, φ, number of steps T
1: for t = 1..T do
2: r ← AMP(v, σ, φ)
3: a ∼ Uniform[0,1]

4: r(t) ←
{
r if t = 1 or a ≤ a∗(r, r(t−1))

r(t−1) otherwise

5: end for
Output: r(T )

a∗
(
r, r(t)

)
, where:

a∗
(
r, r(t)

)
= min

1,
φd(r,σ)/Zv

φd(r(t),σ)/Zv

φd(r
(t),σ)∏m

i=1 φ
i−ht

i+φi−h
t
i
+1+···+φi−l

t
i

φd(r,σ)∏m
i=1 φ

i−hi+φi−hi+1+···+φi−li


= min

1,
m∏
i=1


hi−li+1
hti−lti+1

if φ = 1

φh
t
i−hi (1−φhi−li+1)

1−φh
t
i
−lt
i
+1

otherwise

 . (5.23)

Here the lis and his are defined as in Eqs. 5.13 and 5.14, respectively (with respect

to r; and lti), and hti are defined similarly, but with respect to r(t). The term Zv =∑
r′∈C(v) φ

d(r′,σ) is the normalization constant of the Mallows posterior (given partial

evidence v). The algorithm is specified in detail in Alg. 4.

Exploiting Proposition 11, we can show:

Theorem 16. The Markov chain induced by MMP is ergodic on the class of states

(rankings) C(v).

Proof. Note that the acceptance ratio as given in Eq. 5.23 is always positive. The pro-

posal distribution AMP draws rankings that are independent of previous rankings and

by Proposition 11, its support is C(v). Hence, for any r′ ∈ C(v), MMP has positive

probability of making a transition to any ranking in C(v)—thus establishing that C(v) is

a recurrent class—including itself—implying aperiodicity.

Thus, along with the detailed balance property of Metropolis, we have that the steady

state distribution of MMP is exactly the Mallows posterior Pv(r).
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5.4.3 Sampling Mallows Mixture Posterior

Extending the GRIM, AMP and MMP algorithms to sampling from a mixture of Mallows

models is straightforward. Recall the mixture posterior:

P (r, z|v,π,σ,φ) =
P (v|r, α)P (r|z,σ,φ)P (z|π)∑

z

∑
r∈C P (v|r, α)P (r|z,σ,φ)P (z|π)

.

We use Gibbs sampling to alternate between r and z, since the posterior does not fac-

tor in a way that permits us to draw samples exactly by sampling one variable, then

conditionally sampling another. We initialize the process with some z(0) and r(0), then

repeatedly sample z conditional on r, and r conditional on z. For the tth sample, z(t) is

drawn from a multinomial with K outcomes:

P (z : zk = 1|r(t−1),π,σ,φ) =
P (r(t−1)|z,σ,φ)P (z|π)∑
z′ P (r(t−1)|z′,σ,φ)P (z′|π)

=
φ
d(r(t−1),σ(k))
k πk∑K

k′=1 φ
d(r(t−1),σ(k′))
k′ πk′

.

To sample r(t) given zt, we use:

P (r|z(t), v,π,σ,φ) =
P (v|r)P (r|z(t),σ,φ)P (z(t)|π)∑

r′∈C P (v|r′)P (r′|z(t),σ,φ)P (z(t)|π)
. (5.24)

Note that the term P (z(t)|π) in the numerator and denominator cancels, and the missing

completely at random assumption (see Eq. 5.9) implies P (v|r) = 1[r ∈ C(v)]f(v), where

f is a function independent of r. Thus Eq. 5.24 becomes Eq. 5.12 (conditioned on

parameters σ(k), φk). This is exactly the Mallows posterior sampling problem addressed in

the previous section. Combining Gibbs sampling with sampling from a single component

gives the overall SP algorithm, which is detailed in Algorithm 5. We note that this

sampler is described using either MMP to exactly sample rankings (given the sampled

mixture component) or AMP to allow more tractable, but approximate, sampling of

rankings (see Line 5). In our experiments, we find that AMP works well within this

Gibbs sampler.

5.5 EM Learning Algorithm for Mallows Mixtures

Armed with the sampling algorithms derived from GRIM, we now turn to maximum

likelihood learning of the parameters π, σ, and φ of a Mallows mixture using the ex-
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Algorithm 5 SP: Sample Mallows Mixture Posterior using Gibbs

Input: v,π,σ,φ, number of steps T
1: Initialize r(0) (e.g., topological sort on v)
2: for t = 1..T do
3: z(t) ∼ P (·|r(t−1),π,σ,φ) ∝ φ

d(r(t−1),σ(k))
k πk

4: Suppose z(t) is indicator for kth component.
5: r(t) ← AMP or MMP(v, σ(k), φk)
6: end for

Output: (z(T ), r(T ))

pectation maximization (EM) algorithm. Before detailing our EM algorithm, we first

consider the evaluation of the Mallows mixture log-likelihood in Section 5.5.1, which can

be used to select the number of mixture components, or to test EM learning convergence.

We then review the EM algorithm in Section 5.5.2 before detailing the steps of our EM

learning procedure for Mallows mixture models in Section 5.5.3. In Section 5.5.4 we

analyze the running time of our learning algorithm and suggest several ways to improve

its performance.

5.5.1 Evaluating Log-Likelihood

The log-likelihood in our mixture model is:

Lα(π,σ,φ | v) =
∑
`∈N

ln

[∑
z`

∑
r`∈C

P (v`|r`)P (r`|z`,σ,φ)P (z`|π)

]
. (5.25)

This can be rewritten as:

Lα(π,σ,φ | v) =
∑
`∈N

ln

 K∑
k=1

∑
r`∈C(v`)

πkP (r`|σ(k), φk)α
|v`|(1− α)(

m
2 )−|v`|


=

∑
`∈N

ln

 K∑
k=1

∑
r`∈C(v`)

πkP (r`|σ(k), φk)

+ ln
[
α|v`|(1− α)(

m
2 )−|v`|

]
.

Note that the latter term involving α is decoupled from the other parameters, and in

fact its maximum likelihood estimate is α∗ =
∑

`∈N 2|v`|/(nm(m−1)). Since we are only

interested in the log-likelihood as a function of the other parameters, we can ignore this
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additive constant and focus on

L(π,σ,φ | v) =
∑
`∈N

ln

 K∑
k=1

∑
r`∈C(v`)

πkφ
d(r`,σ

(k))
k

Zk

 , (5.26)

where Zk is the Mallows normalization constant. Unfortunately, evaluating this term is

provably hard.

Theorem 17. Let v = (v1, . . . , vn) be a profile of partial preferences. Computing the

log-likelihood L(π,σ,φ|v) is #P-hard.

Proof. We reduce the problem of counting the number of linear extensions of a partial

order to this problem (see Theorem 13, due to Brightwell and Winkler [20]). Let v be

a partial order for which we wish to count its linear extensions. We encode the input

to log-likelihood computation as follows: let v = (v), K = 1 with φ = 1, and let σ

be an arbitrary ranking. We have L = L(π, σ, φ|v) = ln
∑

r∈C(v) 1/m!. Thus we can

recover the number of linear extensions by computing exp(L) · m!. That this can be

accomplished in polynomial time can be seen by noting that L is polynomial in m and

we can use the power series expansion
∑

i≥0 Lim!/i!, where we can truncate the series

after a polynomial number of steps, after which the terms in the expansion no longer

impact the integer portion of the solution (number of extensions).

Given the computational difficulty of evaluating the log-likelihood exactly, we consider

approximations. We can rewrite the log-likelihood as:

L(π,σ,φ|v) =
∑
`∈N

ln

[
K∑
k=1

πk E
P (r|σ(k),φk)

1[r ∈ C(v)]

]
,

and estimate the inner expectations by sampling from the Mallows model P (r|σ(k), φk).

However, this can require exponential sample complexity in the worst-case (e.g., if K = 1

and v is far from σ, i.e., d(v, σ) is large, then to ensure v is in the sample requires a sample

set of exponential size in expectation). But we can rewrite the summation inside the log

as:

L(π,σ,φ|v) =
∑
`∈N

ln

 K∑
k=1

πk
Zk

∑
r∈C(v`)

φ
d(r,σ(k))
k

 ,
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and evaluate
∑

r∈C(v`)
φ
d(r,σ(k))
k using importance sampling:

∑
r∈C(v`)

φ
d(r,σ(k))
k = E

r∼P̂v`

[
φ
d(r,σ(k))
k

P̂v`(r|σ(k), φk)

]
. (5.27)

We generate samples r
(1)
`k , . . . , r

(T )
`k with AMP(v`, σ

(k), φk) for ` ≤ n and k ≤ K, then

substitute P̂v from Eq. 5.15 into Eq. 5.27 to obtain:

∑
`∈N

ln

 K∑
k=1

πk
Zk

1

T

T∑
t=1

m∏
i=1

i−l(`kt)i∑
j=i−h(`kt)i

φjk

 ,
where h

(`kt)
i and l

(`kt)
i are defined in Eq. 5.14 and 5.13, and defined with respect to r

(t)
`k ,

σ(k), and v`. We can simplify the expression inside the log and derive the estimate:

L̂(π,σ,φ | v) =
∑
`∈N

ln

[
1

T

K∑
k=1

T∑
t=1

πk·
1
m!

∏m
i=1(h

(`kt)
i − l(`kt)i + 1) if φk = 1,

φ
∑m
i=1 i−h

(`kt)
i

k

∏m
i=1

1−φ
h
(`kt)
i

−l(`kt)
i

+1

k

1−φik
otherwise.

 (5.28)

As a matter of practical implementation, to ensure the sum of terms inside the log do

not evaluate to zero (as it may be too small to be represented using common floating

point standards), we observe that given numbers a and b with a > b > 0, ln(a + b) =

ln(a) + ln(1 + b/a). Thus even if a and b are too small to be represented as floating point

data types, we still obtain good approximations if ln(a) can be readily evaluated. This

same technique can be used to ensure numerical stability.

5.5.2 The EM Algorithm

A popular approach to maximum likelihood estimation is the expectation maximization

(EM) algorithm [40]. It is applied to probabilistic models in which a set of parameters

θ determine the values of random variables, but observed data is available for only some

of these variables. Let v denote the observed variables, and h the remaining unobserved

(hidden or latent). In our model, we have θ = (π,σ,φ, α), while v consists of a set of

pairwise comparisons and h = (z, r) consists of the mixture-component assignment and

its underlying complete preference ranking. EM is effectively a local search algorithm,
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which alternates between two steps. The E-step computes a posterior distribution over

the hidden variables given the observed variables and a current estimate θ̃ of the model

parameters:

E-Step: P (h|v, θ̃).

The M-step computes, as its new estimate, those model parameters θ that maximize

the expected value (w.r.t. θ̃) of the log-likelihood (using the posterior computed in the

E-step):

M-step: max
θ

E
P (h|v,θ̃)

lnP (h, v|θ).

These steps are iterated until convergence. Indeed, EM converges and gives a locally

optimal solution, since each iteration of EM will increase the log-likelihood. In general

one does not need to maximize the log-likelihood in the M-step, but simply increase it.

An important variation of EM called Monte Carlo EM is used when the posterior in the

E-step is hard to compute (e.g., when dealing with large discrete event spaces, such as

rankings). In Monte Carlo EM, ones samples from the posterior in the E-step, and in the

M-step simply optimizes the choice of parameters with respect to the empirical (sample)

expectation.

5.5.3 Monte Carlo EM for Mallows Mixtures

Learning a Mallows mixture is challenging, since even evaluating its log-likelihood is

#P-hard. A straightforward application of EM yields the following algorithm:

Initialization. Initialize values for πold, σold, and φold.

E-step. Compute/estimate the posterior P (z`, r`|v`,πold,σold,φold) for all ` ∈ N .

M-step. Compute model parameters that maximize expected log-likelihood:

πnew,σnew,φnew = argmax
π,σ,φ

∑
`∈N

E
P (r`,z`|v`,πold,σold,φold)

[lnP (v`, r`, z`|π,σ,φ)]

= argmax
π,σ,φ

∑
`∈N

∑
z`

∑
r`∈C

P (r`, z`|v`,πold,σold,φold) lnP (v`, r`, z`|π,σ,φ).

Exact estimation in the E-step and optimization in the M-step is of course difficult

due to the intractability of the Mallows posterior. Hence we resort to Monte Carlo EM

and exploit our sampling methods to render EM tractable as follows. We initialize the

parameters with values πold, σold, and φold. For the E-step, instead of working directly

with the posterior, we use GRIM-based Gibbs sampling (see Section 5.4.3) to obtain

samples (z
(t)
` , r

(t)
` )Tt=1 from the posteriors P (r`, z`|v`,πold,σold,φold) of each agent ` ≤ n.
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We note once again that Gibbs sampling may use either approximate AMP or the full-

fledged MCMC MMP to generate rankings.

In the M-step, we maximize the expected log-likelihood using the empirical expectation

with respect to the generated samples:

πnew,σnew,φnew = argmax
π,σ,φ

n∑
`=1

1

T

T∑
t=1

lnP (v`, r
(t)
` , z

(t)
` |π,σ,φ). (5.29)

We show below in Theorem 18 that we can perform this maximization by adjusting the

three (sets of) parameters in sequence—specifically, if the parameters are maximized in

the order π, σ and φ (and the first two can be maximized independently), this provides

a globally optimal solution for the M-step (i.e., the solution obtained by optimizing

parameters simultaneously). However, optimization of σ, in particular, is NP-hard (as

we discuss below), so we use a local search heuristic to approximate the choice of reference

rankings in the M-step. We now detail the steps involved in the M-step optimization.

Somewhat abusing notation, let indicator vector z
(t)
` denote the mixture component

to which the tth sample derived from preference ` belongs. We partition the collection of

all agent samples (over all `) into such classes: let Sk = (ρk1, . . . , ρkjk) be the sub-sample

of the rankings r
(t)
` , over all ` ∈ N, t ∈ [T ], that are drawn from the kth component of

the mixture model, i.e., where z
(t)
` = k. Note that j1 + · · · + jK = nT . We can rewrite

the objective in the M-step as:

1

T

K∑
k=1

jk∑
i=1

lnP (v`(k,i)|ρki)P (ρki|σ(k), φk)P (k|πk),

where `(k, i) is the agent in sample ρk,i. We ignore lnP (v`(k,i)|ρki), which only impacts

α; and we know ρki ∈ C(v`(k,i)). Thus, we can rewrite the objective as:

K∑
k=1

jk∑
i=1

[
ln πk + d(ρki, σ

(k)) lnφk −
m∑
w=1

ln
1− φwk
1− φk

]
. (5.30)

where the last summation is the log of the Mallows normalization term.

Optimizing π

We apply the method of Lagrange multipliers. The Lagrangian L = (
∑K

k=1

∑jk
i=1 ln πk) +

λ(π1+· · ·+πK−1), where we have removed irrelevant terms of the objective not involving

π. Taking the gradient, setting to zero and solving the system of equations ∇π,λL = 0,
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we obtain

πk =
jk
nT

, ∀k ≤ K. (5.31)

Optimizing σ

The only term involving σ in Eq. 5.30 is
∑K

k=1

∑jk
i=1 d(ρki, σ

(k)) lnφk. Since lnφk is a

negative scaling factor, and we can optimize the reference rankings σ(k) for each mixture

component independently, we obtain:

σ(k)∗ = argmin
σ(k)

jk∑
i=1

d(ρki, σ
(k)). (5.32)

Optimizing the choice of reference ranking σ(k) within a mixture component requires

computation of the Kemeny ranking with respect to the rankings in Sk. This is, un-

fortunately, an NP-hard problem [8]. To maintain tractability, we exploit the notion of

local Kemenization [45]: instead of optimizing the ranking, we compute a locally optimal

σ(k), in which swapping any two adjacent alternatives in σ(k) does not reduce the sum of

distances in the Kemeny objective. While this may not result in optimal rankings, it has

been shown to be extremely effective experimentally [45, 24].

We detail our local Kemenization algorithm in Algorithm 6, a slight adaptation of

Algorithm 1 from Chapter 2. It works by first initializing the new ranking σ(k) to that

from the previous EM iteration, σold,(k). Then, for each alternative x, starting with those

at the top of the ranking and moving downwards, we evaluate swaps of x with the element

above it, say y, and proceeding with the swap if the majority of rankings in Sk prefer x

over y. This proceeds until the first potential swap of x fails (at which point we move

on to the next alternative). This results in a locally optimal ranking [45]. Note we need

not store all rankings in Sk; we require only its pairwise tournament graph, which is a

complete directed graph with vertices corresponding to the alternatives A and the weight

of each edge x→ y set to be cxy = |{ρ ∈ Sk : y �ρ x}|. Here cxy is the “cost” of placing

x above y.

Optimizing φ

When optimizing φ in Eq. 5.30, the objective decomposes into a sum that permits inde-

pendent optimization of each φk. Exact optimization of φk is difficult; however, we can
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Algorithm 6 LocalKemeny for σk

Input: Sk = (ρk1, . . . , ρkjk)
1: σ ← σold

k

2: Compute pairwise tournament graph:
3: for all pair (x, y) : x, y ∈ A and x 6= y do
4: cxy = |{ρ ∈ Sk : y �ρ x}|.
5: end for
6: d←∑

{x,y} : x�
σ(k)

y cxy
7: for i = 2..m do
8: x← alternative in ith rank of σ
9: for j = i− 1..1 do

10: y ← alternative in jth rank of σ
11: if cxy < cyx then
12: Swap x with y
13: d← d− cxy + cyx
14: else
15: quit this loop
16: end if
17: end for
18: end for
Output: σ, Kemeny cost d

use gradient ascent with:

∂ (Eq. 5.30)

∂φk
=
d(Sk, σ

(k))

φk
− jk

m∑
i=1

[(i− 1)φk − i]φi−1
k + 1

(1− φik)(1− φk)
,

where d(Sk, σ
(k)) =

∑jk
i=1 d(ρki, σ

(k)) is the Kemeny objective, which we obtain after

running LocalKemeny.

Theorem 18. Let π∗ be given by Eq. 5.31, σ∗ be given by Eq. 5.32, and φ∗ be the

optimal φ in Eq. 5.30 where π is replaced with π∗ and σ is replaced with σ∗. Then π∗,

σ∗ and φ∗ is a globally optimal solution to Eq. 5.29.

Proof. Regardless of the values of σ and φ, π is optimized by Eq. 5.31 (see our analysis

above), giving the optimal solution. It is also easy to see that the optimal reference rank-

ings σ are the Kemeny rankings corresponding to ranking sets S1, . . . , SK , respectively,

independent of the value of φ. Finally, if we substitute the optimal values π∗ and σ∗

into Eq. 5.30, its optimal solution φ∗ forms part of the optimal solution (π∗,σ∗,φ∗) to

Eq. 5.29.

It isn’t difficult to see that a “locally optimal” pair (σ,φ) obtained by optimizing σ
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first, then φ is a locally optimal pair for Eq. 5.29. Hence the resulting EM estimates are

also locally optimal with respect to the likelihood [96]. While no approximation bounds

can be given, this lends some support to the optimization approach we adopt. To test

the convergence of EM, one can test the convergence of the parameters (use Kendall-tau

distance to measure σ against that of the previous iteration). One can also measure

whether the log-likelihood is converging.

To reduce problems with local maxima, we initialize the mixture parameters using

a K-means clustering approach where distances are measured using Kendall-tau rather

than the usual squared Euclidean distance. One can use a modified version of Lloyd’s

1982 method for K-means, where the “centroid” (pertaining to Lloyd’s method) of a set

of rankings can is simply its Kemeny ranking.

5.5.4 Complexity of EM Steps

We analyze the running time of one iteration of our EM approach. In the E-step, we

sample variables (z, r). We need not store the ranking r for the component corresponding

to z, since in the M-step we do not need the actual rankings in Sk, but only its pairwise

tournament graph. Hence we need only update the tournament graph corresponding to

component z with sample r, which takes O(m2) time. When sampling r, let TMetro be

the number of Metropolis steps before using the next sample. Each draw of r from AMP

requires O(m2) time. Sampling z requires O(Km logm) time since Kendall-tau distance

can be computed in O(m logm) time. Let TGibbs be the number of Gibbs sampling steps

run Gibbs before outputting a sample and suppose we restart Gibbs after each such

sample. Suppose also we draw TP posterior samples for each data point v`. Then the

E-step takes O(nTPTGibbs(TMetrom
2 + Km logm)) time. In practice, one can chose a

very small number of samples, and run relatively few steps, when running the MCMC

methods. Indeed, in our experiments below, we don’t use MMP within the Gibbs sampler,

but instead use AMP directly (this can be viewed as running Metropolis for a single

step); we discuss this further below. In principle, posterior sampling can be executed in

parallel, with multiple processors handling the sampling and tournament graph updates

for disjoint subsets of the data v`, with the results from different processors merged into

the K tournament graphs.

For the M-step, updating π takes constant time, while updating the component ref-

erence rankings σ takes O(Km2) time. Optimizing φ can also be realized effectively, for

instance, by using gradient ascent and bounding number of iterations. Hence the M-step

requires O(Km2) time. Space complexity is dominated by the size of the K tournament
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graphs, hence is O(Km2).

Various techniques can be used to speed up computation from a practical perspective.

Instead of storing the tournament graphs, which require quadratic memory, one can

instead approximate the Kemeny ranking for any component using the Borda count to

rank alternatives, which is a 5-approximation to Kemeny [38], and often provides much

better approximations in practice. If using Borda, when generating a complete ranking

r in the posterior-sampling step (E-step) belonging to component k, one need only to

update the Borda scores of all alternatives within component k; in the M-step we simply

rank alternatives (within each component) according to their sampled Borda scores. We

still need the Kemeny distance between the resulting Borda ranking and the sampled

rankings, but this can be approximated by re-running the E-step and evaluating the

Kendall-tau distance in an online fashion. One might also consider using Spearman

footrule distance, which can be computed in O(m) time rather than O(m logm) as in

Kendall-tau, since it is 2-approximation to the Kemeny distance [41].

5.6 Empirical Evaluation

We perform a series of experiments to validate the efficacy of our sampling and learning

algorithms, to discover interesting properties of the learned mixture models on several

popular datasets, and to evaluate the predictive power of our learned models to help

predict missing preferences. We first assess the quality of our GRIM-based posterior

sampling method AMP, measuring its accuracy relative to the true Mallows posterior.

We then measure the approximation quality of our Monte Carlo algorithm for evaluating

the Mallows mixture log-likelihood. Next we apply our EM algorithm to learn mixture

models using several data sets: synthetically generated datasets, a Movielens ratings

dataset (with large m), and a sushi preference dataset. The synthetic data experiments

confirm the effectiveness of our EM algorithm while also revealing insights on how the

size of preference data (either n or α) impacts learning. We also remark on some of its

connections to crowdsourcing. Finally we assess the predictive accuracy of the learned

models by conditioning on partial preference information and inferring the probability

of the missing pairwise comparison preferences. In all experiments, we use Eq. 5.26 to

measure log-likelihood.
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Figure 5.3: Comparing the posterior generated by AMP to the true Mallows posterior:
normalized KL-divergence. The box-and-whisker plots have boxes shown the 25-75 per-
centile range over 20 runs, with the line inside box indicating the median, and the ‘+’
symbols outliers. From left to right: Plot 1: Varying α, while fixing φ = 0.5, m = 10.
Plot 2: Varying φ, while fixing α = 0.2, m = 10. Plot 3: Varying m, fixing φ = 0.5
and for m ≤ 13, α = 0.2, for m > 13, α = 0.5.

5.6.1 Sampling Quality

We first assess how well AMP approximates the true Mallows posterior Pv using randomly

generated (synthetic) data. We vary parameters m, φ and α, while fixing a canonical

reference ranking σ = (1, 2, . . . ,m). For each parameter setting, we generate 20 pref-

erences v (e.g., the partial preferences of 20 agents) using our mixture model (see Sec

5.2.3 and Eq. 5.9 and 5.10), and evaluate the exact KL-divergence of Pv with respect

to P̂v
2 This divergence is normalized by the entropy of Pv, since, when increasing m,

KL-divergence and entropy both increase. Results are shown in Figure 5.3, with fixed

and varying parameters for all three plots described in the caption. These results indi-

cate that AMP approximates the posterior very well, with average normalized KL error

ranging from 1–5%, across the parameter ranges tested. For this reason, and given its

much better running time, we use AMP within our evaluation of EM rather than using

the asymptotically exact sampler MMP.

5.6.2 Evaluating Log-Likelihood

In Section 5.5.1 we showed the #P-hardness of evaluating the log-likelihood and derived

a Monte Carlo estimator that uses the AMP sampler. We evaluate the quality of the

approximation produced by this estimator in this section. We vary three parameters to

generate three experiments: (a) the number of alternatives m; (b) the number of mixture

components K; and (c) the number of samples T per agent and per component (Eq. 5.28).

2To compute KL-divergence, we need only consider consistent completions of our partial preferences.
This set of rankings usually has size much smaller than m!, and can be enumerated by modifying the
topological sort algorithm.
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Figure 5.4: Comparing the ratio of the true log-likelihood to its Monte Carlo approxima-
tion. 20 instances are run per parameter setting. From left to right: Plot 1: Varying m,
while fixing T = 5. Plot 2: Varying K while fixing T = 5. Plot 3: Varying T . Other
parameter values are described in the text.

In all experiments, we fix the number of agents (i.e., the number of input preferences) at

n = 50.

In setting (a) (varying m), we generate v from a mixture model with K = 3 and

π = (1/3, 1/3, 1/3), φ = (1/2, 1/2, 1/2) and α = 0.2. Each σk (k ≤ K) is drawn

uniformly at random from C.

In setting (b) (varying K), we generate v from a mixture model with K components,

where m = 8, π = (1/K, . . . , 1/K), φ = (1/2, . . . , 1/2) and α = 0.2. Again σ drawn

uniformly at random as in setting (a).

In setting (c) (varying T ), parameters are K = 1, m = 8, σ chosen uniformly at

random, φ = 0.5 and α = 0.2.

The parameters for which we evaluated the log-likelihood are generated as follows:

mixture weights π are sampled from a “uniform” Dirichlet distribution with a parameter

vector (i.e., equivalent sample size counts) consisting of K 5s. The reference rankings

σ were drawn uniformly at random, and φ is drawn uniformly at random from interval

(0, 1).

The results for all three settings are shown in Figure 5.4. Overall we see that the

Monte Carlo approximation is very good, and improves significantly while reducing vari-

ance as we increase the sample size for each agent’s log-likelihood (as captured by K ·T ).

Increasing m slightly degrades approximation quality, although it offers excellent esti-

mates across the entire range of tested values.

5.6.3 EM Mixture Learning

We now evaluate our EM mixture-learning algorithms on the synthetic, Sushi and Movie-

lens datasets.



Chapter 5. Learning Rankings with Pairwise Preferences 120

5.6.3.1 Synthetic Data

Having empirically established that AMP provides good approximations to the true poste-

rior, and that the log-likelihood can be closely approximated by importance sampling, we

now evaluate how effective our EM algorithm is at recovering parameters in a controlled

setting, using synthetic data generated from models with known parameters. We empha-

size that the following experiments all use AMP within the Gibbs sampler in the E-step

of Monte Carlo EM, rather than the MCMC algorithm MMP, given the approximation

quality of AMP as well as its much better tractability.

We perform four experiments in which we vary: (a) α, the (expected) fraction of

pairwise comparisons revealed from each preference; (b) the number of alternatives m;

(c) the number of mixture components K; and (d) the number of agent preferences

(data set size). In each experiment, we generate random model parameters as follows:

π is drawn from a Dirichlet distribution with a uniform parameter vector of 5s; σ is

drawn uniformly at random; and φ values are drawn uniformly at random from [0.2, 0.8].

Training data is generated using our probabilistic model with these parameters. When

varying the single parameter for each experiment, we fix the other three, with fixed

values: α = 0.2, m = 20, K = 3 and n = 50 ×K. We analyze the performance of EM

by (approximately) evaluating the ratio of the log-likelihood of the learned parameters

to that of the true model parameters (π,σ,φ) on test data (preferences) generated from

the true model—we set ntest = n and αtest = 1.

Results are shown in Figure 5.5 and provide some interesting insights. First they

suggest that learning is more effective when either of α or n is larger (i.e., when we have

more preference data for training). We also see that learning performance degrades when

we increase the number of mixture components—this is hardly surprising, since there is

less data per component as we increase K. Finally, learning improves as m increases for

fixed values of α. This holds because the transitive closure for larger m tends to offer

more preference information. For instance, a1 � a2 � a3 � a4 � a5 � a6 provides

5 comparisons, and corresponds to 1/9 of all comparisons when m = 10, while leaving

many comparisons unavailable, even after taking its transitive closure. By contrast,

a1 � a2 � · · · � a100 has 99 comparisons which is only 1/50 of all comparisons when

m = 100; but its transitive closure is a complete ranking.

These observations have interesting implications when considering information elic-

itation via “wisdom of the crowds.” When estimating a single objective ranking (i.e.,

K = 1), the amount of data needed for reliable estimation can be obtained by either

increasing α (the average number of pairwise comparisons revealed per agent) and de-

creasing n (the number of agents queried) or by increasing n and decreasing α. In other
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Figure 5.5: Performance of EM on synthetic data. Each plot shows the ratio of the
log-likelihood of learned parameters to those of the true model parameters. Each pa-
rameter setting averages results of 20 instances. Log-likelihoods are approximated as in
Section 5.5.1 with T = 10. Other parameter settings are described in the text.

words, one can obtain the same “effective” data by either asking more agents about their

objective assessments while decreasing the number of questions per agent, as asking fewer

agents to respond, but demanding more pairwise assessments per agent.

5.6.3.2 Sushi Data

The Sushi dataset consists of 5000 complete rankings over 10 varieties of sushi indicating

sushi preferences [70]. We used 3500 preferences for training and 1500 for validation.

We ran EM experiments by generating revealed pairwise comparisons for training with

various probabilities α. To mitigate issues with local maxima, we ran EM ten times

(more than is necessary) for each instance. Figure 5.6 shows that, even without complete

preferences, EM learns well even with only 30-50% of all paired comparisons, though

it degrades significantly at 20%, in part because only 10 alternatives are ranked (still

performance at 20% is good when K = 1, 2). With K = 6 components, a good fit

is found when training on complete preferences: Table 5.2 shows the learned clusters

(all with reasonably low dispersion), illustrating interesting patterns (e.g., fatty tuna

is strongly preferred by all but one group; a strong correlation exists across groups in

preference/dispreference for salmon roe and sea urchin, which are “atypical fish”; and

cucumber roll is consistently dispreferred).
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Figure 5.6: Sushi dataset. Plots of average validation log-likelihood when the training
data, pairwise comparisons, are revealed with probabilities α ∈ {0.2, 0.3, 0.4, 0.5, 1.0}.
Learning degrades as α gets closer to 0.2, that is, as more pairwise comparisons are
removed.

π1 = 0.17 π2 = 0.15 π3 = 0.17 π4 = 0.18 π5 = 0.16 π6 = 0.18
φ1 = 0.66 φ2 = 0.74 φ3 = 0.61 φ4 = 0.64 φ5 = 0.61 φ6 = 0.62
fatty tuna shrimp sea urchin fatty tuna fatty tuna fatty tuna
salmon roe sea eel fatty tuna tuna sea urchin sea urchin
tuna squid sea eel shrimp tuna salmon roe
sea eel egg salmon roe tuna roll salmon roe shrimp
tuna roll fatty tuna shrimp squid sea eel tuna
shrimp tuna tuna sea eel tuna roll squid
egg tuna roll squid egg shrimp tuna roll
squid cucumber roll tuna roll cucumber roll squid sea eel
cucumber roll salmon roe egg salmon roe egg egg
sea urchin sea urchin cucumber roll sea urchin cucumber roll cucumber roll

Table 5.2: Learned model for K = 6 (i.e., 6 mixture components) on the sushi dataset
with complete preferences; πi is the mixture proportion of the ith component while φi is
the dispersion of the Mallows model in the ith component.
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5.6.3.3 Movielens Data

We apply our EM algorithm to a subset of the Movielens dataset (see www.grouplens.org)

to find “preference types” across users. We use the 200 (out of roughly 3900) most

frequently rated movies, and the ratings of the 5980 users (out of roughly 6000) who rated

at least one of these. Integer ratings from 1 to 5 are converted to pairwise preferences

in the obvious way (for ties, no preference was added to v). For example, if A and B

had rating 5, C had rating 3 and D rating 1 then the user preference becomes v =

{A � C,A � D,B � C,B � D,C � D}. We discard preferences that are empty

when restricted to the top 200 movies, and use 3986 preferences for training and 1994

for validation. We run EM with number of components K = 1, . . . , 20; for each K

we ran EM 20 times to mitigate the impact of local maxima. For each K, we evaluate

average log-likelihood of the best run on the validation set to select the number of mixture

components K. Log-likelihoods are approximated using our Monte Carlo estimator (with

K · T = 120).3

Log-likelihood results are shown in Figure 5.7 as a function of the number of mixture

components. These results suggest that the best component sizes are K = 10 and K = 5

on the validation set. The learned model with K = 5 is displayed in Table 5.3, with

each component ranking truncated to the top-20 movies. The five references rankings

in this case are have some intuitive interpretation, but do not seem to exhibit the same

separation as in the Sushi data set, in part due to the non-trivial overlap involving a

number of “universally popular” movies (e.g., two movies, The Shawshank Redemption

and The Usual Suspects, occur in all five components; two more occur in four, and more

than 30 occur in three). Note also that the dispersion of each component is extremely

high, approaching 1.

Despite this, certain patterns can be discerned. especially by focusing on reasonably

unique movies, those that occur in only one or two components. For example, the second

component contains the following “unique” movies: Monty Python and the Holy Grail,

The Maltese Falcon, Blade Runner, One Flew Over the Cuckoo’s Nest, A Clockwork

Orange, 2001: A Space Odyssey, North by Northwest, Pulp Fiction, Chinatown, and

Apocalypse Now. Themes within this cluster of unique movies include “older” science

fiction, ultra-violence, actor Jack Nicholson and director Stanley Kubrick. The average

date of the (top) twenty movies within this component is 1970, which is significantly

lower than those of other components.

3The C++ implementation of our algorithms have EM wall clock times of 15–20 minutes (Intel Xeon
dual-core, 3GHz), certainly practical for a data set of this size. In other data sets, given the smaller
number of alternatives, run times are much faster.
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Figure 5.7: Movielens dataset: average training and validation log likelihoods on the
learned model parameters of different component sizes.

The same analysis of the fifth component shows the following “unique” movies: A

Christmas Story, This is Spinal Tap, American Beauty, Pulp Fiction, The Princess Bride,

Forrest Gump, Fight Club, Fargo, Ferris Bueller’s Day Off, Raising Arizona, Good Will

Hunting, and The Matrix. Many of the movies here would commonly be characterized

as “quirky,” including five “quirky comedies,” and several that tend toward extreme

violence. The movies in this component also have a significantly later average date,

1992, than the others.

5.6.4 Predicting Missing Pairwise Preferences

In our prediction experiments, we seek to evaluate the performance of the learned models

in predicting unseen pairwise comparisons. In particular, we use the complete sushi

dataset, train our mixture model on the first 3500 complete rankings (we train for all

K = 1, . . . , 20), and select the best K by evaluating the log-likelihood on the validation

dataset, which consists of 500 complete rankings. It turns out that a mixture model with

K = 6 was most suitable.

To test posterior prediction performance, we use 1000 complete rankings, distinct
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π1 = 0.24 π2 = 0.23 π3 = 0.21 π4 = 0.19 π5 = 0.13
φ1 = 0.98 φ2 = 0.98 φ3 = 0.98 φ4 = 0.98 φ5 = 0.97
Citizen Kane (1941) Godfather, The

(1972)
Raiders of the Lost
Ark (1981)

Shawshank Redemp-
tion, The (1994)

Usual Suspects, The
(1995)

Godfather, The
(1972)

Dr. Strangelove
(1963)

Godfather, The
(1972)

Life Is Beautiful
(1997)

Shawshank Redemp-
tion, The (1994)

Dr. Strangelove
(1963)

Citizen Kane (1941) Schindler’s List
(1993)

Raiders of the Lost
Ark (1981)

Schindler’s List
(1993)

Schindler’s List
(1993)

Casablanca (1942) Rear Window (1954) Schindler’s List
(1993)

Life Is Beautiful
(1997)

Rear Window (1954) Star Wars: Episode
IV - A New Hope
(1977)

Star Wars: Episode
IV - A New Hope
(1977)

Star Wars: Episode
IV - A New Hope
(1977)

Christmas Story, A
(1983)

Shawshank Redemp-
tion, The (1994)

Usual Suspects, The
(1995)

Shawshank Redemp-
tion, The (1994)

Matrix, The (1999) This Is Spinal Tap
(1984)

American Beauty
(1999)

Raiders of the Lost
Ark (1981)

Casablanca (1942) Sixth Sense, The
(1999)

American Beauty
(1999)

Godfather: Part II,
The (1974)

Monty Python and
the Holy Grail (1974)

Sixth Sense, The
(1999)

Sting, The (1973) Sixth Sense, The
(1999)

One Flew Over the
Cuckoo’s Nest (1975)

Rear Window (1954) Psycho (1960) Forrest Gump (1994) Pulp Fiction (1994)

Casablanca (1942) Maltese Falcon, The
(1941)

Citizen Kane (1941) Usual Suspects, The
(1995)

Princess Bride, The
(1987)

Usual Suspects, The
(1995)

Blade Runner (1982) Sting, The (1973) Braveheart (1995) Silence of the Lambs,
The (1991)

Pulp Fiction (1994) One Flew Over the
Cuckoo’s Nest (1975)

Usual Suspects, The
(1995)

Green Mile, The
(1999)

Godfather, The
(1972)

Monty Python and
the Holy Grail (1974)

Clockwork Orange,
A (1971)

Saving Private Ryan
(1998)

Indiana Jones and
the Last Crusade
(1989)

Forrest Gump (1994)

Fargo (1996) 2001: A Space
Odyssey (1968)

Godfather: Part II,
The (1974)

Saving Private Ryan
(1998)

Fight Club (1999)

Life Is Beautiful
(1997)

North by Northwest
(1959)

Silence of the Lambs,
The (1991)

Princess Bride, The
(1987)

Fargo (1996)

Graduate, The
(1967)

Pulp Fiction (1994) Wizard of Oz, The
(1939)

Star Wars: Episode
V - The Empire
Strikes Back (1980)

Ferris Bueller’s Day
Off (1986)

North by Northwest
(1959)

Godfather: Part II,
The (1974)

Dr. Strangelove
(1963)

Silence of the Lambs,
The (1991)

Raising Arizona
(1987)

GoodFellas (1990) Chinatown (1974) Jaws (1975) Good Will Hunting
(1997)

Saving Private Ryan
(1998)

Chinatown (1974) Apocalypse Now
(1979)

Braveheart (1995) Ferris Bueller’s Day
Off (1986)

Good Will Hunting
(1997)

Raiders of the Lost
Ark (1981)

Shawshank Redemp-
tion, The (1994)

Aliens (1986) When Harry Met
Sally (1989)

Matrix, The (1999)

Table 5.3: Learned model for K = 5 (i.e., 5 mixture components) on Movielens; shows
top 20 out of 200 movies. Parameter πi is the mixture proportion of the ith component
while φi is the dispersion of the Mallows model in the ith component.
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from both the training and validation sets, and randomly remove a fraction 1 − α of

the pairwise comparisons from each ranking, then compute the transitive closure of the

remaining comparisons to obtain partial preferences. We generate preferences for four

different values of α. With α = 0, all preferences are removed; with α = 0.25, 42% of the

pairwise comparisons are left after computing transitive closures; with α = 0.5, 76% of

the all pairwise comparisons remain; and with α = 0.75, 83% of the pairwise comparisons

are left.

We conditioned the learned model on the partial preferences of each agent in turn,

to obtain posterior distributions over which we can infer each agent’s missing pairwise

comparisons. In making predictions, we use our posterior sampling algorithm SP to

sample complete rankings, which we then use to update a tournament graph—recall,

this is a set of counts cab to count the number of rankings for which a � b, for all

a, b ∈ A. Then we estimate the posterior probability P (a � b | v) by cab
cab+cba

.

We define our prediction loss as follows. Suppose we have a complete ranking r with

its corresponding partial preference v obtained as described above. For a given a �r b that

is unobserved in tc(v), we define the posterior prediction loss to be P̂ (a ≺ b | v) = cba
cab+cba

.

Let M(v) = {(a, b) : a �r b, a � b /∈ tc(v)} be the set of missing pairwise comparisons in

v. We define the average loss of v as:

εv =

∑
(a,b)∈M(v`)

P̂ (a ≺ b|v)

|M(v`)|
.

We next define the average loss per preference to be:

ε =
1

n

n∑
`=1

εv` ,

where n is the number of distinct agents or preferences (in this case n = 1000). For

a �r b, let D(a, b) = r(b) − r(a) be the difference in their rank positions and MD(v) =

{(a, b) ∈M(v) : D(a, b) = D}. We also measure the average loss at distance D as follows:

εD =

∑n
`=1

∑
(a,b)∈MD(v`)

P̂ (a ≺ b|v)∑n
`=1 |MD(v`)|

.

The results for average loss per preference are as follows:

• ε = 0.43 for preferences generated with α = 0;

• ε = 0.35 for α = 0.25,

• ε = 0.39 for α = 0.5, and
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D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9
α = 0 9000 8000 7000 6000 5000 4000 3000 2000 1000
α = .25 6610 5487 4393 3459 2492 1744 1092 606 256
α = .5 4429 2911 1683 898 443 191 65 22 1
α = .75 2230 824 244 62 9 2 0 0 0

Table 5.4: The number of missing pairwise comparisons (over all agents) among pairs that
are distance D from each other, with preferences generated by randomly deleting fraction
1− α of preferences, then taking the transitive closure of the remaining comparisons.

• ε = 0.44 for α = 0.75.

(We interpret these results below). Results for εD at various distances are plotted in Fig-

ure 5.8. Since these results are extremely sensitive to the number of pairwise comparisons

available in the data at different distances, we show the number of such comparisons, per

distance, in Table 5.4.

The results indicate that predictive performance is weakly accurate when pairs are

close in distance, but improves as the distance between the predicted alternatives in-

creases in the underlying ranking. For α = 0.75, the average loss at distances 5 and

6 is higher than expected, but this is due to the small number of comparisons missing

available for testing (and in general) at those distances. We also observe that the number

of comparisons of a particular distance decreases as a function of the distance—this is

more pronounced for smaller values of α. This can be attributed to the use of transitive

closure: the further apart a pair of alternatives are in the underlying ranking, the less

likely it is that we will remove all of the pairwise comparisons required render the two al-

ternatives incomparable after taking the transitive closure of the preferences that remain.

As a consequence of the skewed distribution of missing pairs available for prediction at

specific distances, the average loss per preference does not in fact decrease as α increases.

For example, it is 0.39 for α = 0.5, and 0.44 for α = 0.75; this is because the relative

number of missing comparisons at smaller distances (which are more difficult to predict)

is much greater when α = 0.75 than when α = 0.5 (as shown in Table 5.4).

5.7 Applications to Non-Parametric Estimators

Lebanon and Mao [79] propose a non-parametric estimator for Mallows models when ob-

servations form partitioned preferences. This estimator is an analogue of typical kernel

density estimators, but over the space of rankings. Their purpose, similar to mixture

models, is to model the distribution of real ranking data. The idea is to place “smooth

unimodal bumps,” formulated as a single Mallows model, at every input (training) pref-
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Figure 5.8: Sushi prediction results: average prediction loss for missing pairwise compar-
isons for pairs at different distances in the underlying ranking.
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erence. This is much like a mixture model with the number of components equal to the

number of preferences in the training data. They offer closed-form solutions by exploiting

the existence of the closed-form for the Mallows normalization constant when partitioned

preferences are observed. Unfortunately, with general pairwise comparisons, computing

this normalization constant is intractable unless #P=P. In contrast to our contributions

above, they do not address the question of how to find a maximum likelihood estimate

of the Mallows dispersion parameter, also known as the kernel width, which they suggest

as being “extremely difficult.”

It turns out we can use AMP for approximate marginalization to support non-parametric

estimation with general preference data. This shows the potential applicability of our

sampling algorithm to a wider range of problems where observations consist of pairwise

comparisons. We illustrate its application by defining a non-parametric estimator and

deriving a Monte Carlo evaluation formula suitable for incomplete preferences.

Define a joint distribution q` over the probability space C(v`)× C,

q`(s, r) =
φd(r,s)

|C(v`)|Zφ
, (5.33)

where Zφ is the Mallows normalization constant with respect to dispersion φ. This

distribution corresponds to drawing a ranking s uniformly at random from C(v`) and

then drawing r from a Mallows distribution with reference ranking s and dispersion

φ. The estimator, extended in the style of Lebanon and Mao [79] to any set of paired

comparisons, is simply:

p(v) =
1

n

∑
`∈N

q`(s ∈ C(v`), r ∈ C(v)) (5.34)

=
1

n

∑
`∈N

∑
s∈C(v`)

∑
r∈C(v)

φd(r,s)

|C(v`)|Zφ
.

Note that this is a distribution over rankings and not incomplete preferences, that is, a

marginal over C(v). A special case arises when v consists entirely of complete rankings,

which simplifies to a mixture of Mallows models with n equally weighted components,

each with one of the observed rankings v` as its reference ranking, and dispersion φ. This

estimator can be useful for inference over the posterior p(r|v) = p(r)1[r ∈ C(v)]/p(v) for
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r ∈ C(v). For any fixed v, let f(s) =
∑

r∈C(v) φ
d(r,s). Then we have:

p(v) =
1

nZφ

∑
`∈N

∑
s∈C(v`)

1

|C(v`)|
f(s)

=
1

nZφ

∑
`∈N

E
s∼C(v`)

f(s),

where s is drawn uniformly from C(v`). One can estimate the expectation by importance

sampling. Suppose we draw, for each `, rankings s
(1)
` , . . . , s

(T )
` using AMP(v`, σ, φ = 1)

to approximate uniform sampling (e.g., choose some ranking σ from C(v`)). Let w`t =

1/P̂v`(s
(t)
` ), which has a closed-form given by Eq. 5.15. Then the estimate is

p̂(v) =
1

nZφ

n∑
`=1

∑T
t=1 w`tf(s

(t)
` )∑T

t=1 w`t
.

Evaluating f(s
(t)
` ) is generally intractable, but again, it can be approximated using our

earlier techniques, as given by Eq. 5.27. In summary, we can realize non-parametric

estimation using a nested sampling procedure to first approximate the outer expectation

over s, followed by the inner summation f(s).

5.8 Conclusion

We have developed a set of algorithms to support the efficient and effective learning of

ranking or preference distributions when the observed data comprise a set of unrestricted

pairwise comparisons of alternatives. Given the fundamental nature of pairwise compar-

isons in revealed preference, our methods extend the reach of rank learning in a vital

way. One of our main technical contributions, the GRIM algorithm, allows sampling of

arbitrary distributions, including Mallows models conditioned on pairwise data. It sup-

ports a tractable approximation to the #P-hard problem of log-likelihood evaluation of

Mallows mixtures; and it forms the heart of an EM algorithm that was shown to be quite

effective in our experiments. GRIM can also be used for non-parametric estimation.

There are a few interesting directions for future work, including various extensions and

applications of the model we have developed here. One of the weaknesses with Mallows

is its lack of flexibility in various dimensions, such as allowing different dispersion “rates”

in different regions of the ranking. Models that allow more flexibility while controlling

for overfitting could lead to more realistic ranking models for real-world settings. Other

extensions include exploration of other probabilistic models of incomplete preferences that
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employ different distributions over rankings, such as Plackett-Luce or weighted Mallows;

that account for noisy comparison data from users; and that account for data that is

not missing at random—this may occur, say, in settings in which a bias exists towards

observing preferences for higher ranked alternatives.

It would also be interesting to exploit learned preference models of the type devel-

oped here for decision-theoretic tasks in social choice or personalized recommendation.

Learned preferences can be leveraged in both passive (purely observational) settings and

active preference elicitation in the context of social choice or group decision making. In

Chapter 6, we will develop a probabilistic elicitation framework under which a general

approach will be developed for exploiting learned preference distribution to inform and

further guide the elicitation strategy. Because our algorithms allow for inference under

conditional evidence, we can incrementally elicit preferences while updating a posterior

preference distribution, which can be used in turn to support more effective elicitation.



Chapter 6

Elicitation with Probabilistic

Preference Distributions

In Chapters 3 and 4, we developed incremental elicitation schemes that allow winner(s)

to be determined with only partial preferences. However, while such elicitation strategies

minimize the amount of information elicited, they tend to require repeated rounds of

interaction from participants. In this chapter, we propose a probabilistic analysis of

vote elicitation that combines the advantages of incremental elicitation schemes—namely,

minimizing the amount of information revealed—with those of full information schemes—

single (or few) rounds of elicitation. We exploit distributional models of preferences to

derive the ideal ranking threshold k, or number of top alternatives each voter should

provide, to ensure that either a winning or a high quality alternative (as measured by

max regret) can be found with high probability.

This chapter is organized as follows. In Section 6.1, we provide some background

and illustrate some common pitfalls of full incremental elicitation, which will motivate

our multi-round model. In Section 6.2, we introduce our multi-round, probabilistic vote

elicitation model. In Section 6.3, we study single-round top-k elicitation, and we develop

a general empirical methodology, which uses preference profile samples to determine

the ideal ranking threshold for many common voting rules. We also develop probably

approximately correct (PAC) sample complexity results for one-round protocols with any

voting rule. In Section 6.4, we demonstrate the efficacy of our approach empirically on

one-round protocols with Borda scoring.

132
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6.1 Motivation

While our incremental elicitation protocols developed in Chapters 3 and 4 minimize the

amount of preference information requested from voters in a practical sense (before a

good alternative can be recommended), they suffer from their incremental nature: the

choice of the next voter to query and the query to pose depends on all previous responses.

This may result in interruption costs and unacceptable latency on the part of agents. If

agent ` was just asked if a is preferred to b, ` must wait for the elicitor to query potentially

many other agents before posing another query to `. This can be less desirable than being

asked a batch of pairwise comparisons in one shot, since in batch mode the agent only

needs to interact with the elicitor once or a few times.

To make this concrete, consider an example of making a scheduling decision for a

meeting of three people: Alice, Bob and Carol. The alternatives represent the start

times of the meeting. Let’s assume that the participants are remotely distributed or

otherwise unable to assemble together, and that elicitation is conducted through an

electronic channel such as email or instant messaging.

Incremental elicitation would proceed by asking, say Alice, if she prefers 10am over

9am. Since Alice does not check her email often, Alice responds an hour later, in favour

of 10am after checking her calendar. Then Bob is queried next, being asked to choose

11am over 10am. Bob is relatively fast and answers within fifteen minutes, preferring

10am. Then elicitation proceeds to Carol, asking her if she prefers 10am over 1pm.

Carol responds in half an hour and prefers 10am. Elicitation then goes back to Alice,

after spending a total of forty-five minutes to work through Bob and Carol. This process

continues and may well take a few more hours before reaching a consensus meeting time.

Clearly, this process takes much longer to reach a decision, putting a significant time

cost on incremental elicitation, despite the fact that a minimal amount of information

has been elicited. Furthermore, there is potentially an “interruption cost” imposed on

each individual, where an individual experiences multiple distractions as new queries are

posed.

On the other hand, if the elicitation process queried each person, simultaneously, by

asking for their most preferred time slot, they would all answer 10am and a consensus

decision would be reached much more quickly—in an hour if we assume the same response

latency as above (i.e., the time for the slowest individual to respond). Thus, while this

elicitation approach asks many more pairwise comparisons per agent (since a top-1 query

implicitly consists of m− 1 pairwise comparisons), it is overall much faster, and reduces

interruptions and waiting times while still asking only a fraction of the full ranking
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information.

In this chapter, we develop an approach to vote elicitation that introduces the concept

of rounds of elicitation (e.g., asking a top-1 query to all agents simultaneously is con-

sidered to be one round). Furthermore, our approach exploits distributional information

over voter preferences, that are, for example, learned using techniques from Chapter 5,

to reduce both the amount of information elicited from voters and the number of rounds

of elicitation. Indeed, these factors can be explicitly traded off against one another.

Our model also supports approximation, using minimax regret to further minimize the

amount of information elicited, the number of rounds, or both. In this way, we provide

the first framework that allows the design of vote elicitation schemes that address the

complex three-way tradeoff between approximation quality, total information elicited,

and the number of rounds of elicitation.

Developing analytical bounds on these performance dimensions depends, of course,

on the specific distributional assumptions about the preferences and the voting rule in

question. While we make some suggestions regarding the types of results one might de-

rive along these lines, our primary contribution is an empirical methodology that allows

a designer to assess these tradeoffs and design elicitation schemes for any preference dis-

tribution, and any voting rule that can be interpreted using some form of scoring. To

illustrate the use of both our general elicitation framework and our empirical method-

ology, we analyze one-round vote elicitation protocols. We develop general PAC sample

complexity bounds for such one-round protocols. We then analyze these protocols em-

pirically using Mallows models of preferences distributions [87, 88] and Borda scoring as

the voting protocol. Our results suggest that good, even optimal, results can be obtained

in one-round protocols even when only a small portion of the preferences of the voters is

elicited.

Recently, Filmus and Oren [46] give upper and lower bounds for the value of the

parameter k, in one-round top-k elicitation, that’s necessary to guarantee the true winner

can be determined with high probability. Their primary results pertain to positional

scoring rules and three types of preference distributions. Given an arbitrary PSF, they

provide a set of criteria for obtaining upper and lower bounds for k. They apply the

criteria and derive bounds for the Borda, harmonic (α(i) = 1/i, for i ≤ m), and geometric

(α(i) = zi for i ≤ m and z ∈ (0, 1)) scoring rules. In particular, they show that with

Borda any elicitor requires k = Ω(m) (one can determine the winner by querying for

the entire ranking, with k = m − 1 = O(m)). For the harmonic PSF, they devise an

algorithm that can determine the winner—with high probability—after eliciting top-k

preferences with k = ω(log4/3m), and for the geometric PSF, the same algorithm can
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achieve the same guarantees with only k = ω(log logm).

Kalech et al. [69] develop several heuristic strategies for vote elicitation, including one

scheme that proceeds in rounds in which voters provide larger “chunks” of information.

This offers an advantage over the fully incremental schemes presented in Chapters 3 and

4. Unfortunately, Kalech et al.’s approach does not admit approximation (with quality

guarantees), and no principles are provided to select an appropriate chunk size.

The results in this chapter are primarily concerned with single-winner score-based

voting rules. These are rules that score the “societal welfare” of an alternative from a

given preference profile, and where the alternative(s) with the highest score is selected

as the winner. Indeed, all voting rules can be cast as a score-based rule by assigning a

score of 1 to the selected winner and zero scores to all other alternatives. However, many

common and popular scoring rules admit a natural scoring function.

Our experiments in this chapter uses the Borda rule, which, for a given ranking, scores

an alternative ranked at position i with a score of m − i. But our results extend more

generally to other score-based voting rules. We do not address multi-winner schemes,

but the same underlying principles can be readily extended to that setting. We refer the

reader to Section 2.1 for a more comprehensive overview of preference relations, partial

preferences, and single-winner voting rules (including Borda and other scoring rules).

Given a partial preference profile p = (p1, . . . , pn), we will use minimax regret (see

Section 3.1.1, Eqs. 3.1—3.5) as a robust decision criterion for winner determination with

partial information. Note that this notion gives us a form of robustness in the face of vote

uncertainty: every alternative has worst-case loss (with respect to the voting rule’s score)

at least as great as that of the minimax optimal alternative. Notice that if MMR(p) = 0,

then the minimax winner is in fact optimal, regardless of the completion of the partial

profile. MMR can be computed in polynomial time for several common voting rules,

including Borda.

6.2 A Model of Multi-round Probabilistic Elicitation

We begin by developing a general model of vote elicitation that allows one to make

explicit tradeoffs between the number of rounds of elicitation, the amount of information

provided by each voter, and approximation quality. Let a query refer to a “single” request

for information from a voter. Types of queries include simple pairwise comparisons (e.g.,

“Do you prefer a to b?”); sets of such comparisons; more involved partial requests (e.g.,

“Who are your top k candidates?”); or requests for entire rankings. Different queries have

different “costs”—both in terms of voter cognitive effort and communication costs (which
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range from 1 to roughly m logm bits)—and provide varying degrees of information.

Given a particular class of queries Q, informally, a multi-round voting protocol selects,

at each round, a subset of voters, and one query per selected voter. The voter-query (VQ)

pairs selected at round t can be conditioned on the responses to all previous queries. More

formally, let It−1 be the information set available at round t ≥ 1 (i.e., responses to queries

at rounds 1, . . . , t−1). We assume, in this chapter, that all queries used admit responses

that can be represented as a set of pairwise comparisons. Let P denote the set of all

partial preference profiles with respect to a fixed n and m. As such, this information set

It−1 can be represented as a sequence of t partial profiles (p0, . . . ,pt) ∈ Pt.

Definition 22. A multi-round voting protocol is a tuple Π = 〈Q,π, ω〉, where

(a) Q is a class of preference queries,

(b) π = (πt)t≥1 is a sequence of querying functions such that for all t ≥ 1, πt : Pt →
(N → Q∪ {⊥}), and

(c) ω : P→ A ∪ {⊥} is a winner selection function.

If ω(pt) =⊥, no winner is declared at round t and the protocol proceeds to round t+ 1.

Otherwise the protocol terminates with the chosen winner at round t. If πt(pt−1)(`) =⊥,

then no query is posed to agent ` at round t.

Definition 23. Let Π = 〈Q,π, ω〉 be a multi-round voting protocol, and f a social

choice function. The protocol Π is an exact protocol for f if, for all preference profiles v,

starting with an empty partial profile p0 (i.e., p0 = ∅n), each round of responses pt−1 is

consistent with v, and there exists a round t∗ such that ω(pt
∗−1) = f(v).

In other words, Π is an exact protocol if it continues eliciting preferences until it has

enough preference information to determine the true winner under SCF f .

Suppose we have a distribution P over full preference profiles. Given a protocol Π, we

have an induced distribution over runs of Π (with respect to responses being consistent

with a profile randomly drawn from P at the beginning of the elicitation process), which

in turn gives us a distribution over various properties reflecting the cost and performance

of Π. There are three general properties of interest to us:

(a) Quality of the winner : if Π terminates with information set pt
∗−1 and winner a =

ω(pt
∗−1), we can measure quality using either expected regret,∑

v

Regret(a,v)P (v|pt∗−1),
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or maximum regret,

MR(a,pt
∗−1).

If Π is an exact protocol, both measures will be zero. We focus here on max regret,

which provides worst-case guarantees on winner quality. In some settings, expected

regret might be more suitable.

(b) Amount of information elicited : this can be measured in various ways (e.g., equiva-

lent number of pairwise comparisons or bits).

(c) Number of rounds of elicitation.

There is a clear tradeoff between these factors. A greater degree of approximation in

winner selection can be used to reduce informational requirements, rounds, or both [84].

For any fixed quality threshold, the number of rounds and the amount of information

elicited can also be traded off against one another. At one extreme, optimal outcomes

can clearly be found in one round if we ask each voter for full rankings. At the other

extreme, optimal policies minimizing expected elicited information can always be con-

structed (though this will likely come at great computational expense) by selecting a

single VQ-pair at each round, where each query carries very little information (e.g., a

simple pairwise comparison), at a dramatic cost in terms of number of rounds. How one

addresses these tradeoffs depends on the costs associated with each of these factors. For

example, the cost of elicited information might reflect the number and type of queries

asked of voters, while the cost associated with rounds might reflect interruption and delay

experienced by voters as they “wait” for other voters to answer queries before receiving

their own next query.1

Computing optimal protocols for specific voting rules, query classes, distributions

over preferences, and cost models is a very important problem that can be addressed

explicitly using our framework. The framework supports both Bayesian and PAC-style

(probably approximately correct) analysis. We illustrate its use by considering a specific

type of protocol using a PAC-style analysis in the next section.

1We’re being somewhat informal, since some voters may only be queried at subset of the rounds. If a
(conditional) sequence of queries is asked of a single voter ` without any interleaving queries to another
voter j, we might count this as a single “session” or round for `. These distinctions won’t be important
in what follows.
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6.3 Probably Approximately Correct One-round Pro-

tocols

Imagine we require a one-round protocol, where each voter can be asked, exactly once,

to list their top-k alternatives. A natural question is: what is the minimum value k∗

for which such top-k queries ensure that the resulting partial profile p has low minimax

regret, MMR(p) ≤ ε, with high probability, say at least 1 − δ? We call ε and δ the

minimax regret accuracy and confidence parameters, respectively. Obviously, such a k∗

exists: with k = m− 1, we elicit each voter’s full ranking, always ensuring MMR(p) = 0.

This question is of interest when, for example, more than one round of elicitation is

infeasible or very costly, an approximate solution (with tolerance ε) is suitable, and some

small probability δ of a poor solution is acceptable.

Let p[k] denote the restriction of full preference profile v = (v1, . . . , vn) to the sub-

rankings consisting of each voter’s top-k alternatives. For any distribution P over voter

preferences v, MMR(p[k]) is a random variable. Let qk = P (MMR(p[k]) ≤ ε). We

would like to find k∗ = min{k : qk ≥ 1− δ}. Even if we assume P has a particular form,

computing k∗ might be analytically intractable; or the analytically derived upper bounds

may too loose to be of practical use. If one can instead sample vote profiles from the true

distribution—without necessarily knowing what P is—a simple empirical methodology

can be used to determine a small k̂ that, with high probability, has the desired MMR

accuracy with near the desired MMR confidence (see Theorem 19 below). Specifically,

we take the following steps:

(a) Specify the following parameters: MMR accuracy ε > 0, MMR confidence δ > 0,

sampling accuracy ξ > 0, and sampling confidence η > 0.

(b) Obtain t i.i.d. samples of full preference profiles S = (v1, . . . ,vt) where

t ≥ 1

2ξ2
ln

2(m− 2)

η
. (6.1)

(c) Output k̂, the smallest k for which

q̂k ≡
|{i ≤ t : MMR(pi[k]) ≤ ε}|

t
> 1− δ − ξ .

The parameters ξ and η are required to account for sampling randomness, and are incor-

porated as part of the statistical guarantee on the algorithm’s success (see Theorem 19).
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In summary, the approach is to estimate qk (which is usually intractable to derive ana-

lytically) using q̂k, and take the smallest k̂ that, accounting for sampling error, is highly

likely to have the true probability, qk̂, lie close to the desired MMR confidence threshold

1− δ. The larger the sample size t, the better the estimates, resulting in smaller ξ and η.

Using a sample set specified as in the algorithm, one can obtain a PAC-style guarantee

[116] on the quality of one-round, top-k̂ elicitation:

Theorem 19. Let ε, δ, η, ξ > 0. If the sample size t satisfies Eq. (6.1), then for any

preference profile distribution P , with probability 1− η over i.i.d. samples v1, . . . ,vt, we

have: (a) k̂ ≤ k∗; and (b) P [MMR(p[k̂]) ≤ ε] > 1− δ − 2ξ .

Proof. For any k ≤ m − 2 (for k = 0, minimax regret is n(m − 1) and for k ≥ m − 1

minimax regret is 0, so we are not interested in these cases), the indicator random

variables 1[MMR(pi[k]) ≤ ε] for i ≤ t are i.i.d. By the Hoeffding bound, we have

Pr
S∼P t

[|q̂k − qk| ≥ ξ] ≤ 2 exp(−2ξ2t).

If we choose t such that η
m−2
≤ 2 exp(−2ξ2t) we obtain Inequality (6.1) and

Pr
S∼P t

(
(|q̂1 − q1| ≤ ξ) ∧ (|q̂2 − q2| ≤ ξ) ∧ . . . ∧ (|q̂m−2 − qm−2| ≤ ξ)

)
= 1− Pr

S∼P t

[
m−2⋃
k=1

|q̂k − qk| > ξ

]
≥ 1− (m− 2) · η

m− 2
(6.2)

= 1− η,

where Inequality 6.2 follows from the union bound. Thus with probability at least 1− η,

uniform convergence holds, and we have q̂k∗ > qk∗−ξ > 1−δ−ξ. Since k̂ is the smallest k

with q̂k > 1−δ−ξ we have k̂ ≤ k∗. Furthermore, qk̂ > q̂k̂−ξ > (1−δ−ξ)−ξ = 1−δ−2ξ,

which shows part (b). �

We note several significant aspects of this result. First, it is distribution-independent—

we need t i.i.d. samples from P , where t depends only on ξ, η and m, and not on any

property of P . Of course, depending on the nature of the distribution, the required

sample size may be larger than necessary (e.g., if P is highly concentrated).

Second, note that an algorithm that outputs k = m− 1 guarantees MMR = 0, but is

effectively useless to the elicitor; hence we desire an algorithm that proposes a k that is

not much larger than the optimal k∗. Our scheme guarantees k̂ ≤ k∗.
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Third, while the true probability qk̂ of the estimated k̂ satisfying the regret accuracy

requirement may not meet the confidence threshold, it lies within some small tolerance

of that threshold. This is unavoidable in general. For instance, if we have qk∗ = 1 − δ,
there is potentially a significant probability that q̂k∗ < 1 − δ for any finite sample; but

our result ensures that there is only a small probability that q̂k∗ < 1− δ − ξ.
Fourth, part (b) of Theorem 19 remains valid if the sum δ + ξ is fixed (and in some

sense, this sum can be interpreted as our ultimate confidence); but variation in δ and

ξ does impact sample size (and part (a)). One can reduce the required sample size by

making ξ larger and reducing δ correspondingly, maintaining the same “total” degree of

confidence, but the guarantee in part (a) becomes weaker since k∗ generally increases as

δ decreases. This is a subtle tradeoff that should be accounted for in the design of an

elicitation protocol.

We can provide no a priori guarantees on how small k∗ might be, since this depends

crucially on properties of the distribution; in fact, it might be quite large (relative to

m) for, say, the impartial culture model (as we see below). But our theorem provides a

guarantee on the size of k̂ with respect to the optimal k∗.

An analogous result can easily be obtained if one is interested in determining the

smallest k for a one-round protocol that has small expected MMR. However, using ex-

pectation does not preclude MMR from being greater than a desired threshold with

significant probability. Hence, expected MMR as a decision criterion may be ill-suited to

choosing k in many voting settings. The techniques above can also be used in a Bayesian

fashion, where instead of using minimax regret to determine robust winners, one uses

expected regret (i.e., expected loss relative to the optimal candidate given uncertainty

over completions the partial profile).

Our empirical methodology can also be used in a more heuristic fashion, without

derivation of precise confidence bounds. One can simply generate random profiles, use

the empirical distribution over MMR(p[k]) as an estimate of the true distribution over

minimax regret, and select the desired k based directly on properties of the empirical

distribution (e.g., represented as histograms, as we illustrate in the next section).

Finally, we note that samples can be obtained in a variety of ways, e.g., drawn from

a learned preference model, such as a Mallows model or Mallows mixture (e.g., using

RIM), or simply obtained from historical problem instances. In multi-round protocols,

the GRIM model can be used to realize conditional sampling if needed. Our empirical

methodology is especially attractive when k∗ cannot easily be derived analytically (which

may well be the case for Mallows, Plackett-Luce, and other common models). We note

that while Filmus and Oren [46] derive k∗ for Mallows, their results apply in an asymptotic
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sense, with respect to n and m, and therefore do not provide a practical approach to the

selection of k∗.

6.4 Empirical Evaluation

To explore the effectiveness of our methodology, we ran a suite of experiments, sampling

voter preferences from Mallows models using a range of parameters, computing minimax

regret for each sampled profile for various k, and estimating both the expected minimax

regret and the MMR-distribution empirically. We also discuss experiments with two

real-world data sets. Borda scoring is used in all experiments.

For the Mallows experiments, a preference profile is constructed by drawing n i.i.d.

rankings, one per voter, from a fixed Mallows model. Each experiment varies the number

of voters n, number of alternatives m, and dispersion φ, and uses 100 preference profiles.

We simulate the elicitation of top-k preferences and measure both MMR and true regret

(with respect to the true preferences and true winner) for k = 1, . . . ,m − 1; results are

“normalized” by reporting max regret and true regret per voter. Figures 6.1 and 6.2

shows histograms reflecting the empirical distribution of both MMR and true regret for

various k, φ, n, and m. That is, in each collection of histograms, as defined by particular

(m,n, φ) parameter values, we generated 100 instances of random preference profiles.

For each instance of a profile, and each k, we compute MMR of the partial votes when

top-k preferences are revealed in the profile—this represents one data point along the

horizontal axis, in the histogram corresponding to that particular k, and to parameters

values (m,n, φ). Note that (normalized) MMR per voter can range from 0 to 9 since we

use Borda scoring.

Clearly MMR is always zero when k = m − 1 = 9. For small φ (e.g., 0.1, 0.4), pref-

erences across voters are reasonably similar, and values of k = 1–3 are usually sufficient

to find the true winner, or at least one with small max regret (see top two plots in Fig-

ure 6.1). But even with m = 10, n = 100 and φ = 0.6, k = 4 results in a very good

approximate winner: MMR ≤ 0.6 in 90/100 instances (see plot in second row and first

column of Figure 6.1). Even the most difficult case for partial elicitation—the uniform

distribution with φ = 1—gives reasonable MMR guarantees with high probability with

less than full elicitation (k = 5–7, depending on one’s tolerance; see plot in second row

and second column of Figure 6.1). The heuristic use of the empirical distribution in

this fashion is likely to suffice in practice in a variety of settings; but we can apply the

theoretical bounds above as well. Since we have t = 100 (admittedly a small sample), by

Eq. (6.1), we can set η = 0.05 and ξ = 0.17, and with δ = 0.9, ε = 0.5, we obtain k̂ = 4.
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Figure 6.1: MMR plots for various φ, n and m: for m = 10, n = 100, and
φ ∈ {0.1, 0.4, 0.6, 1.0}; for φ = 0.6, m = 10 and n ∈ {10, 1000}. Histograms show,
after eliciting top-k, avg. MMR per voter on the x-axis and number of profile instances
on the y-axis.
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Figure 6.2: MMR plots for m = 5, φ = 0.6; and m = 20, φ = 0.6. Histograms show,
after eliciting top-k, avg. MMR per voter on the x-axis and number of profile instances
on the y-axis.
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Figure 6.3: The corresponding true regrets of experiments shown in Figure 6.1. His-
tograms show, after eliciting top-k, avg. regret per voter on the x-axis and number of
profile instances on the y-axis.
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Figure 6.4: The corresponding true regrets of experiments shown in Figure 6.2. His-
tograms show, after eliciting top-k, avg. regret per voter on the x-axis and number of
profile instances on the y-axis.
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Figure 6.5: Each plot corresponds to a summary of the experiments in Figure 6.1, and
shows the reduction in regret (avg. per voter, MMR and true regret over all instances)
as k increases. Percentiles (2.5%, 5%, 95%, 97.5%) for MMR are shown over 100 profiles.
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Figure 6.6: Each plot corresponds to a summary of the experiments in Figure 6.2. Plots
show the reduction in regret (avg. per voter, MMR and true regret over all instances) as
k increases. Percentiles (2.5%, 5%, 95%, 97.5%) for MMR are shown over 100 profiles.
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Figure 6.7: Results on Sushi and Irish. Histograms show, after eliciting top-k, avg. MMR
and true regret per voter on the x-axis and number of profile instances on the y-axis.
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By Theorem 19, we are guaranteed with probability 0.95 that k̂ ≤ k∗ and qk̂ > 0.56. If

we wanted qk̂ to be closer to 0.9, then requiring t ≥ 28842 gives ξ = 0.01 and qk̂ > 0.88.

True regret (see Figures 6.3 and 6.4) is even more illuminating: with φ = 0.6, the

MMR solution after only top-1 queries to each voter is nearly always the true winner; and

true regret never exceeds 2. Even for the uniform distribution with φ = 1, true regret is

surprisingly small: after top-2 queries, regret is less than 0.5 in 97/100 cases. As we in-

crease the number of voters n, the MMR distribution becomes more concentrated around

the mean (e.g., n = 1000), and often resembles a Gaussian. Roughly, this is because with

Borda scoring, (normalized) MMR can be expressed as the average of independent func-

tions of p` through pairwise max regret PMR`(a
∗
p, a

′) = maxv`∈C(p`) B(v`(a
′))−B(v`(a

∗
p)),

where a′ is the adversarial witness (see Eq. 3.1).

Figures 6.5 and 6.6 provides a summary of the above experiments, showing average

MMR as a function of k, along with average true regret and several percentile bounds.

As above, we see that a smaller φ requires a smaller k to guarantee low MMR. It also

illustrates the desirable anytime property of MMR: regret drops significantly with the

“first few candidates” and levels off before reaching zero. For example, with m = 10, n =

100, φ = 0.6, top-3 queries reduce MMR to 0.8 per voter from the MMR of 9 obtained

with no queries; but an additional 3 candidates (i.e., top-6 queries) are needed to reduce

regret from 0.8 per voter to 0. If we fix φ = 0.6 and increase the number of candidates m,

the k required for small MMR decreases in relation to m: we see that for m = 5, 10, 20

we need top-k queries with k = 3, 6, 8, respectively, to reach MMR of zero. This is, of

course, specific to the Mallows model.

Figure 6.7 show histograms on two real-world data sets: Sushi [70] (10 alternatives

and 5000 rankings) and Dublin, voting data from the Dublin North constituency in 2002

(12 candidates and 3662 rankings).2 With Sushi, we divided the 5000 rankings into

50 voting profile instances, each with n = 100 rankings, and plotted MMR histograms

using the same protocol as in Figure 6.1 and Figure 6.3; similarly, Dublin was divided

into 73 profiles each with n = 50. Sushi results suggest that with top-5 queries one can

usually find a necessary winner; but top-4 queries are usually enough to obtain low MMR

sufficient for such a low-stakes group decision (i.e., what sushi to order). True regret

histograms show the minimax solution is almost always the true winner. With Dublin,

top-5 queries virtually guarantee MMR of no more than 2 per voter; top-6, MMR of 1

per voter; and top-7, MMR of 0.5 per voter. True regret plots show the minimax winner

is either optimal or close to optimal in most profile instances.

2There are 43, 942 ballots; 3662 are complete. See www.dublincountyreturningofficer.com
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6.5 Conclusion

We have outlined a general framework for the design of multi-round elicitation protocols

that are sensitive to tradeoffs between the number of rounds of elicitation imposed on

voters, the amount of information elicited per round, and the quality of the proposed

winner. Our framework is probabilistic, allowing one to account for realistic distribu-

tions of voter preferences and profiles. We have formulated a probabilistic method for

choosing the ideal threshold k for top-k elicitation in one-round protocols, and developed

an empirical methodology that applies to any voting rule and any preference distribu-

tion. While the method can be used purely heuristically, our PAC-analysis provides our

methodology with statistical guarantees. Experiments on random Mallows models, as

well as real-world data sets (sushi preferences and Irish electoral data) demonstrate the

practical viability and advantages of our empirical approach.

There are numerous opportunities for future research. We have dealt mainly with

one-round elicitation of top-k candidates—developing algorithms for optimal multi-round

instantiations of our framework is an important next step. Critically, we must deal with

posterior distributions that are generally intractable, though GRIM-based techniques as

developed in Chapter 5 may help. We are also interested in more flexible query classes

such as batched pairwise comparisons. While the empirical framework is applicable to

any preference distribution, we still wish to analyze the performance on additional distri-

butions, including more flexible mixture models. On the theoretical side, we expect that

the PAC-analysis can be extended to different query classes and to multi-round protocols:

probabilistic bounds on the amount of information required (e.g., k∗ for top-k queries)

should be significantly better than deterministic worst-case bounds [34] assuming, for

example, a Mallows model. Bayesian approaches that assess candidate quality using ex-

pected regret rather than minimax regret are also of interest, especially in lower-stakes

settings. We expect that combining expected regret and minimax regret might yield

interesting solutions as well.



Chapter 7

Summary and Conclusions

In social choice, decisions must be made for a collection of agents, each of whom may have

different preferences over the set of possible decisions. Social choice problems as well as

their methodologies have become increasing important in our modern world as individuals

and organizations have become more comfortable using Internet-enabled services through

their connected devices (PCs, smartphones, etc.). Not only do applications of social

choice abound, such as in meeting scheduling, activity planning and political voting,

its techniques and methodologies have also had impact on ranking web search results,

aggregating opinions, and systems for personalized product recommendations. However,

many of the existing approaches in social choice require that agents think through and

report their full preferences, usually in the form of rankings. This requirement not only

imposes a cognitive burden for the agents, but also increases the communication cost,

and violates their privacy by extracting potentially unnecessary personal information.

This is in part why, for example, many political elections use the Plurality voting rule to

elect candidates.

In this thesis, we have developed a framework for making robust social choice decisions

given incomplete preference information from multiple agents. Moreover, our robust

decision support framework naturally allows for preference elicitation schemes that aim

to increase decision robustness.

Our framework aims to address the above issues. It is very general, encompassing

any social choice mechanism that has a quantifiable social welfare interpretation, which

includes many commonly studied and widely used voting rules. The minimax regret

approach we take to computational social choice has been proven effective in single-

agent settings [14, 13, 19] and in mechanism design [67]. By applying such decision-

theoretically sound concepts with theoretically and practically effective algorithms that

implement such concepts, including robust decision support and preference elicitation,
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we show that many social choice problems can be practically solved while reducing the

informational requirements of agent preferences and the computation requirements of

robust optimization.

In particular, the key idea behind our framework is the notion of minimax regret.

Minimax regret measures the best worst-case difference in the quality (i.e. social wel-

fare) of an alternative compared to the unknown, but optimal, alternative. It assumes

that partial preferences are completed in a worst-case fashion. Thus, while minimax re-

gret is worst-case, and provides robust quality guarantees, the actual true regret may be

significantly smaller. In many of our experiments, our preference elicitation algorithms

are able to quickly drive down the minimax regret. This results in significant practical re-

duction in the amount of preference information required, compared to eliciting complete

rankings. We also develop algorithms for learning heterogeneous models of preference

rankings, which we then leverage in the context of multi-round elicitation schemes to

further reduce the information elicited.

7.1 Chapter Summary of Main Results

Robust Optimization and Elicitation for Single-Choice Problems. In Chapter

3, we focus on how to make group decisions with only partial preference information. We

introduce the concept of robust social choice, as defined by the notion of minimax regret,

which provides the best worst-case guarantee with respect to the quality of the true, but

unknown, winning alternative. We contrast minimax regret as a decision-criterion with

possible and necessary winners, a previous solution concept, and show that it provides

the more sensible foundation on which to implement winner determination with partial

preferences.

We develop efficient, polynomial time algorithms for computing the minimax regret

optimal alternative for a variety of common voting rules and show hardness results for

certain other voting rules. We also developed incremental preference elicitation algo-

rithms that identify an agent and pose a pairwise comparison query, in order to quickly

reduce minimax regret. Experiments on real voting and preference data show that only

a fraction of the full preference information is needed to identify an alternative with

zero minimax regret (i.e., the true winning alternative). If small max regret values are

tolerable, then even less information needs be elicited to find such a winner.

Robust Optimization and Elicitation for Multiple-Choice Problems. In Chap-

ter 4, we focus on how to select a set, or slate, of alternatives given only partial preference
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information. In particular, we study the popular scheme known as Proportional Repre-

sentation (PR). PR is a natural selection criterion in which an agent scores a slate by

the satisfaction that agent derives from the most preferred alternative within the slate

as given by the agent’s ranking. While it has recently been shown that PR is NP-hard

even for the full information setting, greedy algorithms as well as integer programming

formulations have been developed.

We again apply the minimax regret framework to selecting slates with only partial

preference information. While the regret-based definitions naturally extend from single-

winner to the multi-winner setting, computational results do not. However, we develop

a greedy approach that is based on finding the next alternative that, when added to

the current slate of alternatives, minimizes the maximum regret. We prove approxima-

tion guarantees for this greedy algorithm, including the fact that it reduces to the full

information greedy algorithm when the marginal regret of adding an alternative to the

slate is zero (for example, as is the case when full rankings are known). The preference

elicitation algorithm that we devise exploits the conditional max regret from the greedy

algorithm to drive the generation of a query, which consists of an agent and a pairwise

comparison. Experiments on real datasets show the effectiveness of the greedy algorithm

as well as that of the elicitation strategy, which quickly reduces regret of the minimax

optimal slate.

Learning Rankings with Pairwise Preferences. In Chapter 5, we turn our focus

to the problem of learning preference (ranking) distributions over alternatives. Not only

is this problem important in recommender systems (for example, inferring missing pref-

erences when given partial preference information), it allows us to tackle a variety of

social choice problems, and in particular, design better preference elicitation strategies

(as we explore in Chapter 6). While learning ranking distributions has been the subject

of much research, no previous work has addressed the problem of learning distributions

from pairwise comparisons, a basic building block of many preference structures. This

chapter develops tractable learning algorithms for such pairwise comparison evidence.

While we primarily develop algorithms for learning Mallows-based models (and mixtures

thereof), we believe the approach can be extended to other distributions.

We introduce a key technical tool, a sampling methodology known as the Generalized

Repeated Insertion Model, that can approximately sample Mallows models that have

been conditioned on pairwise comparison evidence. While we do show that sampling and

inference with conditional Mallows models is computationally difficult, our GRIM based

sampler is exact for many specialized forms of preferences, including previously studied



Chapter 7. Summary and Conclusions 153

forms (such as top- and bottom-k, partitioned, etc.). We also prove bounds on the

approximation quality of GRIM-based samplers. We then use these samplers to devise

EM-based learning algorithms to learn Mallows mixture models, calculate model log-

likelihoods, and perform non-parametric estimation. Experiments on real-world datasets

demonstrate the scalability and effectiveness of the algorithms, as well as interesting

clustering patterns in the Movielens and sushi datasets.

Elicitation with Probabilistic Preference Distributions. Finally, in Chapter 6,

we circle back to the preference elicitation problem in social choice, but from a probabilis-

tic, and multi-round, perspective. In this chapter, we discuss the issues inherent in fully

incremental schemes. In practice, they may cause substantial, and unnecessary, delay

until a decision is made—they require agents to respond before asking the next query,

and hence any blocking agent significantly delays the outcome. Furthermore, they create

interruption costs which occur when an agent must wait for other agents to respond to

their respective queries before that agent is queried again. Such issues are practically

important when implementing a group decision problem, especially in a time-sensitive

setting.

In this chapter, we propose a probabilistic, multi-round model of vote elicitation

that combines advantages of incremental elicitation (i.e., minimizing the total amount

of information elicited) with those of batch or full information schemes (where we send

non-blocking, or non-dependent queries to selected agents in a few rounds). The multi-

round model specifically accounts for rounds, where in each round the elicitor sends

non-blocking queries to a set of agents. We exploit either previously known or learned

distributions of preferences (for example, obtained from algorithms in Chapter 5) to

infer the ideal number of rounds and the ideal queries within a round, so that a winning

alternative (or an alternative with small minimax regret) exists with high probability.

In particular, we analyze a one-round top-k query protocol where we demonstrate how

the best k is chosen. We provide a PAC-style sample complexity analysis which provides

confidence guarantees on the suggested k.

Our empirical results not only show the effectiveness of our one-round protocol, but

also provide a practical procedure under which one can select the appropriate elicitation

parameters (i.e. the value of k).

7.2 Contributions

We summarize our thesis contributions in point form below.
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Chapter 3

• Defining the minimax regret (MMR) criterion for making robust social choice de-

cisions with partial preference information.

• Comparing MMR to possible and necessary winners, showing it generalizes on

necessary winners and showing advantages including worst-case guarantees, and

the possibility of alternatives that are not possible winners but have good max

regret.

• Offering basic observations about the complexity of computing MMR optimal al-

ternatives.

• Developing polynomial time algorithms for computing MMR for common voting

rules including positional scoring, maxmin fairness, maximin and Bucklin.

• Developing an elicitation strategy known as current solution strategy (CSS) for

pairwise and top-k queries that quickly reduces MMR.

• Experiments on real and synthetic datasets that show CSS is superior to a “vol-

umetric” strategy and random querying for both pairwise and top-k queries. Ex-

periments also show that, in practice, only a fraction of preference information is

required to make optimal or near-optimal decisions.

Chapter 4

• Defining MMR for Proportional Representation, a slate optimization problem.

• Defining the additional alternative problem, which is a key component of a greedy

algorithm for approximating the MMR optimal slate.

• Empirical results showing the partial information greedy algorithm produces opti-

mal or near optimal slates in practice.

• Developing a preference elicitation strategy that quickly reduces MMR of the op-

timal slate (or the max regret of slate generated by our greedy approximation

algorithm) with a desirable anytime profile.

Chapter 5

• Development of a new class of rank sampling algorithms called generalized repeated

insertion model (GRIM).
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• Development of a GRIM-based conditional Mallows model sampler.

• Proving #P -hardness of conditional Mallows inference.

• Proving upper and lower bounds on the approximation quality of our conditional

Mallows sampler.

• Proving that our sampler is exact for a widely studied class of preference structures.

• Development of an ergodic MCMC sampler for conditional Mallows.

• Development of algorithms for estimating log-likelihood of a Mallows mixture model.

• Development of Monte Carlo EM algorithm for learning a mixture of Mallows

models given only agents’ pairwise comparisons (the first such algorithm).

• Experiments on synthetic, Movielens, and sushi data reveal our proposed learning

algorithm is reasonably efficient, that it indeed learns interesting clusters of rankings

in the datasets, and that it has reasonable predictive capabilities.

Chapter 6

• Introduction of a framework for trading off the number of rounds of elicitation with

the total information revealed to obtain a (near) optimal MMR solution.

• Using probabilistic preference models to analyze the best elicitation strategy for

one-round top-k queries.

• Development of a general Monte Carlo methodology to find the smallest value of k

needed in one-round top-k elicitation for a given MMR tolerance, and theoretical

PAC-bounds on sample complexity.

• Providing empirical results on real data that show effectiveness of the methodology

and the relatively small value of k needed to realize near-optimal winners.

7.3 Future Work

Multi-attribute Elicitation. While our results suggest that incremental elicitation

is viable in many practical domains, a number of interesting avenues for future research

remain. Apart from developing computational and elicitation schemes for additional

single- and multi-winner voting rules, one important direction is to develop approaches
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well-suited for multi-attribute domains, where alternatives and/or voters are specified

using particular instantiations of attributes, and preferences are represented as compact

functions of these attributes. For example, alternatives may be cars and each car can

be represented by a vector of attributes such as color, brand, year, etc. An agent’s

preference or utility function over a car may for example, be a linear combination of

relevant attributes. A social choice problem in this context, may be for a car manufacturer

to find a car design (an instantiation of attribute values) that will maximally satisfy all

agents. One can also use a more flexible class called Generalized Additive Utility [17] to

model more intricate utility functions. These are also known as combinatorial domains,

where the number of alternatives can be exponentially large in the number of attributes.

For an overview of voting over combinatorial domains, see Brandt et al. [16, Chapter

9]. Elicitation strategies and robust optimization methods must account for a much

bigger outcome space and exploit the utility and attribute representation that can help

in computing MMR and in generating helpful queries. Such models are particularly

relevant in recommender systems and product configuration.

Query Types. While we have worked primarily with pairwise comparisons and top-k

queries, there are a few other query types that can be natural for human agents to an-

swer. This includes selecting the most preferred alternative from a subset of alternatives.

Answering such a query would generate k− 1 pairwise comparisons if k is the size of the

subset. One can also request the agent to rank the alternatives of the subset, thereby

revealing even more preference information. One can also ask for the top-t items, the

bottom-t items and so on. Elicitation may also be natural with questions regarding both

most preferred and least preferred items. For example, a user may clearly identify the

most preferred restaurant and the least preferred restaurant (e.g., a place that is far from

home). Such information can be quite informative in eliminating and narrowing the set

of candidate winners. Perhaps not as natural, one can also ask “rank position” queries

that cannot be represented with pairwise comparisons. These include “what is an up-

per/lower bound on the rank position of alternative a?” Or “what is the rank position of

a?” These would require different algorithms for computing minimax regret, unlike ones

we developed for pairwise preferences. It might also be interesting to mix these queries.

Moving away from ranking-based preferences to real-valued ones (i.e., corresponding

to utility values), these typically allow voters to express numerical values for each al-

ternative. Special examples include approval, cumulative and range voting. Recall that

Kalech et al. [69] provide a simple elicitation algorithm for range voting, where queries

are of the form “what is your next highest preferred candidate, and what is its utility?”
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One can imagine more nuanced queries such as “what is the utility of alternative a?”,

or ”give upper and/or lower bounds on the utility of a,” or even pairwise comparisons.

There might also be constraints, as in cumulative voting where the sum of all utilities

must equal one, which can create consistency issues as well as implications of the un-

known utilities (e.g., if every utility is known except for one alternative, then utility sum

constraint implies its value).

Robust Optimization and Elicitation for Rank Aggregation. While we have

presented algorithms for both single- and multi-winner schemes, we have not addressed

rank aggregation schemes. Although it appears to be less prevalent, studying rank aggre-

gation as a decision problem with partial preferences is an interesting research direction.

This makes sense if the consensus ranking, and not parts of it, has a useful purpose. An

example where a consensus ranking is useful is in graduate program admissions where an

aggregate ranking needs to be produced from a committee of evaluators. In practice, not

all evaluators can read all applications and thus a consensus ranking must be produced

from only partial rankings from the evaluators. The Duke University computer science

program uses a variation of the Kemeny ranking to solve this exact problem [31]. As an-

other example, Lu and Boutilier [82] developed the unavailable candidate model, which

justifies a consensus ranking as a decision policy, that selects as a winner the highest

ranking candidate that is available a posteriori. Under this model, the Kemeny ranking

can be justified as the solution to a special case of the model when the probability of can-

didates being unavailable approaches 1. It’s likely that in the deterministic worst-case,

Kemeny would require all voters to give entire rankings. Nevertheless, weighted versions

of Kemeny, where emphasis is placed on getting top of the ranking correct, may require

less information when one allows a small minimax regret tolerance.

Robust and Probabilistic Optimization. While the minimax regret criterion offers

a robust approach to group decisions with quantifiable guarantees, it also has drawbacks.

First, the guarantees are worst-case and provide no information about what the true

regret might be. In our experiments on Irish and Sushi datasets, we see that the true

regret is typically much smaller than the minimax regret. The fact is that real-world

preferences are rarely worst-case instances for the elicitation problem. We can also exploit

known probabilistic information regarding populational preferences to make even better

decisions. Knowing partial preference information, one can certainly condition a learned

populational model (e.g., a Mallows mixture model) and infer the most probable outcome

(MAP estimate). But more interesting analyses would mix probabilistic and regret-based
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reasoning. For example, of all alternatives that have relatively small max regret, one

might recommend the winning alternative that is most probable under the posterior

distribution.

Another approach is to use expected regret. Assume a distribution P over prefer-

ence profiles and some observation model L (i.e., a distribution which conditioned on

a preference profile generates an partial profile). Then the posterior is of the form

P (v|p) ∝ L(p|v)P (v), where v and p is a complete and partial preference profile, respec-

tively. Now given p and a voting rule r, a Bayesian decision-maker would be interested

in finding the alternative (or a slate) with smallest expected regret

max
a∈A

E
P (v|p)

[s(r(a),v)− s(a,v)] . (7.1)

Alternatively, one may also be interested in maximizing expected score, maxa∈A EP (v|p) s(a,v).

The benefits of the Bayesian approach include better estimates of the actual regret, in-

corporating prior knowledge that weights more realistic profiles higher than extreme

worst-cases, and being able to average regret over all (consistent and complete) profiles.

The Bayesian approach would be more applicable in low-stake settings, since there is

no guarantee that the prior P accurately reflects the underlying preference distribution

(although P can be learned from historical data), and therefore no strong guarantees can

be provided that guards against a worst-case event, in contrast to minimax regret.

Extending Pairwise Preference Learning Algorithms. One of the weaknesses of

the Mallows model is its lack of flexibility in various dimensions, such as allowing different

dispersion “rates” in different regions of the ranking. Models that allow more flexibility

while controlling for overfitting could lead to more realistic ranking models for real-world

settings. Other extensions include exploration of other probabilistic models of incomplete

preferences that employ different distributions over rankings, such as Plackett-Luce or

weighted Mallows; that account for noisy comparison data from users; and that account

for data that is not missing at random—this may occur, say, in settings in which a bias

exists towards observing preferences for higher ranked alternatives. The ideas behind

the sampling algorithms for conditional preference distributions can also be extended

to other models such as Plackett-Luce, the Thurstonian model, and even the recent

riffled independence [61] model, using the same constrained sampling approach. Given

an appropriate observation model, it can also be extended to noisy observations, when

pairwise comparisons are intransitive.
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Modelling Single-Peaked Preference Distributions. One interesting direction is

the modelling of single-peaked preference profiles. These are profiles in which there

exists an ordering O of A (picture this as placing items in a line from left to right) such

that any user’s preference has a peak point a∗ (i.e., most preferred item) and for x, y

on the left (right) side of a∗, if x is left (right) of y in O, then y � x. There is no

obvious probabilistic model that generates single-peaked profiles. But recent work on

riffled independence provides an interesting approach to this problem. Suppose we have

some ordering O of A, we generate a single-peaked preference ranking by first choosing

the peak, or the most preferred item, at random. Then, the remaining items can be

partitioned into the left and right most items. The ranking of the left (and right) most

items are determined according to how far they are from the peak. However, that does

not produce a full ranking r, which must have the peak at the top position and the left

and right most items must be interleaved in such a way that r restricted to the left (right)

most items is consistent with O. For example suppose O = abcde and c is the peak. Then

if the left items are ranked ba and the right items are ranked de, then cdbae is a valid

ranking but not cdabe since b � a. The interleaving process is performed randomly, for

example, as in a riffle shuffle of two decks of cards.

Multi-Round, Probabilistically Guided Elicitation. We have dealt mainly with

one-round elicitation of top-k candidates—developing algorithms for optimal multi-round

instantiations of our framework is an important next step. Critically, we must deal with

posterior distributions that are generally intractable, though GRIM-based techniques

may help. It would also be interesting to explore more flexible query classes such as

batched pairwise comparisons. While the empirical framework is applicable to any pref-

erence distribution, we still wish to analyze the performance on additional distributions,

including more flexible mixture models. On the theoretical side, we expect our PAC-

analysis can be extended to different query classes and to multi-round protocols: we

expect that probabilistic bounds on the amount of information required (e.g., k∗ for top-

k queries) will be significantly better than deterministic worst-case bounds [34] assuming,

for example, a Mallows model.
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