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In this appendix, we will use p to denote the desired candidate the manipu-
lating coalition wishes to install.

1 Theorem 1

We will start by proving Theorem 1 for a special case of k-approval voting rule,
called the veto rule. Veto is defined to be (m − 1)-approval. In other words,
each voter specifies which candidate he dislikes the most. We start from the case
where we have only 3 candidates and then prove the general case by induction.

Let n be the number of sincere voters, c be the number of manipulators and
A = {a, b, p}. The balanced strategy BAL in this case is bc/2c manipulators
veto a and dc/2e manipulators veto b. We have the following lemma.

Lemma 1 Assume impartial culture, the balanced strategy BAL has the highest
probability of uniquely electing p.

Proof: Consider an alternative strategy ALT where without loss of general-
ity1 bc/2c−d manipulators veto a and bc/2c+d manipulators veto b. Because we
are assuming impartial culture, it is sufficient to count the number of preference
profiles for the sincere voters where, together with the manipulators’ votes, p is
vetoed strictly less times than both a and b. Note that each preference profile
naturally induces a vector of length n of vetoed alternatives, which we will refer
to as the veto vector. Each veto vector corresponds to 2n preference profiles with
the same outcome (by arbitrarily selecting alternatives for the first and second
positions in the sincere voters’ preferences), hence it is sufficient to count veto
vectors.

Fix the identities of sp sincere voters who veto p. We will show that for
every such choice there are (weakly) more veto vectors such that p is the unique
winner under BAL than under ALT. We consider veto pairs (sa, sb), where sx
is the number of sincere voters who veto x for x ∈ {a, b}. Note that sa = sb =
n− sp, and each veto pair corresponds to

(
n−sp
sa

)
=
(
n−sp
sb

)
veto vectors. Letting

t = sp + 1 be the threshold, we have that p is a unique winner under BAL if and
only if

sa ≥ t− bc/2c ∧ sb ≥ t− dc/2e. (1)

1a and b are symmetric and it is obviously suboptimal to veto p.

1



Similarly, p is a unique winner under ALT if and only if

sa ≥ t− bc/2c+ d ∧ sb ≥ t− dc/2e − d. (2)

To complete the proof we will construct a one-to-one mapping between pairs
(sa, sb) satisfying (2) and pairs (s′a, s

′
b) satisfying (1) such that(

n− sp
sa

)
≤
(
n− sp
s′a

)
. (3)

Let (sa, sb) be a veto pair satisfying (2). If it also satisfies (1), we set
s′a = sa, s′b = sb, i.e., we map the pair to itself. If not then it must be the case
that sb ∈ {t−dc/2e−d, . . . , t−dc/2e}. Let sb = t−dc/2e− b, for b ∈ {1, . . . , d}.
We set s′a = t−bc/2c+d− b, s′b = n−sp−s′a. The pair (s′a, s

′
b) does not satisfy

(2). To see that it does satisfy (1), note that sa + sb ≥ 2t− c+ d− b, and hence

s′b = (n− sp)− s′a = (sa + sb)− s′a ≥ t− dc/2e.

It follows that the mapping defined above is one-to-one. Furthermore, it is easy
to verify that s′a is at least as close to (n − sp)/2 as sb. This implies (3), and
hence the theorem.

We now extend the lemma above to handle any number of candidates.

Lemma 2 Let A = {a1, a2, . . . , am, p}, assume impartial culture, and consider
the veto rule. Then the balanced strategy BAL where c/m2 manipulators veto
ai, (i ∈ [m]) has the highest probability of uniquely electing p.

Proof: For each compact veto vector (sa1
, sa2

, . . . , sam
) of sincere voters,

where sai is the number of manipulators veto ai and
∑

i sai = n− sp, it corre-
sponds to

(
n−sp

sa1
,sa2

,...,sam

)
3 veto vectors of sincere voters.

Letting t = sp + 1 be the threshold, we have that p is a unique winner under
BAL if and only if

sa1
≥ t− c/m∧, . . . , sam

≥ t− c/m (4)

p is a unique winner under ALT if and only if

sa1
≥ t− c/m + d1∧, . . . , sam

≥ t− c/m + dm, (5)

where
∑

i di = 0.
We now prove there is a bijection between compact veto vectors (s′a1

, s′a2
, . . . , s′am

)
that satisfy constraint (5) and compact veto vectors (sa1 , sa2 , . . . , sam) that sat-
isfy constraint (4), such that(

n− sp
sa1 , sa2 , . . . , sam

)
≥
(

n− sp
s′a1

, s′a2
, . . . , s′am

)
(6)

We do so by induction on the number of nonzero di’s. Denote this number
by j.

2For the proof, we assume for simplicity c/m is an integer. For the general case where
c = i×m+ j, the proof is similar.

3
( n−sp
sa1

,sa2
,...,sam

)
=

(n−sp
sa1

)(n−sp−sa1
sa2

)
. . . ,

(sam
sam

)
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• Base step, when j = 0, the bijection is a self-mapping and (6) holds with
equality. j 6= 1 because it will violate

∑
i di = 0. When j = 2, let

di1 = −di2 6= 0. The bijection is constructed as follows:

– for i 6= i1 and i 6= i2, let sai = s′ai

– for each (s′i1 , s
′
i2

) pair, we map it to (si1 , si2) according to the bijection
in 2-candidate case.

Clearly, the one above is a bijection and one can easily verify that it
satisfies (6).

• Inductive hypothesis, suppose there is such a bijection when j ≤ k.

• Inductive case, now consider j = k + 1. WLOG, we pick the di1 with the
smallest absolute value, there must exist di2 with the opposite sign and
|di2 | ≥ |di1 |. The bijection is constructed as follows:

– For each (s′i1 , s
′
i2

), we map it to (s′′i1 , s
′′
i2

) according to the bijection
in 2-candidate case where s′′i1 ≥ t− c/m and s′′i2 ≥ t− c/m+ d1 + d2.

– Map (s′a1
, s′a2

, . . . , s′′i1 , . . . , s
′′
i2
, . . . , s′am

) to (sa1
, sa2

, . . . , sam
) accord-

ing to the bijection in inductive hypothesis.

Clearly, the resulting mapping is a compound of two bijections, which is
still a bijection. Also, it is easy to verify that both bijections (weakly)
increases the multinomial quantity. Thus, (6) holds as well.

We now extend the lemmas above to k − veto where a voter can veto k
candidates. Note that k − veto is equivalent to (m − k) − approval, so we
conclude the proof of Theorem 1 for the IC case.

Theorem 1 Let A = {a1, . . . , am, p}. Assume impartial culture and consider
k − veto rule. The balanced strategy BAL where manipulator i votes {a` | l ∈
{ik + 1 (mod m), . . . , (i + 1)k (mod m)}} provides the highest probability of
manipulation.

Proof: Let V = (v1, . . . , vm) be a vote profile and (sp, sa1 , . . . , sam) be the
compact veto vector. Let t = sp+1−ck/m be the threshold such that p uniquely
wins under BAL iff sai

≥ t for all i. For alternative strategy ALT, p uniquely
wins iff sai

≥ t+di for all i, where
∑

i di = 0. We prove ALT has probability of
manipulation no larger than BAL by induction on the number of non-zero di’s,
denote this number by j.

Base step: j = 2 and suppose WLOG d = −d1 = d2 > 0. We construct a
one-to-one mapping of profiles V where p wins under ALT to profiles V ′ where p
wins under BAL. Map all V that is manipulable in both ALT and BAL to itself.
Otherwise we map by swapping a1 and a2 sequentially in V while ignoring other
candidates, that is, we replace any occurrence of a1 by a2 and a2 by a1 in the
votes until the score of a1, s′a1

= sa2 − d. This must be feasible since every
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swap leaves the score of a1 and a2 either unchanged (i.e. when a1, a2 ∈ vi or
a1, a2 /∈ vi) or increase the score of a1 by one and decrease the score of a2 by
one, or vice versa; and if we were to swap all votes the score of a1 is sa2

> s′a1
so

we must reach a first index i such that swapping in vi results in the score of a1
equal to s′a1

. The resulting profile V ′ has s′a1
≥ t and t ≤ s′a2

= sa1 + d < t + d
so that V ′ is manipulable under BAL.

This mapping is one-to-one. Any V ′ that is manipulable in both ALT and
BAL is mapped to itself. Now suppose profiles X and Y maps to V ′ through
swapping. X and Y must have the same veto score vector and suppose swapping
stops after the i-th vote in X and the i′-th vote in Y . We have i = i′ otherwise
say i < i′. This implies the l-th votes in X and Y are equal, for all l ≤ i, but
this means the veto vectors of X and Y must equal after removing the first i
votes. Hence swapping the first i votes in Y must reach veto score s′a1

for a1,
contradiction. So i = i′ and it follows that X = Y .

Inductive hypothesis: suppose that ALT has no larger probability of manip-
ulation than BAL, for all j ≤ r.

Inductive step: we have j = r + 1. WLOG suppose d1 has the smallest
absolute value and d2 has the opposite sign. We map a profile V in the same
way as in the base case except that a1’s target score becomes sa2

− d2. This is
a one-to-one mapping to manipulable profiles of another strategy ALT′ where
the new d′1 is zero and the new d′2 is d1 + d2, while d′i for i ≥ 3 equals di. By
the inductive hypothesis ALT′ has r non-zero d′i’s and therefore has probability
of manipulation no larger than that of BAL. Thus, ALT has probability of
manipulation no larger than that of BAL.

We now show that, BAL is still the optimal manipulation strategy for veto
when we replace the IC assumption with IAC.

Lemma 3 Let A = {a1, a2, . . . , am, p}, assume impartial anonymous culture,
and consider the veto rule. Then the balanced strategy BAL where c/m manip-
ulators veto ai, (i ∈ [m]) has the highest probability of uniquely electing p.

Proof: Given our construction of the bijection between compact veto vectors
that select p under BAL and compact veto vectors that select p under ALT, it
suffices to show that the number of voting situations that correspond to compact
veto vectors under BAL is no less than that under ALT.

Consider a compact veto vector (sa1
, sa2

, . . . , sam
), the number of voting

situations corresponding to it is

x =

(
sa1 + (m− 1)!− 1

sa1
− 1

)(
sa2 + (m− 1)!− 1

sa2
− 1

)
. . .

(
sam + (m− 1)!− 1

sam
− 1

)
.

Similarly, the number of voting situations corresponding to compact veto
vector (sa1 − 1, sa2 + 1, . . . , sam) is

x′ =

(
sa1 + (m− 1)!− 2

sa1
− 2

)(
sa2 + (m− 1)!

sa2

)
. . .

(
sam + (m− 1)!− 1

sam
− 1

)
.

x/x′ =
(sa1+(m−1)!−1)sa2

(sa2
+(m−1)!)(sa1

−1) =
sa1sa2+sa2 (m−1)!−sa2

sa1
sa2

+(sa1
−1)(m−1)!−sa2
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When sa1
> sa2

, we have x/x′ ≤ 1. This shows that the number of voting
situations correspond to a more balanced compact veto vector is greater. From
previous proof of the impartial culture case, we know that under the bijection,
the compact veto vector under BAL is more balanced. This , in turn, implies
that it yields more voting situations.

The extension of the above lemma from veto to k veto is the same as that
in the IC case. Thus, we complete the proof of Theorem 1.

2 Theorem 2

In this section, we use an equivalent, alternative description of Borda score,
which assigns a score of i−1 to candidate ranked i-th and selects score minimizer
(in a tie-breaker selects a candidate other than p). According to this description,
BAL always assigns p with a score of zero. The IC part of Theorem 2 follows
from the two lemmas below.

Lemma 4 Let A = {x, y, p}. Assume impartial culture, that c is even, and
consider the Borda rule. Then the optimal manipulation is either the balanced
strategy BAL, where manipulators alternatingly vote p � x � y and p � y � x,
or ALT[1], where in general manipulators give p a score of zero, and x, y scores
such that their difference is two.

Proof: Let ALT[d] denote the strategy where manipulators assign a score
of zero to p, and scores to x, y such that their difference is 2d (assume WLOG
that x’s score is higher). We will construct a one-to-one mapping of profiles
where p wins under ALT[d] to profiles where p wins under ALT[d − 2] for any
d ≥ 2 (note that ALT[0] is BAL), showing that ALT[1] is better than ALT[d]
for all odd d ≥ 3 and BAL better than ALT[d] for all even d ≥ 2. Consider
a profile V = (v1, . . . , vn) where p wins under ALT[d], and let sp, sx, and sy
denote the corresponding scores for the candidates with respect to V .

If p also wins under ALT[d− 2] then map V to itself. Otherwise map V to
a profile V ′ where x has a score of s′x = sx + 2d − 2 as follows. Consider all
votes U = (vj1 , . . . , vjl), j1 < · · · < jl, where p is ranked second. Start swapping
x and y for each vote in U in turn, and stop after swapping in vr if the swap
results in the score of x equal to s′x. Note that we can never strictly exceed s′x
since each swap increases the score of x by two and s′x− sx is even. If such a vr
does not exist in U , then finish swapping in U and start swapping votes in V \U ,
from the smallest to the largest index. Observe that we must reach some vote
where the swap would reach score target s′x, otherwise we would have swapped
x and y in all votes without score of x reaching s′x, which is impossible since
sy > s′x.

Now map V ′ to V ′′ by swapping x and y in all votes of V ′ so that s′′y = s′x.
Now V ′′ has p as the winner under ALT[d − 2]. First note the score threshold
for ALT[d− 2] for x and y are tx = sp− 3c/2− d+ 2 and ty = sp− 3c/2 + d− 2,
respectively. Since sx > sp − 3c/2 − d, the threshold for ALT[d], and sx ≤ tx,
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then sp−3c/2+d−2 = ty < s′′y ≤ sp−3c/2+d. Also note that s′′x = sy−2d+2 >
sp − 3c/2− d + 2 = tx.

The mapping from V to V ′′ is one to one. Suppose there are two profiles X
and Y that map to V ′′. If V ′′ has p as winner under both ALT[d] and ALT[d−2]
then X = Y = V ′′, otherwise V ′′ must be mapped through swapping. First note
that the mapping preserves the positions of p, therefore the sequence of vote
indices for swapping must be the same. Now suppose the swapping stops at
some vote index i in X and index i′ in Y . It must be that i = i′ since if X
and Y both map to V ′′ their score vectors (for x, y and p) must be identical,
and the profile, say X, where the swapping ends earlier must have reached the
score target s′x (for V ′) earlier but that implies swapping the same sequence of
i votes in Y results in reaching s′x, because the swapped votes in X and Y must
be identical as it corresponds to the same votes in V ′′. Since i = i′ it follows
that X = Y .

Lemma 5 Let A = {x, y, p}. Assume impartial culture, and consider the Borda
rule. Then the optimal manipulation strategy under the condition that either (i)
n is even and c + 2 divisible by four; or (ii) n is odd and c is divisible by four.,
is BAL.

Proof: By Lemma 4, we just need to show BAL is better than ALT[1],
which we do through a one-to-one mapping of manipulable profiles of ALT[1] to
that of BAL. Again map any profile that is manipulable under both strategies
to itself. Consider a profile V = (v1, . . . , vn) where p wins under ALT[1], but
not BAL. Let sp, sx, and sy denote the corresponding scores for the candidates
with respect to V . It must be that sx = sp− 3c/2− 1, we will map V to profile
V ′ by first mapping to a profile V ′′ where s′′x = sx + 1 and mapping V ′′ to V ′

by swapping x and y in every vote of V ′′ so that s′x = s′′y and s′y = s′′x. Now
consider two cases.

Case 1: there exists a vi that ranks p in either first or last place, and i is
the smallest such index. Mapping to V ′′: first look at vi, (x, y are adjacent in
rank positions) if x is above y then swap x, y to get V ′′. Otherwise consider
all votes U = (vj1 , . . . , vjl), j1 < · · · < jl, where p is ranked second. Start
swapping x and y for each vote in U in turn, and stop at vr if the swap at vr
results in the score of x being one more than s′′x. Then swap x and y in both
vr and vi so we reach targets s′′x and s′′y (recall vi has y above x). Note that it
is impossible to reach targets s′′x and s′′y by only swapping in U since any swap
increases or decreases the score of x by 2. If such a vr does not exist in U ,
then finish swapping in U and start swapping votes in V \U , from the smallest
to the largest index. Observe that we must reach some vote where the swap
would reach score targets s′′x and s′′y , otherwise we would have swapped x and
y in all votes without score of x reaching or exceeding s′′x, which is impossible
since sy > sx.

Case 2: all votes in V rank p second. Thus, sp = n and the scores of x and
y must be even. But if conditions (1) or (2) in the theorem holds then the score
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thresholds for x and y under ALT[1], tx = sp−3c/2−1 and ty = sp−3c/2+1 must
be even, so V must be either simultaneously manipulable or not manipulable
under both ALT[1] and BAL since sx is even and tx is even.

The above mapping always has V ′ manipulable under BAL because in Case
1, s′y = sx + 1 = sp − 3c/2 and s′x = s′′y = sy − 1 > sp − 3c/2. Furthermore
V ′ is not manipulable under ALT[1] so any profile that is mapped because it
is manipulable under both strategies has a unique inverse mapping. Any V ′

mapped through Case 1 would also have a unique inverse mapping using similar
arguments as in the proof of Theorem 5.

Up to now, we have showed that Theorem 2 holds for the IC case. We now
show that it also holds for the IAC case.

Lemma 6 Assume impartial anonymous culture and consider Borda where A =
{x, y, p}, the optimal strategy for the manipulators is BAL or ALT[1].

Proof: We now construct a one-to-one mapping of voting situations where p
wins under ALT[d] to situations where p wins under ALT[d-2]. Consider a
voting situation S where p wins under ALT[d], if it also wins under ALT[d-2],
we map S to itself. Otherwise, we do the following:

1. Instantiate S to a voting profile V where, voters 1 to Sxpy vote x � p � y,
followed by Sypx voters, named Sxpy + 1 to Sxpy + Sypx, vote y � p � x,
followed, in turn, by voters that vote x � y � p, y � x � p, p � x � y
and p � y � x. Where S� is the number of voters that vote � according
to S.

2. Apply our one-to-one mapping of the impartial culture case, obtain a
profile V ′.

3. Reduce V ′ to its corresponding situation S′.

Feasibility follows immediately from that of the impartial culture case. To
prove this is also a one-to-one, observe that if S1 and S2 are mapped to the
same S′ under our mapping. We claim that both S1 and S2 induce the same U ,
defined to be the set of votes that rank p second. Otherwise, it is not hard to
verify that we can’t reach the same U in S′ by swapping x and y according to
the order we defined earlier. We can similarly claim that both S1 and S2 induce
the same U ′, the set of votes that rank p last, and also induce the same U ′′, the
set of votes that rank p first. To sum up, we show that S1 and S2 must be the
same voting situation.

The remainder (i.e, the “Furthermore” part in Theorem 2) of the IAC case
is the same as the IC case. Therefore, we conclude that Theorem 2 holds for
IAC case as well.
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