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Abstract

We study the potential benefits to classification pre-
diction that arise from having access to unlabeled
samples. We compare learning in the semi-supervised
model to the standard, supervised PAC (distribu-
tion free) model, considering both the realizable
and the unrealizable (agnostic) settings.

Roughly speaking, our conclusion is that access
to unlabeled samples cannot provide sample size
guarantees that are better than those obtainable with-
out access to unlabeled data, unless one postulates
very strong assumptions about the distribution of
the labels.

In particular, we prove that for basic hypothesis
classes over the real line, if the distribution of un-
labeled data is ‘smooth’, knowledge of that dis-
tribution cannot improve the labeled sample com-
plexity by more than a constant factor (e.g., 2). We
conjecture that a similar phenomena holds for any
hypothesis class and any unlabeled data distribu-
tion. We also discuss the utility of semi-supervised
learning under the commoncluster assumptioncon-
cerning the distribution of labels, and show that
even in the most accommodating cases, where data
is generated by two uni-modal label-homogeneous
distributions, common SSL paradigms may be mis-
leading and may result in poor prediction perfor-
mance.

1 Introduction

While the problem of classification prediction based on la-
beled training samples has received a lot of research atten-
tion and is reasonably well understood, in many practical
learning scenarios, labeled data is hard to come by and un-
labeled data is more readily available. Consequently, users
try to utilize available unlabeled data to assist with the clas-
sification learning process. Learning from both labeled and
unlabeled data is commonly called semi-supervised learning
(SSL). Due to its wide potential applications, this approach
is gaining attention in both the application oriented and the
theoretical machine learning communities.

However, theoretical analysis of semi-supervised learn-
ing has, so far, been scarce and it falls short of providing

unequivocal explanation of merits of using unlabeled exam-
ples in learning. We take steps toward rectifying this theory-
practice gap by providing formal analysis of some semi-supervised
learning settings. The question we focus on is whether un-
labeled data can be utilized to provably improve the sample
complexity of classification learning.

We investigate what type of assumptions about the data
generating distribution (or which circumstances) are suffi-
cient to make the SSL approach yield better bounds on the
predictions accuracy than fully supervised learning. The bulk
of this paper focuses on showing that without prior knowl-
edge about the distribution oflabels, SSL cannot guarantee
any significant advantages in sample complexity (e.g., no
more than a constant factor for learning tasks over the real
line).

we carry our analysis in a simplified, utopian, model of
semi-supervised learning, in which the learning algorithm
has perfect knowledge of the probability distribution of the
unlabeled data. We focus on estimating thelabeled sample
complexity of learning. Since our model provides the learner
with more information than just a sample of the unlabeled
data distribution, lower bounds on the labeled sample com-
plexity of learning in our model imply similar lower bounds
for common notions of semi-supervised learning. Upper bounds,
or sample size sufficiency results (for the labeled samples) in
our model, apply to the common SSL setting only once suf-
ficiently large unlabeled samples are available to the learner.
In this paper we mainly discuss lower bounds, and when we
address upper bounds we settle for stating that they apply
eventually as the unlabeled sample sizes grow.

Our model of semi-supervised learning can be viewed as
learning with respect to a fixed distribution, (see Benedek
and Itai [5]). However, our emphasis is different. Our goal
is to compare how theknowledgeof the unlabeled distribu-
tion helps, as opposed to learning when the only access to
the underlying unlabeled data distribution is via the training
labeled sample. We call the former settingsemi-supervised
and the lattersupervisedor fully supervisedlearning.

We present explicit formalization of different ways in
which the merits of the semi-supervised paradigm can be
measured. We then investigate the extent by which SSL can
provide provable advantages over fully supervised learning
with respect to these measures.

Roughly speaking, we conclude that no special unlabeled
data distribution (like, say, one that breaks into clear data
clusters) suffices to render SSL an advantage over fully su-



pervised learning. Unlabeled data can make a difference
only under strong assumptions (or prior knowledge) about
the conditionallabeleddistribution.

One should note however, that in many cases such knowl-
edge can also be utilized by a fully supervised algorithm.
The search for justification to the SSL paradigm therefore
leaves us with one setting - the cases where there exists prior
knowledge about therelationshipbetween the labels and the
unlabeled data structure (and not just about the labels per se).
However, we show in Section 3 that common applications of
SSL paradigms for utilizing such relationship (like the popu-
lar cluster assumptionor the related algorithmic bias towards
class boundaries that pass through low-density data regions)
may lead to poor prediction accuracy, even when the data
does comply with the underlying data model (say, the data
is generated by a mixture of two Gaussian distributions, one
for each label, each generating a homogeneously labeled set
of examples).

The potential merits of SSL, in both settings - either with
or without making assumptions about the labeled distribu-
tion, have been investigated before. Vapnik’s model of trans-
ductive learning [15], as well as K̈aäriäinen’s paper [12] ad-
dress the setting without restrictions on the way labels are
generated while Balcan-Blum’s augmented PAC model for
semi-supervised learning [3, 4] offers a framework for for-
malizing prior knowledge about the relationship between la-
bels and the structure of the unlabeled distribution. We elab-
orate more about these in the next section on related work.
One basic difference between these works and ours is that
they try to provide explanations of the success of the SSL
paradigm while we focus on investigating its inherent limi-
tations.

This paper does not resolve the issue of the utility of un-
labeled data in full generality. Rather, we provide answers
for relatively simple classes of concepts over the real line
(thresholds and unions ofd intervals). We believe that these
answers generalize to other classes in an obvious way. We
also pose some conjectures and open questions.

The paper is organized as follows. We start by discussing
previous related work in Section 2. In Section 3 and show
that a commonly held assumption can result in performance
degradation of SSL. We continue on our main path in Sec-
tion 4 where we formally define our model of semi-supervised
learning and introduce notation. Section 5 casts the previous
paradigms in our model and formally poses the question of
the utility of unlabeled data to sample based label predic-
tion. This question guides the rest of the paper. Section 6
analyzes this question for basic learning tasks over the real
line. The section concludes by asking a slightly different
question about the possible meaningful formalizations of the
SSL and supervised learning comparison. We conclude our
paper in section 7 where we also discuss open questions and
directions for further research.

2 Related Work

Analysis of performance guarantees for semi-supervised learn-
ing can be carried out in two main setups. The first fo-
cuses on the unlabeled marginal data distribution and does
not make any prior assumptions about the conditional la-
bel distribution. The second approach focuses on assump-

tions about the conditional labeled distribution, under which
the SSL approach has potentially better label prediction per-
formance than learning based on just labeled samples. The
investigation of the first setup was pioneered by Vapnik in
the late 70s in his model oftransductive learning, e.g. [15].
There has been growing interest in this model in the recent
years due to the popularity of using unlabeled data in practi-
cal label prediction tasks. This model assumes that unlabeled
examples are drawn IID from an unknown distribution, and
then the labels of some randomly picked subset of these ex-
amples are revealed to the learner. The goal of the learner is
to label the remaining examples minimizing the error. The
main difference between this model and SSL is that the er-
ror of learner’s hypothesis is judged only with respect to the
known initial sample.

However, there are no known bounds in the transduc-
tive setting that are strictly better than supervised learning
bounds. Vapnik’s bounds [15] are almost identical. El-Yaniv
and Pechyony [10] prove bounds that are similar to the usual
margin bounds using Rademacher complexity, except that
the learner is allowed to decidea posteriorithe concept class
given the unlabeled examples. But they do not show whether
it can be advantageous to choose the class in this way. Their
earlier paper [9] gave bounds in terms of a notion ofuni-
form stabilityof the learning algorithm, and in the broader
setting where examples are not assumed to come IID from
an unknown distribution. But again, it’s not clear whether
and when the resulting bounds beat the supervised learning
bounds.

Kääriäinen [12] proposes a method for semi-supervised
learning without prior assumption on the conditional label
distributions. The algorithm of K̈aäriäinen is based on the
observation that one can output the function that minimizes
the unlabeled data weights in the symmetric differences to
all other functions of the version space. This algorithmcan
be reduce the error of supervised ERM by a factor of 2. For
more details on these algorithms, see Section 5.

Earlier, Benedek and Itai [5] discuss a model of ”learn-
ing over a fixed distribution”. Such a model can be viewed
as SSL learning, since once the unlabeled data distribution
is fixed, it can be viewed as being known to the learner.
The idea of Benedek and Itai’s algorithm is to construct a
minimumε-cover of the hypothesis space under the pseudo-
metric induced by the data distribution. The learning algo-
rithm they propose is to apply empirical risk minimization
(ERM) on the functions in such a cover. Of course thisε-
cover algorithm requires knowledge of the unlabeled distri-
bution, without which the algorithm reduces to ERM over
the original hypothesis class.

The second, certainly more popular, set of semi-supervised
approaches focuses on assumptions about the conditional la-
beled distributions. A recent PAC model of SSL proposed
by Balcan and Blum [3, 4] attempts to formally capture such
assumptions. They propose a notion of a compatibility func-
tion that assigns a higher score to classifiers which “fit nicely”
with respect to the unlabeled distribution. The rationale is
that by narrowing down the set of classifiers to only compat-
ible ones, the capacity of the set of potential classifiers goes
down and the generalization bounds of empirical risk mini-
mization improve. However, since the set of potential classi-



fiers is trimmed down by a compatibility threshold, if the pre-
sumed label-structure relationship fails to hold, the learner
may be left with only poorly performing classifiers. One se-
rious concern about this approach is that it provides no way
of verifying these crucial modeling assumptions. In Sec-
tion 3 we demonstrate that this approach may damage learn-
ing even when the underlying assumptions seem to hold. In
Claim 3 we show that without prior knowledge of such rela-
tionship that the Balcan and Blum approach has poor worst-
case generalization performance.

Common assumptions include thesmoothness assump-
tion and the relatedlow density assumption[7] which sug-
gests that the decision boundary should lie in a low density
region. In section 3, we give examples of mixtures of two
Gaussians showing that the low density assumption may be
misleading even under favourable data generation models,
resulting in low density boundary SSL classifiers with larger
error than the outcome of straightforward supervised learn-
ing that ignores the unlabeled data.

Many other assumptions about the labels/unlabeled data
structure relationship have been investigated, most notably
co-training [6] and explicit generative data models [8].

However, all these approaches, are based on very strong
assumptions about the data generating distributions. Assump-
tions that are hard to verify, or to justify on the basis of prior
knowledge of a realistic learner.

3 On SSL and the Cluster Assumption

This paper has several results of the form “as long as one
does not make any assumptions about the behavior of the
labels, SSL cannot help much over algorithms that ignore
the unlabeled data.”

However, two arguments can be raised against such claims.
First, SSL is not really intended to be used without any prior
assumption about the distribution of labels. In fact, SSL can
be viewed as applying some prior knowledge (or just belief)
that the labels are somehow correlated with the unlabeled
structure of the data. Can we say anything (anything nega-
tive, naturally . . . ) under such an assumption?

Second, maybe using unlabeled data can’talwayshelp
you, but if it can helpsometimeswhy not use it (always)?
Well, can we show that in some cases the use of unlabeled
data can indeed hurt the learner? Of course, nothing of that
kind can apply for all potential learners, since a learner can
choose to ignore the unlabeled data and then of course not get
hurt by “using” it. We are therefore left with asking, “can
the use of unlabeled data hurt the performance ofconcrete
common SSL paradigms?”

We briefly address these two questions below by demon-
strating that for certaincommonSSL strategies (“low den-
sity cut” and Balcan-Blum style use of “compatibility thresh-
old”) SSL can sometimes hurt you, even when the (vaguely
stated) “cluster assumption” does hold (when the data breaks
into clear uni-modal distributions, each labeled homogeneously).
We also show a general lower bound on the sample complex-
ity of SSL under a general model of the cluster assumption.

In Figures 1, 2, and 3 we depict three examples of simple
data distributions over the real line. In all of these examples,
the data is generated by a mixture of two uni-modal distri-
butions, each of these modes generates examples labeled ho-

mogeneously, each by a different label. However, the min-
imum density point of the unlabeled mixture data is signif-
icantly off the optimal label prediction decision boundary.
Figure 1 shows a mixture of two equal-variance symmetric
Gaussians, Figure 2 is a mixture of different Gaussians and
Figure 3 shows an extreme case of uni-modal density func-
tions for which the error of the minimum density partition
has classification error that is twice that of the optimal deci-
sion boundary.

Note that in all such examples, not only does the minimum-
density bias mislead the learning process, but also, if one
follows the paradigm suggested by Balcan and Blum [4], a
wrong choice of the compatibility threshold level will doom
the learning process to failure (whereas a simple empirical
risk minimization that ignores unlabeled data will succeed
based on a small number of labeled samples).

In [13] Rigollet presents a formal model of the cluster
assumption. Given a probability distribution,D over some
Euclidean data domain, define, for any positive real number,
a, L(a) = {x : p(x) > a}. Thecluster assumptionsays that
points in each of the connected components ofL(a) (after
removal of “thin ribbons”) have the same Bayesian optimum
label.

This is a quite strong assumption under which one can
apply an SSL approach. However, in spite of this strong
cluster assumption, we can prove that the ratio between the
sample complexity of SSL and SL is at mostd- the Euclidean
dimension of the data.

Namely, on one hand, the results of Section 6 (see Theo-

rem 15), below, provide a lower bound ofΩ
(

k+ln(1/δ)
ε2

)
on

the sample complexity of SSL learning under this cluster as-
sumption, wherek is the number of connected components
of L(a). On the other hand, a learner that has access to only
labeled examples, can apply the basic ERM algorithm to the
class of allk-cell Voronoi partitions of the space. Since the
VC-dimension of the class of allk-cell Voronoi partitions in
Rd is of orderkd, the usual VC-bounds on the sample com-

plexity of such an SL learner isO
(

kd+ln(1/δ)
ε2

)
examples.

4 A No-Prior-Knowledge Model of
Semi-Supervised Learning

We work in the common (agnostic) PAC framework, in which
a learning problem is modeled by a probability distribution
P over X × {0, 1} for some domain set,X. Any func-
tion from X to {0, 1} is called ahypothesis. Examplesare
pairs,(x, y) ∈ X × {0, 1}, and asampleis a finite sequence
S = {(xi, yi)}m

i=1 of examples.

Definition 1 (SL and SSL).

• A supervisedlearning (SL) algorithm is a function,L :⋃
m∈N(X × {0, 1})m → {0, 1}X , that mapping sam-

ples to a hypotheses.

• A semi-supervisedlearning (SSL) algorithm is a func-
tion L :

⋃
m∈N(X × {0, 1})m × P → {0, 1}X , where

P is a set of probability distributions overX. Namely,
an SSL algorithm takes as input not only a finite labeled
sample but also a probability distribution over the do-
main set (and outputs a hypothesis, as before).
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Figure 1: Mixture of two GaussiansN (0, 1) (labeled ’-’) and
N (2, 1) (labeled ’+’) shows that the optimum threshold is at
x = 1, the densest point of the unlabeled distribution. The
sum of these two Gaussians is unimodal.
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Figure 2: Mixture of two GaussiansN (0, 1) (labeled ’-’) and
N (4, 2) (labeled ’+’) with difference variances. The min-
imum density point of the unlabeled data (the sum of the
two distributions) does not coincide with the optimum label-
separating threshold where the two Gaussians intersect. The
classification error of optimum is≈ 0.17 and that of the min-
imum density partition is≈ 0.21.
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Figure 3: The solid line indicates the distributionP1 (labeled
’-’) and the dotted line isP2 (labeled ’+’). Thex coordinate
of their intersection is the optimum label prediction bound-
ary. The slope of the solid line is slightly steeper than that
of the dotted line (| − 1| > 1 − ε). The minimum density
point occurs where the density ofP1 reaches 0. The error of
the minimum unlabeled density threshold is twice that of the
optimum classifier.

For a distributionP overX×{0, 1}, letD(P ) denote the
marginal distribution overX. That is, formally, forX ′ ⊆
X we defineD(P )(X ′) = P (X ′ × {0, 1}) (provided that
X ′×{0, 1} is P -measurable). For a learning problemP , we
callD(P ) theunlabeled distributionof P .

Following the common PAC terminology and notation,
theerror of a hypothesish, with respect toP , is ErrP (h) =
Pr(x,y)∼P [h(x) 6= y]. Similarly, theempirical error, ErrS(h),
of a hypothesish on a sampleS is defined asErrS(h) =
1
m |{i : i ∈ {1, 2, . . . ,m}, h(xi) 6= yi}|.

Definition 2 (The sample complexities (SSL and SL) of
a class). For a classH of hypotheses, thesample
complexityof a semi-supervised learning algorithmA with
respect toP , confidenceδ > 0 andaccuracyε > 0, is

m(A,H, P, ε, δ) = min
{
m ∈ N :

Pr
S∼P m

[ErrP (A(S,D(P )))− inf
h′∈H

ErrP (h′) > ε] < δ
}

.

The sample complexity of a supervised learning algorithmA
is defined similarly, except that the second input parameter
D(P ) is omitted.

We consider two settings, realizable and agnostic. In the
agnosticsetting,P can be arbitrary. Therealizablesetting is
defined by assuming that there exists hypothesish ∈ H such
thatErrP (h) = 0; consequentlyinfh′∈H ErrP (h′) = 0. In
particular, this implies that for anyx ∈ X, the conditional
probabilities,P (y = 0| x) and P (y = 1| x) are always
either0 or 1; in the agnostic setting the conditionals can be
arbitrary.

Without reference to any learning problem, anunlabeled
distribution D is simply any distribution overX. We use
Ext(D) to denote all possibleextensionsof D, that is,Ext(D)
is the family of all possible distributionsP overX × {0, 1}
such thatD(P ) = D. For an unlabeled distributionD and
hypothesish, Dh denotes the probability distribution inExt(D)
such thatDh(y = h(x) | x) = 1. For a hypothesish and an
“unlabeled sample”S = {xi}m

i=1, wherexi ∈ X, we denote
by (S, h(S)) the sample{(xi, h(xi))}m

i=1.
For a subsetT of some domain set, we use1T to de-

note its characteristic function. In particular, ifT ⊆ X then
1T is a hypothesis overX. For two hypothesisg, h we use
g∆h to denote their “symmetric difference”, that is,g∆h is
a hypothesis1{x ∈ X : g(x) 6= h(x)}. Finally, VC(H)
denotes the VC-dimension [14] of hypothesis classH.

5 Previous No Prior Knowledge Paradigms

Previous approaches to SSL algorithms for the no prior knowl-
edge paradigm have used the unlabeled sample to figure out
the “geometry” of the hypothesis space with respect to the
unlabeled (marginal) distribution. A common approach is to
use that knowledge to reduce the hypothesis search space. In
doing so, one may improve the generalization upper bounds.

Recall that given an unlabeled distributionD and a hy-
pothesis classH, anε-cover is a subsetH ′ ⊆ H such that
for anyh ∈ H there existsg ∈ H ′ such thatD(g∆h) ≤ ε.
Note that ifH ′ is anε-cover forH with respect toD, then
for every extensionP ∈ Ext(D) the infg∈H′ ErrP (g) ≤
infh∈H ErrP (h) + ε.



In some cases the construction of a smallε-cover is a ma-
jor use of unlabeled data. Benedek and Itai [5] analyze the
approach, in the case when the unlabeled distribution is fixed
and therefore can thought of as known to the learner. They
show that the smaller anε-cover is the better its generaliza-
tion bound one for the ERM algorithm over this cover.

Balcan and Blum [4] suggest a different way of using
the unlabeled data to reduce the hypothesis space. However,
we claim that without making any prior assumptions about
the relationship between the labeled and unlabeled distribu-
tions, their approach boils down to theε-cover construction
described above.

Claim 3. Let H be any hypotheses class,ε, δ > 0, andD
be any unlabeled distribution. LetH ′ ⊆ H be the set of
“compatible hypotheses.” SupposeA is an SSL algorithm
that outputs any hypothesis inH ′. If H ′ does not contain an
ε-cover ofH with respect toD, the error of the hypothesis
thatA outputs is at leastε regardless of the size of the labeled
sample.

Proof. SinceH ′ does not contain anε-cover ofH, there exist
a hypothesish ∈ H such that for allg ∈ H ′, D(g∆h) > ε.
Thus, for anyg ∈ H ′, ErrDh(g) > ε. Algorithm A outputs
someg ∈ H ′ and the proof follows.

Kääriäinen [12] utilizes the unlabeled data in a different
way. Given the labeled data his algorithm constructs the ver-
sion spaceF ⊆ H of all sample-consistent hypotheses, and
then applies the knowledge of the unlabeled distributionD to
find the “center” of that version space. Namely, a hypothesis
g ∈ F that minimizesmaxh∈F D(g∆h).

Clearly, all the above paradigms depend on the knowl-
edge of the unlabeled distributionD. In return, better up-
per bounds on the sample complexity of the respective al-
gorithms (or equivalently on the errors of the hypotheses
produced by such algorithms) can be shown. For exam-
ple, Benedek and Itai give (for the realizable case) an up-
per bound on the sample complexity that depends on the size
of the ε-cover—the smallerε-cover, the smaller the upper
bound.

In the next section we analyze the gains that such knowl-
edge of unlabeled data distribution can make in the no prior
knowledge setting. We prove that over the real line for any
“smooth” unlabeled distributionD, ERM over the full hy-
pothesis classH has worst case sample complexity that is
at most by constant factor bigger than the worst case sample
complexity ofanySSL algorithm. We conjecture that this a
more general phenomenon.

Conjecture4. For any hypothesis classH, there exists a con-
stant c ≥ 1 and a supervised algorithmA, such that for
any distributionD over the domain and any semi-supervised
learning algorithmB,

sup
h∈H

m(A,H, Dh, ε, δ) ≤ c · sup
h∈H

m(B,H,Dh, ε, δ)

for anyε andδ small enough, say smaller than1/c.

Conjecture5. For any hypothesis classH, there exists a con-
stant c ≥ 1 and a supervised algorithmA, such that for

any distributionD over the domain and any semi-supervised
learning algorithmB,

sup
P∈Ext(D)

m(A,H, P, ε, δ) ≤ c · sup
P∈Ext(D)

m(B,H,P, ε, δ)

for anyε andδ small enough, say smaller than1/c.

6 Inherent Limitations of Semi-Supervised
Learning

This section is devoted to proving the inherent limitations of
SSL paradigm in the no prior knowledge model over the real
line. In Section 6.2 we prove Conjecture 4 for thresholds
on the real line in the realizable setting, under the condition
that the unlabeled distribution is absolutely continuous. In
Section 6.3 we prove Conjecture 5 for thresholds and union
of d intervals over the real line in the agnostic setting (under
the same unlabeled distribution condition).

The former follows from Theorems 8 and 10. The latter
follows from Corollary 13 (for thresholds) and from Corol-
lary 16 (for union ofd intervals). To prove the results we rely
on a simple “rescaling trick” that we explain in Section 6.1.

We briefly sketch the idea of the proofs. Let us start by
defining the hypothesis classes. The class of thresholds is
defined asH = {1(−∞, t] : t ∈ R} and the class of union
of d intervals

UId = {1[a1, a2) ∪ [a3, a4) ∪ · · · ∪ [a2`−1, a2`) :
` ≤ d, a1 ≤ a2 ≤ · · · ≤ a2`} .

The rescaling trick says that the SSL sample complexity of
learningH (resp.UId) under any two absolutely continuous
unlabeled distributions is exactly the same. We can thus fo-
cus on the sample complexity of learning under some fixed
absolutely continuous distribution; for concreteness and con-
venience we chose the uniform distribution over(0, 1). By
proving a sample complexity lower bound on the learning
under the uniform distribution over(0, 1), we are effectively
proving a lower bound on the sample complexity of SSL un-
der any absolutely continuous distribution. Through the use
of techniques from the probabilistic method, we obtain lower
bounds on the SSL sample complexity that is within a con-
stant factor of the well-known upper bounds on SL sample
complexity (e.g. VC upper bounds on the sample complexity
of ERM for any unknown distribution).

In Section 6.4 we discuss other possible formulations of
the comparison between SL and SSL algorithms.

6.1 Rescaling Trick

In this section we show that learning any “natural” hypoth-
esis class on the real line has the same sample complexity
for any absolutely continuous unlabeled distribution inde-
pendent of its shape. Intuitively, if we imagine the real axis
made of rubber, then a natural hypothesis class is one that
is closed under rescaling (stretching) of the axis. Classes of
thresholds and union ofd intervals are examples of such nat-
ural classes, since under any rescaling an interval remains an
interval. The rescaling will apply also on the unlabeled dis-
tribution over the real line and it will allow us to go from any
absolutely continuous distribution to the uniform distribution
over(0, 1).



More formally, a rescaling is a continuous increasing
functionf from an open intervalI onto an open intervalJ .
We denote byH|A the restriction of a classH to a subset
A, that is, H|A = {h|A : h ∈ H}. We use◦ to de-
note function composition. We say that a hypothesis class
H overR is closed under rescalingwhenever for any rescal-
ing f : I → J , if h|J ∈ H|J , thenh|J ◦ f ∈ H|I . If
H is any class closed under rescaling, then any rescalingf
induces a bijectionh|J 7→ h|J ◦ f betweenH|I andH|J .
(This follows sincef−1 is also rescaling.) Clearly, the class
of thresholds and the class of unions ofd intervals are closed
under rescaling.

We show that the sample complexity is unaffected by the
rescalings provided that the hypothesis class is closed under
rescalings. We split the results into two lemmas—Lemma 6
and Lemma 7. The first lemma shows that if we have a su-
pervised algorithm with certain sample complexity for the
case when the unlabeled distribution is the uniform distribu-
tion over(0, 1), then the algorithm can be translated into an
SSL algorithm with the same sample complexity for the case
when the unlabeled distribution is any absolutely continuous
distribution. The second lemma shows the translation in the
other direction. Namely, that a SSL algorithm with certain
sample complexity on some absolutely continuous unlabeled
distribution can be translated to a supervised algorithm for
the case when unlabeled distribution is uniform over(0, 1).

Lemma 6 (Rescaling trick I). Let H be a hypothesis class
overR closed under rescaling. LetU be the uniform distri-
bution over(0, 1). Letε, δ > 0.

(a) (Realizable case): If A is any supervised or semi-
supervised algorithm, then there exists an semi-supervised
learning algorithmB such that for any distributionD over
an open intervalI which is absolutely continuous with re-
spect to Lebesgue measure onI

sup
h∈H

m(B,H,Dh, ε, δ) ≤ sup
g∈H

m(A,H, Ug, ε, δ) . (1)

(b) (Agnostic case): If A is any supervised or semi-supervised
algorithm, then there exists an semi-supervised learning al-
gorithmB such that for any distributionD over an open in-
tervalI which is absolutely continuous with respect to Lebesgue
measure onI

sup
P∈Ext(D)

m(B,H,P, ε, δ) ≤ sup
Q∈Ext(U)

m(A,H, Q, ε, δ) . (2)

Proof. Fix H andA. We construct algorithmB as follows.
The algorithmB has two inputs, a sampleS = {(xi, yi)}m

i=1
and a distributionD. Based onD the algorithm computes
the cumulative distribution functionF : I → (0, 1), F (t) =
D(I ∩ (−∞, t]). Then,B computes fromS transformed
sampleS′ = {(x′i, yi)}m

i=1 wherex′i = F (xi). On a sample
S′ the algorithmB simulates algorithmA and computesh =
A(S′). (If A is semi-supervised we fix its second input to be
U ). Finally,B outputsg = h ◦ F .

It remains to show that for anyD with continuous cumu-
lative distribution function (1) and (2) holds for anyε, δ > 0.
We prove (2), the other equality is proved similarly.

Let P ∈ Ext(D). Slightly abusing notation, we define
the “image” distributionF (P ) over(0, 1)× {0, 1} to be

F (P )(M) = P ({(x, y) : (F (x), y) ∈ M})

for any (measurable)M ⊆ (0, 1) × {0, 1}. It is not hard
to see that ifS is distributed according toPm, thenS′ is
distributed according to(F (P ))m. Clearly,D(F (P )) = U
i.e. F (P ) ∈ Ext(U). Further note that sinceD is abso-
lutely continuous,F is a rescaling. HenceErrF (P )(h) =
ErrP (h ◦ F ) and infh∈H ErrP (h) = infh∈H ErrF (P )(h).
Henceforth, for anyε and anym ∈ N

Pr
S∼P m

[ErrP (B(S, D))− inf
h∈H

ErrP (h) > ε]

= Pr
S′∼F (P )m

[ErrP (A(S′) ◦ F )− inf
h∈H

ErrF (P )(h) > ε]

= Pr
S′∼F (P )m

[ErrF (P )(A(S′))− inf
h∈H

ErrF (P )(h) > ε] .

Therefore, for anyε, δ > 0,

m(B,H,P, ε, δ) = m(A,H, F (P ), ε, δ)
≤ sup

Q∈Ext(P )

m(A,H, Q, ε, δ) .

Taking supremum overP ∈ Ext(D) finishes the proof.

Lemma 7 (Rescaling trick II). LetH be a hypothesis class
overR closed under rescaling. LetU be the uniform distri-
bution over(0, 1). Letε, δ > 0.

(a) (Realizable case): If B is any supervised or semi-
supervised algorithm andD is any distribution over an open
intervalI, which is absolutely continuous with respect to the
Lebesgue measure onI, then there exists a supervised learn-
ing algorithmA such that

sup
g∈H

m(A,H, Ug, ε, δ) ≤ sup
h∈H

m(B,H,Dh, ε, δ) . (3)

(b) (Agnostic case): If B is any supervised or semi-supervised
algorithm andD is any distribution over an open intervalI,
which is absolutely continuous with respect to the Lebesgue
measure onI, then there exists a supervised learning algo-
rithm A such that

sup
Q∈Ext(U)

m(A,H, Q, ε, δ) ≤ sup
P∈Ext(D)

m(B,H,P, ε, δ) . (4)

Proof. Fix H, B and D. Let F : I → (0, 1) be the be
cumulative distribution function ofD, that is,F (t) = D(I ∩
(−∞, t)). SinceD is absolutely continuous,F is a rescaling
and inverseF−1 exists.

Now, we construct algorithmA. Algorithm A maps in-
put sampleS′ = {(x′i, yi)}m

i=1 to sampleS = {(xi, yi)}m
i=1

wherexi = F−1(x′i). On a sampleS the algorithmA sim-
ulates algorithmB and computesg = B(S, D). (If B is
supervised, then the second input is omitted.) Finally,A out-
putsh = g ◦ F−1.

It remains to show that for anyD with continuous cumu-
lative distribution function (3) and (4) holds for anyε, δ > 0.
We prove (4), the other equality is proved similarly.

Let Q ∈ Ext(U). Slightly abusing notation, we define
the “pre-image” distributionF−1(Q) overI × {0, 1} to be

F−1(Q)(M) = Q ({(F (x), y) : (x, y) ∈ M})

for any (measurable)M ⊆ I × {0, 1}. It is not hard to see
that if S′ is distributed according toQ, thenS is distributed
according to(F−1(Q))m. Clearly,D(F−1(U) = D i.e.



F−1(Q) ∈ Ext(D). SinceF−1 is a rescaling,ErrF−1(Q)(h) =
ErrQ(h◦F−1) andinfh∈H ErrQ(h) = infh∈H ErrF−1(Q)(h).
Henceforth, for anyε > 0 and anym ∈ N

Pr
S′∼Qm

[ErrQ(A(S′))− inf
h∈H

ErrQ(h)]

= Pr
S∼F−1(Q)m

[ErrQ(B(S, D) ◦ F−1)− inf
h∈H

ErrF−1(Q)(h)]

= Pr
S∼F−1(Q)m

[ErrF−1(Q)(B(S, D))− inf
h∈H

ErrF−1(Q)(h)] .

Therefore, for anyε, δ > 0,

m(A,H, Q, ε, δ) = m(B,H,F−1(Q), ε, δ)
≤ sup

P∈Ext(D)

m(B,H,P, ε, δ)

Taking supremum overQ ∈ Ext(U) finishes the proof.

6.2 Sample Complexity of Learning Thresholds in the
Realizable Case

In this section we consider learning the class of thresholds,
H = {1(−∞, t] : t ∈ R}, on the real line in the real-
izable setting and show that for absolutely continuous unla-
beled distributions SSL has at most factor2 advantage over
SL in the sample complexity.

First, in Theorem 8, we showln(1/δ)
ε upper bound on the

sample complexity of supervised learning. This seems to be
a folklore result. Second, we consider sample complexity
of semi-supervised learning in the case whenD(P ) is abso-
lutely continuous with respect to the Lebesgue measure on
R. In Theorems 9 and 10 we show that the sample complex-
ity is betweenln(1/δ)

2ε +O( 1
ε ) and ln(1/δ)

2.01 ε −O( 1
ε ).1 Ignoring

the lower order terms, we see that the sample complexity of
supervised learning is (asymptotically) at most2-times larger
than that of semi-supervised learning.

We will make use the following of two algorithms: su-
pervised algorithmL and semi-supervised algorithmB pro-
posed by K̈aäriäinen [12]. Both algorithms on a sampleS =
((x1, y2), (x2, y2), . . . , (xm, ym)) first compute

` = max{xi : i ∈ {1, 2, . . . ,m}, yi = 1} ,

r = min{xi : i ∈ {1, 2, . . . ,m}, yi = 0} .

Algorithm L simply outputs the hypothesis1(−∞, `]. Algo-
rithm B makes use of its second input, distributionD. Pro-
vided that` < r, B computest′′ = sup{t′ : D((`, t′]) ≤
D((`, r])/2} and outputs hypothesis1(−∞, t′′].

Theorem 8 (SL upper bound). LetH be the class of thresh-
olds andL be the supervised learning algorithm defined above.
For anyD, for anyε, δ > 0, and any “target” h ∈ H,

m(A,H, Dh, ε, δ) ≤ ln(1/δ)
ε

.

Proof. Let h = 1(−∞, t) and lets = sup{s : D((s, t]) ≥
ε}. The eventErrDh(L(S)) ≥ ε occurs precisely when

1The2.01 in the lower bound can be replaced by arbitrary num-
ber strictly greater than2. This slight imperfection is a consequence
of that the true dependence of the sample complexity onε, in this
case, is of the form1/ ln(1− 2ε) and not1/(2ε).

the interval(s, t] does not contain any sample points. This
happens with probability(1 − D((s, t]))m ≤ (1 − ε)m. If
m ≥ ln(1/δ)

ε , then(1− ε)m ≤ exp(−εm) ≤ δ.

Theorem 9 (SSL upper bound).LetH be the class of thresh-
olds andB be the semi-supervised learning algorithm de-
fined above. For any absolutely continuous distributionD
over an open interval, anyε ∈ (0, 1

4 ), δ ∈ (0, 1
2 ), and any

“target” h ∈ H,

m(B,H,Dh, ε, δ) ≤ ln(1/δ)
2ε

+
ln 2
2ε

.

Proof. By rescaling trick (Lemma 6 part (a)) we can assume
thatD is uniform over(0, 1). Fix ε ∈ (0, 1

4 ), δ ∈ (0, 1
2 ) and

h ∈ H. We show that, for anym ≥ 2,

Pr
S∼Dm

h

[ErrDh(B(S, D)) ≥ ε] ≤ 2(1− 2ε)m , (5)

from which the theorem easily follows, since ifm ≥ ln(1/δ)
2ε +

ln 2
2ε , thenm ≥ 2 and2(1− 2ε)m ≤ 2 exp(−2mε) ≤ δ.

In order to prove (5), leth = 1(−∞, t] be the “tar-
get”. Without loss of generalityt ∈ [0, 1

2 ]. With a little
abuse, we assume that` ∈ [0, t] andr ∈ [t, 1]. For conve-
nience, we definea : [0, t] → [t, 1], b : [0, t] → [t, 1] as
a(`) = max(2t− `− 2ε, t) andb(`) = min(2t− ` + 2ε, 1)
respectively. It is easily verified thatErrDh(B(S, D)) ≤ ε if
and only ifr ∈ [a(`), b(`)].

We lower bound the probability of success

p = Pr
S∼Dm

h

[ErrDh(B(S, D)) ≤ ε] .

There are two cases:
Case 1: If t > 2ε, then we integrate over all possible

choices of the rightmost positive example inS (which de-
termines`) and leftmost negative example inS (which de-
terminesr). There arem(m − 1) choices for the rightmost
positive example and leftmost negative example. We have

p ≥ p1 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd` .

Case 2: If t ≤ 2ε, then we integrate over all possible
choices of the rightmost positive example inS and leftmost
negative example inS. Additionally we also consider sam-
ples without positive examples, and integrate over all possi-
ble choices of the leftmost (negative) example. We have

p ≥ p2 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+ m

∫ 2ε

t

(1− r)m−1 dr

Both cases split into further subcases.
Subcase 1a:If t > 2ε andt + 4ε ≤ 1 andt + ε ≥ 1/2,



then0 ≤ 2t + 2ε− 1 ≤ t− 2ε ≤ t and

p1 = m(m− 1)
[ ∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t−2ε

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[ ∫ 2t+2ε−1

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t−2ε

2t+2ε−1

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− 1

2
(1− 2t− 2ε)m − 1

2
(−1 + 2t + 6ε)m − (1− 2ε)m

≥ 1− 2(1− 2ε)m .

Subcase 1b:If t > 2ε andt+ε ≤ 1/2, then2t+2ε−1 ≤
0 ≤ t− 2ε ≤ t and

p1 = m(m− 1)
[ ∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[ ∫ t−2ε

0

∫ 2t−`+2ε

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ t

t−2ε

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− (1− 2ε)m +

1
2
(1− 2t− 2ε)m − 1

2
(1− 2t + 2ε)m

≥ 1− 3
2
(1− 2ε)m .

Subcase 1c:If t > 2ε andt + 4ε ≥ 1, then0 ≤ t− 2ε ≤
2t + 2ε− 1 ≤ t, and

p1 = m(m− 1)
[ ∫ t−2ε

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ 2t+2ε−1

t−2ε

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
= m(m− 1)

[ ∫ t−2ε

0

∫ 1

2t−`−2ε

(1− r + `)m−2 drd`

+
∫ 2t+2ε−1

t−2ε

∫ 1

t

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
= 1− (1− 2ε)m − 1

2
(1− 2t + 2ε)m − 1

2
(2t + 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2a:If t ≤ 2ε andt + ε ≥ 1/2, thent − 2ε ≤
0 ≤ 2t + 2ε− 1 ≤ t and

p2 = m(m− 1)
[ ∫ 2t+2ε−1

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ b(`)

a(`)

(1− r + `)m−2 drd`

]
+ m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)
[ ∫ 2t+2ε−1

0

∫ 1

t

(1− r + `)m−2 drd`

+
∫ t

2t+2ε−1

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

]
+ (1− t)m − (1− 2ε)m

= 1− 3
2
(1− 2ε)m − 1

2
(2t + 2ε− 1)m

≥ 1− 2(1− 2ε)m .

Subcase 2b:If t ≤ 2ε andt + ε ≤ 1/2, thent− 2ε ≤ 0,
2t + 2ε− 1 ≤ 0 and

p2 = m(m− 1)
∫ t

0

∫ b(`)

a(`)

(1− r + `)m−2 drd`

+ m

∫ 2ε

t

(1− r)m−1 dr

= m(m− 1)
∫ t

0

∫ 2t−`+2ε

t

(1− r + `)m−2 drd`

+ (1− t)m − (1− 2ε)m

= 1− 3
2
(1− 2ε)m − 1

2
(1− 2t− 2ε)m

≥ 1− 2(1− 2ε)m .

Theorem 10 (SSL lower bound). For any (randomized)
semi-supervised algorithmA, anyε ∈ (0, 0.001), anyδ > 0,
any absolutely continuous probability distributionD over an
open interval, there existsh ∈ H, such that

m(A,H, Dh, ε, δ) ≥ ln(1/δ)
2.01ε

− ln 2
2.01ε

.

Proof. By rescaling trick (Lemma 7 part (a)) we can as-
sume thatD is uniform over(0, 1). Fix A, ε, δ. We show
the existence of requiredh by a probabilistic argument. We
consider pickingt uniformly at random from(0, 1) and let
h = 1(−∞, t]. We prove that for anym ≥ 0,

E
t

Pr
S∼Dm

h

[ErrDh(A(S, D)) ≥ ε] ≥ 1
2
(1− 2ε)m . (6)

The left-hand side can rewritten as

E
t

Pr
S∼Dm

h

[ErrDh(A(S, D)) ≥ ε]

= E
t

E
S∼Dm

h

1{(t, S) : ErrDh(A(S, D)) ≥ ε}

= E
S∼Dm

E
t
1{(t, S) : ErrDh(A((S, h(S)), D)) ≥ ε}

= E
S∼Dm

Pr
t

[ErrDh(A((S, h(S)), D)) ≥ ε]



To lower bound the last expression, fix unlabeled points0 ≤
x1 ≤ x2 ≤ · · · ≤ xm ≤ 1. For convenience, letx0 = 0 and
xm+1 = 1. We claim that

Pr
t

[
ErrDh(A((S, h(S)), D)) ≥ ε

]
≥

m∑
i=0

max(xi+1 − xi − 2ε, 0) . (7)

To prove that we also fixi ∈ {0, 1, 2, . . . ,m} and restrictt
to lie in the interval(xi, xi+1]. The labels in(S, h(S)) are
hence fixed. Hence the hypothesisg = A((S, h(S)), D) is
fixed. It is not hard to see that regardless ofg∫ xi+1

xi

1
{
t : ErrDh(g) ≥ ε

}
dt ≥ max(xi+1−xi−2ε, 0) ,

which follows from that the set{t : ErrDh(g) < ε} is
contained in an interval of length at most2ε. Summing over
all i we obtain (7).

In order to prove (6) we will compute expectation over
S ∼ Dm of both sides of (7). Expectation of the left side of
(7) equals to the left side of (6). The expectation of the right
side of (7) is equal to

Im = m!
∫ xm+1

0

∫ xm

0

∫ xm−1

0

· · ·
∫ x2

0︸ ︷︷ ︸
m times

m∑
i=0

max(xi+1 − xi − 2ε, 0)

dx1 · · ·dxm−2dxm−1dxm ,

since there arem! equiprobable choices for the order of the
pointsx1, x2, . . . , xm among which we choose, without loss
of generality, the one withx1 ≤ x2 ≤ · · · ≤ xm. We look at
Im as a function ofxm+1 and we prove that

Im(xm+1) = (max(xm+1 − 2ε, 0))m+1
, (8)

for anym ≥ 0 and anyxm+1 ∈ [0, 1]. The bound (6) follows
from (8), sinceIm = Im(1) = (1 − 2ε)m+1 ≥ 1

2 (1 − 2ε)m

for ε ≤ 1/4. In turn, (8) follows, by induction onm, from
the recurrence

Im(xm+1) = m

∫ xm+1

0

Im−1(xm)

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm ,

which is valid for all m ≥ 1. In the base case,m = 0,
I0(x1) = max(x1 − 2ε, 0) trivially follows by definition.
In the inductive case,m ≥ 1, we consider two cases. First
case,xm+1 < 2ε, holds sincemax(xi+1 − xi − 2ε, 0) = 0
and hence by definitionIm(xm+1) = 0. In the second case,
xm+1 ≥ 2ε, from the recurrence and the induction hypothe-

sis we have

Im(xm+1) = m

∫ xm+1

0

(max(xm − 2ε, 0))m

+ max(xm+1 − xm − 2ε, 0) · xm−1
m dxm

= m

∫ xm+1

2ε

(xm − 2ε)m dxm

+ m

∫ xm+1−2ε

0

(xm+1 − xm − 2ε)xm−1
m dxm

=
m

m + 1
(xm+1 − 2ε)m+1

+
1

m + 1
(xm+1 − 2ε)m+1

= (xm+1 − 2ε)m+1 .

To finish the proof of the theorem, supposem < ln(1/δ)
2.01ε −

ln 2
2.01ε . Then1

2 (1− 2ε)m > δ, since

ln
(

1
2
(1− 2ε)m

)
=

− ln 2 + m ln(1− 2ε) > − ln 2−m(2.01ε) > ln δ ,

where we have used thatln(1 − 2ε) > −2.01ε for any ε ∈
(0, 0.001). Therefore from (6), for at least one targeth =
1(−∞, t], with probability greater thanδ, algorithmA fails
to output a hypothesis with error less thanε.

Remark. The ln(1/δ)
2.01 ε − O( 1

ε ) lower bound applies to su-
pervised learning as well. However, we do not know of
any supervised algorithm (deterministic or randomized) that
has asymptotic sample complexityc ln(1/δ)

ε for any constant
c < 1. For example, the randomized algorithm that out-
puts with probability1/2 the hypothesis1(−∞, `] and with
probability1/2 the hypothesis1(−∞, r) still cannot achieve
the SSL sample complexity. We conjecture that all super-
vised algorithms for learning thresholds on real line in the
realizable setting have asymptotic sample complexity at least
ln(1/δ)

ε .

6.3 Sample Complexity in Agnostic Case

In this section, we show that even in the agnostic setting SSL
does not have more than constant factor improvement over
SL. We prove some lower bounds for some classes over the
real line. We introduce the notion of ab-shatterable distri-
bution, which intuitively, are distributions where there areb
“clusters” that can be shattered by the concept class. The
main lower bound of this section are for such distributions
(see Theorem 15). We show how this lower bound results
in tight sample complexity bounds for two concrete prob-
lems. The first is learning thresholds on the real line where
we show a bound ofΘ(ln(1/δ)/ε2). Then we show sample

complexity ofΘ
(

2d+ln(1/δ)
ε2

)
for the union ofd intervals on

the real line.
The sample complexity of the union ofd intervals for a

fixed distribution in a noisy setting has also been investigated
by Gentile and Helmbold [11]. They show a lower bound
of Ω

(
2d log 1

∆/(∆(1− 2η)2)
)

where∆ is the distance to
the target that the learning algorithm should guarantee with



high probability, andη is the probability of a wrong label ap-
pearing (see classification noise model of [1]). This notation
implies that the difference in true error of target and the algo-
rithm’s output isε = (1−2η)∆. Settingη = 1/2−ε/4 gives
Ω(2d/ε2). We note that we do not make the assumption of a
constant level of noise for each unlabeled example. It turns
out, however, that in our proofs we do construct worst case
distributions that have a constant noise rate that is slightly
below1/2.

We point out two main differences between our results
and that of Gentile and Helmbold. The first being that we
explicitly construct noisy distributions to obtainε2 in the
denominator. The second difference is that our technique
appears to be quite different from theirs, which uses an in-
formation theory approach, whereas we make use of known
techniques based on lower bounding how well one can dis-
tinguish similar noisy distributions, and then applying an av-
eraging argument. The main tools used in this section come
from Anthony and Bartlett [2, Chapter 5].

We first cite a result on how many examples are needed to
distinguish two similar, Bernoulli distributions in Lemma 11.
Then in Lemma 12 we prove an analogue of this for arbitrary
unlabeled distributions. The latter result is used to give us a
lower bound in Theorem 15 forb-shatterable distributions
(see Definition 14). Corollary 13 and 16 gives us tight sam-
ple complexity bounds for thresholds and union of intervals
onR.

Lemma 11 (Anthony and Bartlett [2]). Suppose thatP is
a random variable uniformly distributed on{P1, P2} where
P1, P2 are Bernoulli distributions over{0, 1} with P1(1) =
1/2 − γ andP2(1) = 1/2 + γ for 0 < γ < 1/2. Suppose
thatξ1, . . . , ξm are IID {0, 1} valued random variables with
Pr(ξi = 1) = P (1) for eachi. Let f be a function from
{0, 1}m → {P1, P2}. Then

E
P

Pr
ξ∼P m

[f(ξ) 6= P ] >
1
4

(
1−

√
1− exp

(
−4mγ2

1− 4γ2

))
=: F (m, γ).

One can view the lemma this way: if one randomly picks
two weighted coins with similar biases, then there’s a lower
bound on the confidence with which one can accurately pre-
dict the coin that was picked.

The next result is similar except an unlabeled distribution
D is fixed, and the distributions we want to distinguish will
be extensions ofD.

Lemma 12. Fix any X, H, D over X, andm > 0. Sup-
pose there existsh, g ∈ H with D(h∆g) > 0. Let Ph

andPg be the extension ofD such thatPh((x, h(x))|x) =
Pg((x, g(x))|x) = 1/2+γ. LetAD : (h∆g×{0, 1})m → H
be any function. Then for anyx1, . . . , xm ∈ h∆g, there ex-
istsP ∈ {Ph, Pg} such that ifyi ∼ Pxi

for all i,

Pr
yi

[ErrP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(h∆g)] > F (m, γ) .

WherePx is the conditional distribution ofP givenx, and
OPTP = 1/2 − γ. Thus if the probability of failure is at

mostδ, we require

m ≥
(

1
4γ2

− 1
)

ln
1
8δ

. (9)

Proof. Suppose for a contradiction this is not true. LetP =
{Ph, Pg}. Then there exists anAD andx1, . . . , xm such that

∀P ∈ P, Pr
yi

[ErrP (AD((x1, y1), . . . , (xm, ym)))−OPTP

> γD(h∆g)] ≤ F (m, γ). (10)

Then we will show that the lower bound in Lemma 11 can
be violated. Nowh∆g can be partitioned into∆0 = {x :
h(x) = 0} and∆1 = {x : h(x) = 1}. Without loss of gen-
erality assume{x1, . . . , xl} ⊆ ∆0 and{xl+1, . . . , xm} ⊆
∆1. Let A = AD((x1, y1), . . . , (xm, ym)).

From the triangle inequalityD(A∆h) + D(A∆g) ≥
D(h∆g). Thus ifA is closer toh thenD(A∆g) ≥ D(h∆g)/2
and vice versa. LetP be a random variable uniformly dis-
tributed onP. We havePr(y1 = 1) = · · · = Pr(yl = 1) =
P∆0(1) = Pr(yl+1 = 0) = · · · = Pr(ym = 0) = P∆1(0).

Let ξ1, . . . , ξm ∼ P∆0 so thatPr(ξi = 1) = 1/2 − γ
whenP = Ph and equal to1/2 + γ whenP = Pg. Let us
define the functionf : {0, 1}m → P as follows. It will take
as inputξ1, . . . , ξm then transform this to an input ofAD as
I = (x1, ξ1), . . . , (xl, ξl), (xl+1, 1−ξl+1), . . . , (xm, 1−ξm)
so thatξi and1 − ξj is from the same distribution asyi and
yj , respectively, fori ≤ l, j > l. Now define

f(ξ1, . . . , ξl) =
{

Ph if D(AD(I)∆h) < D(AD(I)∆g)
Pg otherwise

.

We have

E
P

Pr
ξ∼P m

∆0

[f(ξ) 6= P ]

≤ E
P

Pr
ξ

[D(AD(I)∆OPTP ) > D(h∆g)/2]

≤ E
P

Pr
ξ

[
ErrP (AD(I))−OPTP > γD(h∆g)

]
≤ F (m, γ)

where the last inequality follows from (10). This is a con-
tradiction, so the lower bound from Lemma 11 must apply.
If the probability of failureF (m, γ) is at mostδ, solving the
inequality form gives (9).

Corollary 13. The SSL sample complexity of learning thresh-
olds over the uniform distribution over(0, 1) isΘ(ln(1/δ)/ε2).

Proof. Upper bound comes from any ERM algorithm. Let
h = 1(−∞, 0] andg = 1(−∞, 1] so D(h∆g) = 1. Set
γ = ε as in Lemma 12.

Definition 14. The triple (X, H, D) is b-shatterable if there
exists disjoint setsC1, C2, . . . , Cb with D(Ci) = 1/b for
eachi, and for eachS ⊆ {1, 2, . . . , b}, there existsh ∈ H
such that

h ∩

(
b⋃

i=1

Ci

)
=
⋃
i∈S

Ci.



Theorem 15. If (X, H, D) is b-shatterable andH contains
h, g with D(h∆g) = 1 then a lower bound on the SSL sam-
ple complexity for0 < ε, δ < 1/64 is

Ω
(

b + ln 1
δ

ε2

)
.

Proof. The proof is similar to Theorem 5.2 in Anthony and
Bartlett [2]. LetG = {h1, h2, . . . , h2b} be the class of func-
tions thatb-shattersD with respect toC = {C1, . . . , Cb}.
We construct noisy extensions ofD,P = {P1, P2, . . . , P2b}
so that for eachi, Pi((x, hi(x))) = (1 + 2γ)/(2b). For
anyh ∈ H let snap(h) = argminh′∈G D(h∆h′). Suppose
P ∈ P, let h∗ denote the optimal classifier which is some
g ∈ G depending on the choice ofP . If i 6= j andN(hi, hj)
is the number of sets inC wherehi andhj disagree, then
D(hi∆hj) ≥ N(hi, hj)/b, and sinceG is a1/b-packing,

ErrP (h) ≥ ErrP (h∗) +
γ

b
N(snap(h), h∗)

=
1
2
(
ErrP (snap(h)) + ErrP (h∗)

)
. (11)

Modifying the proof of Anthony and Bartlett with the use of
Lemma 12 rather than Lemma 11 we get that there exists a
P ∈ P such that wheneverm ≤ b/(320ε2),

Pr
S∼P m

[
ErrP (snap(A(D,S)))− ErrP (h∗) > 2ε

]
> δ.

WheneverA fails, we get from (11)

ErrP (A(D,S))− ErrP (h∗)

≥ 1
2
(
ErrP (snap(h)) + ErrP (h∗)

)
≥ ε.

To getΩ(ln(1/δ)/ε2), apply Lemma 12 withh andg.

We will now apply the above theorem to give the sample
complexity for learning union of intervals on the real line.
Recall that by the rescaling trick, we only need to consider
the sample complexity with respect to the uniform distribu-
tion on(0, 1).

Corollary 16. The SSL sample complexity for learning the
class of union of at mostd intervalsUId = {[a1, a2)∪ · · · ∪
[a2l−1, a2l) : l ≤ d, 0 ≤ a1 ≤ a2 ≤ · · · ≤ a2l ≤ 1} over
uniform distribution on(0, 1) is

Θ
(

2d + ln 1
δ

ε2

)
.

Proof. We haveVC(UId) = 2d, thus the upper bound fol-
lows immediately. Construct2d-shatterable sets by letting
Ci = [(i − 1)/2d, i/2d) for i = 1, . . . , 2d. For anyS ⊆
{1, . . . , 2d} definehS =

⋃
i∈S Ci. Now if |S| ≤ d then

clearlyhS ∈ UId, if |S| > d thenhS ∈ UId since|S| < d.
But then[0, 1)\hS can be covered by at mostd intervals, so
hS ∈ UId. Thus the set{hS : S ⊆ {1, . . . , 2d}} 2d-shatters
D on [0, 1]. Also let h = [0, 0) = ∅ andg = [0, 1). Now
apply Theorem 15 for the bound.

6.4 No Optimal Semi-Supervised Algorithm

One could imagine a different formulation of the compar-
ison between SL and SSL paradigms. For example, one
might ask naively whether, for given classH, there is a semi-
supervised algorithmA, such that for any supervised algo-
rithm B, and anyε, δ, on any probability distributionP the
sample complexity ofA is no higher than the sample com-
plexity of B. The answer to the question is easily seen to be
negative, because for anyP there exists a supervised learn-
ing algorithmBP that ignores the labeled examples and sim-
ply outputs hypothesish ∈ H with minimum errorErrP (h)
(or even Bayes optimal classifier forP ). On P the sample
complexity ofBP is zero, unfortunately, onP ′, sufficiently
different fromP , the sample complexity ofBP is infinite.

One might disregard algorithms such asBP and ask the
same question as above, except that one quantifies over only
the subset of algorithms that onany distribution overX ×
{0, 1} have sample complexity that is polynomial in1/ε and
ln(1/δ). Such algorithms are often called PAC (Probably
Approximately Correct). The following theorem demonstrates
that such restriction does not help and the answer to the ques-
tion is still negative.

Theorem 17. LetH = {1(−∞, t] : t ∈ R} be the class of
thresholds over the real line. For any absolutely continuous
distributionD (with respect to Lebesgue measure onR), any
semi-supervised algorithmA, any ε > 0 and δ ∈ (0, 1

2 ),
there exists a distributionP ∈ Ext(D) and a supervised
PAC learning algorithmB such that

m(A,H, P, ε, δ) > m(B,H,P, ε, δ) .

Proof. Fix any A, D andm. Let L be the algorithm that
chooses the left most empirical error minimizer, that is, on a
sampleS, L outputs1(−∞, `], where

` = inf
{

t ∈ R : ErrS(1(−∞, t]) = min
h′∈H

ErrS(h′)
}

.

For anyh ∈ H we also define algorithmLh, which outputsh
if ErrS(h) = 0, and otherwiseLh outputsL(S). First, note
thatL ≡ L1∅. Second, for anyh, Lh outputs a hypothesis
that minimizes empirical error, and sinceVC(H) = 1, it is a
PAC algorithm. Third, clearly the sample complexity ofLh

onDh is zero (regardless ofε andδ).
Theorem 10 shows that there existsh ∈ H such that

the sample complexity ofA on Dh is positive, in fact, it is
increasing asε andδ approach zero. Thus there exists super-
vised algorithmB = Lh with lower sample complexity than
A.

7 Conclusion

We provide a formal analysis of the sample complexity of
semi-supervised learning compared to that of learning from
labeled data only. We focus on bounds that do not depend on
assumptions concerning the relationship between the labels
and unlabeled data distribution.

Our main conclusion is that in such a setting semi-supervised
learning has limited advantage. Formally, we show that for
basic concept classes over the real line this advantage is never
more than a constant factor of the sample size. We believe
that this phenomena applies much more widely.



We also briefly address the error bounds under common
assumptions on the relationship between unlabeled data and
the labels. We demonstrate that even when such assumptions
apply common SSL paradigms may be inferior to standard
empirical risk minimization. We conclude that prior beliefs
like the cluster assumption should be formulated more pre-
cisely to reflect the known practical merits of SSL. This dis-
cussion highlights a dire deficiency in current approach to
semi-supervised learning; common assumptions about these
labels-unlabeled structure relationships do not offer any method
for reliably checking if they hold (in any given learning prob-
lem).

The paper calls attention to, and formalizes, some natu-
ral fundamental questions about the theory-practice gap con-
cerning semi-supervised learning. The major open question
we raise is whether any semi-supervised learning algorithm
can achieve sample size guarantees that are unattainable with-
out access to unlabeled data. This is formalized in Conjec-
tures 5 and 4.
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