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Abstract

The domain adaptation problem in machine
learning occurs when the test data generating
distribution differs from the one that gener-
ates the training data. It is clear that the
success of learning under such circumstances
depends on similarities between the two data
distributions. We study assumptions about
the relationship between the two distribu-
tions that one needed for domain adaptation
learning to succeed. We analyze the assump-
tions in an agnostic PAC-style learning model
for a the setting in which the learner can ac-
cess a labeled training data sample and an
unlabeled sample generated by the test data
distribution. We focus on three assumptions:
(i) similarity between the unlabeled distribu-
tions, (ii) existence of a classifier in the hy-
pothesis class with low error on both train-
ing and testing distributions, and (iii) the co-
variate shift assumption. I.e., the assump-
tion that the conditioned label distribution
(for each data point) is the same for both
the training and test distributions. We show
that without either assumption (i) or (ii), the
combination of the remaining assumptions is
not sufficient to guarantee successful learn-
ing. Our negative results hold with respect to
any domain adaptation learning algorithm,
as long as it does not have access to target
labeled examples. In particular, we provide
formal proofs that the popular covariate shift
assumption is rather weak and does not re-
lieve the necessity of the other assumptions.

We also discuss the intuitively appealing
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paradigm of re-weighting the labeled training
sample according to the target unlabeled dis-
tribution and show that, somewhat counter
intuitively, we show that paradigm cannot be
trusted in the following sense. There are DA
tasks that are indistinguishable as far as the
training data goes but in which re-weighting
leads to significant improvement in one task
while causing dramatic deterioration of the
learning success in the other.

1 Introduction

Much of the theoretical analysis of machine learning
has focused on the case when the training and test
data are generated by the same underlying distribu-
tion. While this may sometimes be a good approxi-
mation of reality, in many practical tasks this assump-
tion cannot be justified. For example, when learning
an automated part-of-speech tagger (see Ben-David
et al. [2006]), one’s training data is limited to par-
ticular genres of documents (due to the cost of label-
ing), but of course the true goal is to have a good
tagger for the types of documents occurring in future
data sets. Here, one cannot expect the training data
to be perfectly representative of future test data. The
same issue occurs in building spam detectors when the
training data, emails received from some addresses, is
generated by a different distribution from the one gen-
erating the emails for the target user.

Nevertheless, this is not an “all-or-nothing” situation.
While the training and test distributions may not be
completely identical, they are often quite similar. Fur-
thermore, in some such tasks, unlabeled examples,
generated by the distribution governing the target do-
main, may be also available to the learner.

The hope of domain adaptation (DA) is to use training
data from one source to help construct a predictor for
data generated by a different but related target source.
Clearly, the range of application to which such issues
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apply is huge.

The development of algorithmic heuristics for specific
DA applications brings about a growing need for a the-
ory that could analyze, guide and support such tasks.
Some high-level questions of interest are:

• What conditions, mainly on the relationship be-
tween the source training and target test distribu-
tions, allow DA to succeed? Which assumptions
suffice to provide performance guarantees on the
success of DA algorithms?

• Which algorithmic paradigms are likely to per-
form well under such given relatedness assump-
tions?

Clearly, DA works in practice, both in natural learn-
ing of animals and humans and in machine learning
applications. On the other hand, it is obvious that
some kind of relationship (or similarity) between the
training and test domains is at the root of such suc-
cesses. In our view, the big challenge that DA research
faces is coming up with “appropriate” assumptions un-
der which DA can be guaranteed to succeed. Such
assumptions should balance the following competing
requirements:

1. DA assumptions should be user friendly, in the
sense that it would be reasonable to expect a do-
main expert to have an understanding (or some
reliable intuition) of whether, and to what extent,
the assumptions hold for a concrete learning task
at hand.

2. The assumptions should be amenable to precise
mathematical formalization.

3. They should suffice to allow the derivation of per-
formance guarantees for DA algorithms.

Our impression is that very few of the currently ap-
plied DA assumptions meet these necessary require-
ments. In this paper we discuss some formal candi-
date DA assumptions from the perspective of the last
requirement—to what extent they suffice to allow the
existence of a DA algorithm with solid success guar-
antees.

This work focuses on the learning model in which there
are two data generating distributions: a source distri-
bution and a target distribution. Both generate la-
beled examples. The DA learner has access to an i.i.d.
labeled sample from the source distribution, and to an
i.i.d. unlabeled sample from the target distribution.
The learner is expected to output a predictor, whose
success is evaluated with respect to the target distri-
bution.

An interesting question in that learning scenario is
whether a learner should just find the best hypothe-
sis with respect to the labeled training source-domain
sample and use the target-domain, unlabeled, sample
just to evaluate the performance of that hypothesis
on the target task (we call such paradigms ”conser-
vative DA”), or there maybe a way to utilize the in-
formation contained in the target-domain sample in
the process of choosing the learner’s classifier (”non-
conservative DA”). While there have been several sug-
gestions for non-conservative DA learning, there are
no formal guarantees of the advantage of such meth-
ods. We address one such approach, re-weighting the
labeled sample to match the marginal distribution of
the target-domain, and show that in some cases it may
lead to a major increase of the prediction error.

1.1 Related work

Ben-David et al. [2006] define a formal model of DA
and provide an upper bound on the error of the
simplest algorithm—the empirical risk minimization
(ERM) over the training data. The bound depends
on the distance between distributions, as measured by
the so-called dA distance as introduced in Kifer et al.
[2004]. The distinguishing feature of this distance is
that it is estimable from an unlabeled sample alone,
the size of which is distribution-free (it is determined
by the VC dimension of A).

A follow-up paper by Mansour et al. [2009b] extends
dA distance to real-valued function classes and pro-
vides Rademacher-based bounds for more general loss
functions. But the bounds are incomparable with
those in Ben-David et al. [2006]. In addition, they
propose re-weighting the examples of the source train-
ing data so that the re-weighted (unlabeled) empirical
training distribution is closer to the (unlabeled) empir-
ical target distribution. The idea bears some resem-
blance to importance sampling in Monte Carlo meth-
ods. See also Sugiyama and Mueller [2005], Cortes
et al. [2008], Huang et al. [2007]. Our work partly ad-
dresses the basic question regarding this method: does
re-weighting training examples always do better than
not re-weighting?

There are some other related work stemming
from Ben-David et al. [2006]. In Blitzer et al. [2007],
the authors prove adaptation bounds when some tar-
get labeled data is available. Inspiring an algorithm
that optimally re-weights the training and target data
errors. Crammer et al. [2008] consider the setting
where there are multiple sources of training data, but
the source unlabeled distributions must be the same.
This direction is further explored in Mansour et al.
[2009a] where the target distribution is assumed to be
a mixture of source distributions.
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The covariate shift assumption, stating that the con-
ditional distribution of the target and source data are
the same, is a central element of most works on do-
main adaptation (e.g. Huang et al. [2007], Sugiyama
and Mueller [2005]). However, the proposed methods
such as instance weighting require very large sample
sizes to reduce variance, which is very unrealistic. As
discussed in [Quionero-Candela et al., 2009, Author
Comments], under more realistic scenarios where the
domain is much larger than the training and test sam-
ple sizes, it is unlikely that the same domain point will
occur in both samples. That makes any label behavior
over the training and test sample to be consistent with
such a “bias-free” covariate shift assumption. Thus co-
variate shift cannot guarantee us the success of DA un-
less the points in the domain are visited several times.
We give a concrete demonstration of this in Section 4.

1.2 Our Results

Note that most, if not all, of the theoretical guaran-
tees on the performance of DA algorithms (e.g. Ben-
David et al. [2006], Blitzer et al. [2007], and Theo-
rem 8 in Mansour et al. [2009b]) concern the perfor-
mance of “conservative” algorithms, that ignore avail-
able target-generated unlabeled data (e.g., ERM over
the training data). In these papers, target-generated
unlabeled data is used only to help analyze the suc-
cess of the learner. The error bounds that are cur-
rently known contain the following two components: a
component reflecting the discrepancy between the un-
labeled distributions of the training and test data, as
measured by dA, and a component that reflects the la-
bel discrepancy between these two distributions. Two
questions naturally arise: first, how tight are these
bounds? Are these components inevitable? A second,
related question concerns the DA algorithm; while
these components may be unavoidable for the naive
ERM algorithm over the training data (or for conser-
vative algorithms in general), can they be overcome
by some smarter algorithms that utilize not just the
labeled training sample but also the unlabeled sample
of the target data distribution? (For example, the pro-
posed re-weighting method of Mansour et al. [2009b]).

We provide full answers to these questions. We prove
that unless the learner has access to labeled examples
from the target distribution, neither the pair of as-
sumptions “covariate shift + small dA between the un-
labeled distributions” nor the pair “covariate shift +
existence of a predictor (from a small VC class, known
to the learner) that has low error on both the train-
ing and target domains” suffice to guarantee successful
DA. These results hold with respect to any algorithm.
It follows that the terms in the upper bounds on the
error of the naive algorithm, that just minimizes the
training error over a small VC class (derived in Ben-

David et al. [2006] and Mansour et al. [2009b]) are
both necessary as long as one does not make any fur-
ther assumptions. Moreover, covariate shift does not
help reduce the worst-case error of DA algorithms, re-
gardless of the algorithm.

We also analyze the re-weighting paradigm, showing
that a DA framework where all the target information
is coming from an unlabeled target-domain sample, re-
weighting may be highly counter productive (even in
cases where ’conservative’ learning, that ignores the
target sample, does well).

Our paper is structured as follows. Our definitions and
learning setup are given in Section 2, while Section 3
briefly summarizes the common DA assumptions and
describes a recently proposed, potentially promising
re-weighting method. In Section 4 we demonstrate
examples that give insight on what assumptions can
cause popular DA approaches to succeed or fail, and
finally we present our impossibility results in Section 5.

2 Preliminary Definitions and

Notation

In this section we present the formal setup for DA.
For simplicity, we consider binary classification tasks
only. Let X be some domain set. We represent the
learning tasks as probability distributions Q, P over
X × {0, 1}. We call Q the source distribution and we
call P the target distribution or the test distribution.
We denote by QX and PX the marginals of Q and
P on X (informally, unlabeled distributions). For a
distribution D over X , and a function f : X → [0, 1]
we define Df over X×{0, 1} by Df (1 | x ∈ X) = f(x).

In our DA scenario a learning algorithm receives an
i.i.d. sample L = ((x1, y1), (x2, y2), (xm, ym)) from Q
and an i.i.d. sample U = (x′

1, x
′
2, . . . , x

′
n) from PX .

The algorithm then outputs some h : X → {0, 1}.
This is formalized below.

Definition 1 (Learner). A domain adaptation (DA)
learner is a function

A :

∞
⋃

m=1

∞
⋃

n=1

(X × {0, 1})m × Xn → {0, 1}X .

The performance of a learner is measured by the error
of the learned classifier with respect to the target dis-
tribution. If R is any distribution over X × {0, 1}, we
let ErrR(h) = Pr(x,y)∼R[h(x) 6= y] which we call the
R-error of h. As usual in statistical learning theory,
we measure the performance of a learner relative to the
error of the best classifier in a hypothesis class. A hy-
pothesis class H is a class of functions from X to {0, 1}.
We introduce the shorthand notation for the error of
the best classifier in the hypothesis class. For a distri-
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bution R over X×{0, 1}, the error of the best classifier
in the class is defined as ErrR(H) = infh∈H ErrR(h).
Sometimes, we refer to ErrR(H) as the approximation
error of H . We now define learnability in our model.

Definition 2 (Learnability). Let P, Q be distributions
over X ×{0, 1}, H a hypothesis class, A a DA learner,
ǫ, δ > 0, and m, n positive integers. We say that A
(ǫ, δ, m, n)-learns P from Q relative to H , if when given
access to a labeled sample L of size m, generated i.i.d.
by Q, and an unlabeled sample U of size n, generated
i.i.d by PX , with probability at least 1 − δ (over the
choice of the samples L and U), the learned classifier
does not exceed the P -error of the best classifier in H
by more than ǫ. In other words,

Pr
L∼Qm

U∼(PX )n

[

ErrP (A(L, U)) ≤ ErrP (H) + ǫ
]

≥ 1 − δ .

Clearly, if the tasks P and Q are unrelated, or if H is
not a suitable hypothesis class, then DA as formalized
in the above definition, might not be possible. Thus,
the question is what conditions on (P, Q, H) allow DA.

Definition 3 (Sufficient Condition for DA). Let H be
a hypothesis class and P and Q probability distribu-
tions over labeled data as before.

(a) We say that a relation (or a condition) R over
triples (P, Q, H) suffices for domain adaptation
if there exists a DA learner A such that for any
ǫ, δ > 0 there exist integers m := m(ǫ, δ) and
n := n(ǫ, δ) such that for every P, Q satisfying
R(P, Q, H), we have that A (ǫ, δ, m, n)-learns P
from Q relative to H . (Can be extended to mul-
tiple relations.)

(b) We say that a real valued parameter p(P, Q, H)
suffices for domain adaptation, if there exists a
DA learner A such that for any ǫ, δ > 0 there
exist some value p > 0 and integers m := m(ǫ, δ)
and n := n(ǫ, δ) such that for all P, Q satisfying
p(P, Q, H) < p, we have that A (ǫ, δ, m, n)-learns
P from Q relative to H . (Can be extended to
many parameters.)

3 Common Domain Adaptation

Assumptions and Methods

Several assumptions and parameters have been consid-
ered sufficient for DA. Below, we list some of the most
common and/or successful ones. The focus of this
work is providing some necessary conditions, without
which no DA algorithm can be expected to enjoy guar-
anteed success. Surprisingly, it turns out that some of
the most common assumptions do not suffice for any
guarantees. In particular, we discuss two quantities

that have been shown to be important in providing suf-
ficient conditions on good domain adaptation. They
are a measure of distance between distributions, called
the A-distance as introduced in Kifer et al. [2004], and
a measure of how well the distributions agree in its la-
bels as seen in Ben-David et al. [2006].

Covariate Shift. The first assumption that is of-
ten invoked to justify DA is that of “covariate shift”
(see e.g. Sugiyama and Mueller [2005]). We say that
P and Q satisfy the covariate shift assumption if the
conditional label distribution does not change between
the training and target distributions. That is, for all
x ∈ X and any y ∈ {0, 1}, P (y | x) = Q(y | x). This
is a central element of much research on DA (e.g. see
the book by Quionero-Candela et al. [2009]). We show
in Section 4 that it is an insufficient condition to guar-
antee DA success.

Similarity of the Unlabeled (Marginal) Distri-
butions. Starting with Ben-David et al. [2006], it
becomes common to measure the distance between the
marginal distributions of the source and test distribu-
tions by the so-called A-distance.

Definition 4. Let QX and PX be distributions over
X . Let A be a collection of subsets of X such that
each set is measurable with respect to QX and PX .
The A-distance between QX and PX is

dA(QX , PX) = 2 sup
A∈A

|QX(A) − PX(A)|.

The particular choice of A that is used is A = H∆H
where H∆H is the set of all “symmetric differences”
between elements of H . That is, H∆H = {{x ∈
X : h(x) 6= h′(x)} : h, h′ ∈ H}.

Low-error Joint Prediction. This is a measure of
the agreement between the labels of the two distribu-
tions from the perspective of the class H . Ben-David
et al. [2006] were first to define λH(P, Q).

Definition 5. For two distributions P, Q over X ×
{0, 1} and a hypothesis class H we define

λH(P, Q) = inf
h∈H

[

ErrQ(h) + ErrP (h)
]

.

As an alternative Mansour et al. [2009b] consider
the optimal classifiers in H for the source and
target distributions h∗

Q = argminh∈H ErrP (h) and

h∗
P = argminh∈H ErrQ(h), and they measure the

disagreement between the distributions of labels by
Q(h∗

P , h∗
Q) = QX({x : h∗

P (x) 6= h∗
Q(x)}).

Approximation Error. Finally, the approximation
error of the class H with respect to the data-generating
distributions plays a major role in determining how
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well one can predict labels using that class. Clearly,
ErrP (H) (where P is the target distribution) should
be small if one expects to achieve good prediction with
members of H . Since we only have labels from the
source distribution, Q, and must produce a label pre-
dictor based on that, it may probably be impossible to
succeed if ErrQ(H) is not small.

3.1 The Re-weighting Method

Mansour et al. [2009b] have recently proposed po-
tentially promising method for utilizing the target-
distribution unlabeled sample in the search for
a label predictor. Consider the sample L =
{(x1, y1), . . . , (xm, ym)} generated by the source distri-
bution, Q, and an unlabeled sample U = (x′

1, . . . , x
′
n)

generated by the target distribution, P , that are the
input to a DA learner. Let LX = (x1, x2, . . . , xm) be
the sample points in L (without their labels). A vector
of non-negative weights, w̄ = (w1, . . . , wm), that sum
up to 1, can be viewed as a probability distribution
over LX . We denote the new distribution PL

w̄ and call
it a re-weighted sample. The idea of the re-weighting
paradigm is to find such a distribution such that A-
distance between (PL

w̄ )X and U is as small as possible,
where A = H∆H .

Mansour et al. [2009b] propose to use a linear pro-
gramming method for computing such a sample re-
weighting. The hope is that the new distribution over
L will convey useful information about P . The re-
weighted sample, denoted PS , can then be fed into any
standard supervised learning algorithm. As a canoni-
cal example, we can apply ERM to PS and output the
hypothesis h∗

PS
= argminh∈H ErrPS (h) with lowest er-

ror in H .

4 Demonstrating Pitfalls of Domain

Adaptation

In this section we consider several concrete examples
of P, Q, H . Our focus is on examining which of the as-
sumptions from previous section suffices for DA learn-
ability. Towards that, we shall compute, for each
of the examples, the parameters λH(P, Q), dA(P, Q),
ErrP (H), ErrQ(H), and the extent to which the co-
variate shift assumption holds. We also have a look
at whether the re-weighting method achieves a low P -
error or not.

A common strengthening of the covariate shift as-
sumption, is that, on top of having a common labeling
rule to the source and target distributions, it is also
the case that the supports of the two distributions co-
incide (or at least that any measurable set that has
non-zero weight under the target distribution also has
non-zero weight under the source distribution). For

y = 1

y = 0

P

Q
3ξ 5ξ 7ξξ 9ξ 11ξ

2ξ 4ξ 6ξ0 8ξ 10ξ

Figure 1: Picture shows the source and
target distributions P, Q from Example 6
with parameter ξ = 2/23. P uniform over
{(0ξ, 1), (2ξ, 1), (4ξ, 1), . . . , (10ξ, 1)} and the Q is
uniform over {(ξ, 0), (3ξ, 0), (5ξ, 0), . . . , (11ξ, 0)}.

the sake of clarity of presentation, we do not insist
on this assumption in the examples we design below.
However, this omission can be easily overcome by as-
signing some very small weight to any point that is
assigned zero weight in the examples. Such a modifi-
cations will not change the phenomena demonstrated
by these constructions.

For the sake of simplicity, we design all our examples
over the unit interval [0, 1] and use, throughout, the
hypothesis class H of threshold functions. That is,
for any t ∈ [0, 1], we define a threshold function ht by
ht(x) = 1 for x < t, and ht(x) = 0 otherwise. The
class of thresholds is H = {ht : t ∈ [0, 1]}. Note
that H∆H becomes the class of half-open intervals,
i.e. A = {(a, b] : 0 ≤ a ≤ b ≤ 1}.

All the examples, and therefore the corollaries we de-
rive from the analysis, can be extended to the Eu-
clidean domain R

d. In the examples, we will use h∗
Q

to denote the classifier in H with the lowest Q-error
(where Q is the source-distribution). Similarly, we de-
note by h∗

PS
the classifier in H with the lowest PS-error

where PS is the re-weighted sample. Our first exam-
ple shows that the covariate shift assumption is not
sufficient for good DA.

Example 6 (Inadequacy of Covariate Shift). Fix
some small ξ ∈ (0, 1). Let the target distribution P be
the uniform distribution over {2kξ : k ∈ N, 2kξ ≤
1} × {1} and let the source distribution Q be the uni-
form distribution over {(2k+1)ξ : k ∈ N, (2k+1)ξ ≤
1} × {0}. See Figure 1.

Notice the following:

1. Covariate shift assumption holds for P and Q.
2. The distance dA(P, Q) = ξ and hence it is arbi-

trarily small.
3. Both approximation errors ErrP (H), ErrQ(H) are

zero.
4. λH(P, Q) = 1− ξ and ErrP (h∗

Q) ≥ 1− ξ are large.

The above example demonstrates that the covariate
assumption can be satisfied without affecting the suc-
cess of learning—it does not help to guarantee DA.
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PX

QX

f (x)

0

1
−

3ǫ
1
−

ǫ 1 0 1

1 − ǫ 1

y = 0

y = 1

Figure 2: The figure shows the function f and the
marginals PX , QX from Example 7. The distributions
P, Q satisfies covariate shift and f is their common
conditional distribution. That is, for all x ∈ X , Q(y =
1 | x) = P (y = 1 | x) = f(x). The marginal QX is the
uniform distribution over [0, 1] and the marginal PX

is the uniform distribution over [1 − ǫ, 1].

We will make a stronger statement along this line in
Section 5 below.

Example 7 (Success of Re-weighting). Fix some small
ǫ ∈ (0, 1/4). We make sure that covariate assumption
holds. That is, for any x ∈ X , P (y = 1 | x) = Q(y =
1 | x) = f(x). We define f : X → [0, 1] as follows.
For x ∈ [1 − 3ǫ, 1 − ǫ] we set f(x) = 0 and otherwise
we set f(x) = 1. To fully specify Q and P , it remains
to specify their marginals QX , PX . We let QX be the
uniform distribution over [0, 1] and we let PX to be
the uniform distribution over [1 − ǫ, 1]. See Figure 2.

Note that,

λH(P, Q) = 2ǫ dA(PX , QX) = 1 − ǫ ErrP (h∗
Q) = 1

ErrP (H) = 0 ErrQ(H) = ǫ .

Furthermore, it is not hard to see that ErrP (h∗

P S ) → 0
in probability as n, m → ∞, which can be considered
a tremendous success of the re-weighting method. On
the other hand, as a sample from Q gets large, ERM
on it gets close to h∗

Q which has P -error 1.

Ben-David et al. [2006] prove that for any h ∈ H ,
|ErrP (h)− ErrQ(h)| ≤ λH(P, Q) + dA(PX , QX). This
example shows that the upper bound on the gain of
re-weighting that we mentioned above, λH(P, Q) +
dH∆H(P, Q), is really tight and the ratio between this
gain and λH(P, Q) can be arbitrarily large.

Example 8 (Total Failure of Re-weighting). This ex-
ample is the same as the previous, except that the la-
bels of P are flipped. That is, QX is uniform over [0, 1]
and the conditional distribution Q(y = 0 | x) = 1 for
any x ∈ [1−3ǫ, 1− ǫ] and for any x ∈ X \ [1−3ǫ, 1− ǫ]
the conditional distribution is Q(y = 1 | x) = 1. The
marginal distribution PX is the uniform distribution
over [1 − ǫ, 1]. However, in contrast with the previous
example P (y = 0 | x) = 1 for all x ∈ X .

Note that,

λH(P, Q) = ǫ dA(PX , QX) = 1 − ǫ ErrP (h∗
Q) = 0

ErrP (H) = 0 ErrQ(H) = ǫ .

It is not hard to see that ErrP (h∗
PS

) → 1 in probability
as n, m → ∞, which is an embarrassing failure of the
re-weighting method. However, ERM on a sample of
Q will do very well.

When we compare Examples 7 and 8, we see that
all the relevant parameters that we were considering,
λH(P, Q) and dA(P, Q), have not changed by much.
However, there is a dramatic shift in the performance
(i.e. P -error) of the re-weighting method and equally
dramatic, but opposite, shift is in the performance of
ERM on a sample of Q (which is close to h∗

Q).

While the bound from Ben-David et al. [2006] implies
that ErrP (h∗

Q) is bounded by ErrP (H) + λH(P, Q) +
dH∆H(P, Q), one could have hoped that, by re-
weighting the sample S to reflect the distribution PX ,
the term dH∆H(PS , Q) in that bound would be di-
minished. Example 8 shows that this may not be the
case. The P -error of ERM(PS) maybe as bad as that
bound allows.

5 Impossibility Results

We are interested in the question “under what con-
ditions is DA possible?” Clearly, the success of DA
is conditioned upon some type of “similarity” or “re-
latedness” between the data distribution that we get
our labels from and the target data distribution that
we use to evaluate our error by. In our formalism
this translates to the question “what relations between
probability distributions suffice for DA?”

The next theorem shows that some intuitive condi-
tions, that have been proposed in the literature for
that purpose, do not suffice to guarantee the success of
DA learning. In particular, among the three assump-
tions that we have been discussing—covariate shift,
small dA distance between the unlabeled distributions
and the existence of hypotheses that mutually succeed
on both the training and test domains (small λH), the
last two are both necessary (and, as we know from
previous results, are also sufficient).

Theorem 1 (Necessity of small dA(PX , QX)). Let X
be some domain set, and H a class of functions over
X. Assume that, for some A ⊆ X, {h−1(1) ∩ A :
h ∈ H} contains more than two sets and is linearly
ordered by inclusion. Then, the conditions covariate
shift plus small λH do not suffice for DA. In particular,
for every ǫ > 0 there exists probability distributions Q
over X×{0, 1}, P over X such that for every domain
adaptation learner A, every integers m, n > 0, there
exists a labeling function f : X → {0, 1} such that

1. λH(Pf , Q) ≤ ǫ.

2. Pf and Q satisfy the covariate shift assumption.
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3. PrL∼Qm

U∼P n

[

ErrPf (A(L, U)) ≥ 1/2
]

≥ 1/2.

Proof Sketch. The idea is to construct a (labeled) dis-
tribution Q, (unlabeled) distribution P (over X), and
two labelers g and g′ so that, as far as the input to
a DA learner is concerned, the triples (Q, Pg, H) and
(Q, Pg′ , H) are indistinguishable, while, at the same
time, any hypothesis that has small error on Pg fails
badly on Pg′ and vice versa. It follows, that A cannot
tell which of the two target distributions it is trying
to learn, and any hypothesis it outputs will have an
error of at least 0.5 w.r.t. one of these potential tar-
gets. So given any A, we’ll pick the target on which
it fails. We demonstrate the idea of the construction
for the simple case of X being the real line and H the
class of thresholds. It is easy to extend the examples
underlying this proof to the case of a general H stated
in the theorem.

Consider Examples 7 and 8 except we modify QX so
that on the interval [1−ǫ, 1] we apply the “odd points”
construction of Example 6 (also see Figure 1)1. Sim-
ilarly, for P we apply the “even points” construction
restricted to [1 − ǫ, 1] and make it uniform. We label
Q as in Example 7 except in [1− ǫ, 1] we only label the
“odd points” as 1 (the rest of the points in that inter-
val will be labeled by either g or g′). The support of
Q and P are disjoint, so we can satisfy covariate shift
by defining g, g′ to be consistent with Q on support of
Q while on the support of P (the “even points”) g will
label 1 and g′ label 0 (λH will be small whether g or g′

is used for f). Note that on any sample L, U whatever
A outputs the sum of the errors (w.r.t. Pg and Pg′ )
is 1. For sake of argument suppose A is deterministic
(idea holds if allowed randomization), then we look at
the sets

G = {(L, U) : |L| = m, |U | = n, ErrPg (A(L, U)) ≥ 1/2}

G′ = {(L, U) : |L| = m, |U | = n, ErrPg′ (A(L, U)) > 1/2}

and of course G and G′ have disjoint union the set of
all (L, U) with |L| = m, |U | = n. We choose f = g if
Pr(G) ≥ 1/2 and g′ otherwise. It is easy to see that
(3) follows.

This theorem also applies to broader hypothesis
classes, such as linear, homogeneous halfspaces in R

d.
Note that we could have included the assumption
of Mansour et al. [2009b] in the theorem since both
(Q, Pg) and (Q, Pg′) satisfy their assumption.

Theorem 2 (Necessity of small λH(P, Q)). Let X be
some domain set, and H be a class of functions over
X whose VC dimension is much smaller than |X | (in

1QX is not strictly uniform, but piecewise uniform on
two regions

particular, any H with a finite VC dimension over an
infinite X will do). Then, the conditions covariate
shift plus small dH∆H(P, Q) do not suffice for DA. In
particular, for every ǫ > 0 there exist probability dis-
tributions Q over X × {0, 1}, P over X such that for
every DA learner A, every integers m, n > 0, there
exists a labeling function f : X → {0, 1} such that

1. dH∆H(P, QX) ≤ ǫ.

2. The covariate shift assumption holds.

3. PrL∼Qm

U∼P n

[

ErrPf (A(L, U)) ≥ 1/2
]

≥ 1/2.

Proof Sketch. The proof follows the same path as the
above proof. Consider Example 6, and use the Q dis-
tribution there (concentrated on “odd points” with la-
bels being 0), let P be the unlabeled distribution in
the example (on “even points”), so that (1) is satis-
fied. Now there are two candidate target functions
g, g′ constructed by making them both agree with Q
on its support, but on support of P , g will label all
1’s and g′ labels 0. Note that covariate shift holds
regardless if we pick f to be g or g′. Further, A can-
not tell whether g or g′ is the true labeler on P and
makes total error of 1 on Pg and Pg′ combined. Using
similar arguments in the above proof, we can establish
(3).

6 Conclusion

We have analyzed the problem of domain adaptation
in the setting where the learner has access to labeled
examples drawn from the training data distribution
and to unlabeled examples drawn from the target dis-
tribution. We considered three types of assumptions
concerning the relationship between the domain and
target distributions. These are:

1. The training and target distributions are close
w.r.t. the dH∆H distance

2. There exist a hypothesis in H that has low error
on both distributions.

3. The covariate shift assumption—the labeling
function does not change between the training and
target data.

We conclude that neither of the assumption combi-
nations 1+3 nor 2+3 suffices to guarantee successful
domain adaptation. These results hold w.r.t. any pos-
sible learning algorithm, as long as no further relat-
edness assumption are imposed on the training and
target distributions. Recalling that Ben-David et al.
[2006] have shown that assuming 1+2 does imply
learnability (even with the most straightforward learn-
ing algorithm), our results fully clarify the implications
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of these assumptions. In particular, the results demon-
strate that the popular covariate shift assumption (see
e.g. Sugiyama and Mueller [2005]) is in a sense irrel-
evant in this setting—its addition cannot replace any
of the other assumptions, and it becomes redundant
when the other two assumptions hold.

The natural follow-up challenges for understanding do-
main adaptation is to come up with and formalize
other types of relatedness assumptions that may reflect
the intuition of domain experts when domain adap-
tation works for their setting, and find ways to prove
their utility. Another follow-up question is to relax our
model of domain adaptation by allowing the learner ac-
cess to some labeled examples from the target domain.
The questions in such a setting are mainly to find con-
ditions under which the labeled training-domain data
can be utilize to improve learnability based on just
target examples.
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