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Abstract

We define a novel, basic, unsupervised learn-
ing problem - learning the lowest density ho-
mogeneous hyperplane separator of an un-
known probability distribution. Namely,
given a random unlabeled sample generated
by some unknown probability distribution,
find linear separators that cut that distri-
bution through low-density regions. This
task is relevant to several problems in ma-
chine learning, such as semi-supervised learn-
ing and clustering stability. We investigate
the question of existence of a universally
consistent algorithm for this problem. We
propose two natural learning paradigms and
prove that, on input unlabeled random sam-
ples generated i.i.d. by any distribution, they
are guaranteed to converge to the optimal
separator for that distribution. We comple-
ment this result by showing that no learning
algorithm for our task can achieve uniform
learning rates (that are independent of the
data generating distribution).

1 Introduction

While the theory of machine learning has achieved ex-
tensive understanding of many aspects of supervised
learning, our theoretical understanding of unsuper-
vised learning leaves a lot to be desired. In spite of the
obvious practical importance of various unsupervised
learning tasks, the state of our current knowledge does
not provide anything that comes close to the rigorous
mathematical performance guarantees that classifica-
tion prediction theory enjoys.

In this paper we make a small step in that direction
by analyzing one specific unsupervised learning task –
the detection of low-density linear separators for data
distributions over Euclidean spaces.

We consider the scenario in which some unknown prob-
ability distribution over R

n generates a (finite) i.i.d.
sample. Taking such a sample as an input we seek to
find a homogeneous hyperplane of lowest density that
cuts through that distribution. We assume that the
underlying data distribution has a continuous density
function and define the density of a hyperplane as the
integral of that density function over that hyperplane.

Our model can be viewed as a restricted instance of
the fundamental issue of inferring information about
a probability distribution from the random samples it
generates. Tasks of that nature range from the ambi-
tious problem of density estimation [8], through esti-
mation of level sets [4], [13], [1], densest region detec-
tion [3], and, of course, clustering. All of these tasks
are notoriously difficult with respect to both the sam-
ple complexity and the computational complexity as-
pects (unless one presumes strong restrictions about
the nature of the underlying data distribution). Our
task seems more modest than these, however, we be-
lieve that it is a basic and natural task that is relevant
to various practical learning scenarios. We are not
aware of any previous work on this problem (from the
point of view of statistical machine learning, at least).

One important domain to which the detection of low-
density linear data separators is relevant is semi-
supervised learning [7]. Semi-supervised learning is
motivated by the fact that in many real world classifi-
cation problems, unlabeled samples are much cheaper
and easier to obtain than labeled examples. Conse-
quently, there is great incentive to develop tools by
which such unlabeled samples can be utilized to im-
prove the quality of sample based classifiers. Nat-
urally, the utility of unlabeled data to classification
depends on assuming some relationship between the
unlabeled data distribution and the class member-
ship of data points (see [5] for a rigorous discus-
sion of this point). A common postulate of that
type is that the boundary between data classes passes
through low-density regions of the data distribution.



The Transductive Support Vector Machines paradigm
(TSVM) [9] is an example of an algorithm that im-
plicitly uses such a low density boundary assumption.
Roughly speaking, TSVM searches for a hyperplane
that has small error on the labeled data and at the
same time has wide margin with respect to the unla-
beled data sample.

Another area in which low-density boundaries play
a significant role is the analysis of clustering stabil-
ity. Recent work on the analysis of clustering stability
found close relationship between the stability of a clus-
tering and the data density along the cluster bound-
aries – roughly speaking, the lower these densities the
more stable the clustering ([6], [12]).

A low-density-cut algorithm for a family F of probabil-
ity distributions takes as an input a finite sample gen-
erated by some distribution f ∈ F and has to output a
hyperplane through the origin with low density w.r.t.
f . In particular, we consider the family of all distribu-
tions over R

n that have continuous density functions.
We investigate two notions of success for low-density-
cut algorithms – uniform convergence (over a family
of probability distributions) and consistency. For uni-
form convergence we prove a general negative result,
showing that no algorithm can guarantee any fixed
convergence rates (in terms of sample sizes). This neg-
ative result holds even in the simplest case where the
data domain is the one-dimensional unit interval. W

On the positive side, we prove the consistency of
two natural algorithmic paradigms; Soft-Margin al-
gorithms that choose a margin parameter (depend-
ing on the sample size) and output the separator
with lowest empirical weight in the margins around
it, and Hard-Margin algorithms that choose the sepa-
rator with widest sample-free margins.

The paper is organized as follows: Section 2 provides
the formal definition of our learning task as well as the
success criteria that we investigate. In Section 3 we
present two natural learning paradigms for the prob-
lem over the real line and prove their universal con-
sistency over a rich class of probability distributions.
Section 4 extends these results to show the learnability
of lowest-density homogeneous linear cuts for probabil-
ity distributions over Rd for arbitrary dimension, d. In
Section 5 we show that the previous universal consis-
tency results cannot be improved to obtain uniform
learning rates (by any finite-sample based algorithm).
We conclude the paper with a discussion of directions
for further research.

2 Preliminaries

We consider probability distributions over R
d. For

concreteness, let the domain of the distribution be the
d-dimensional unit ball.

A linear cut learning algorithm is an algorithm that
takes as input a finite set of domain points, a sample
S ⊆ R

d, and outputs a homogenous hyperplane, L(S)
(determined by a weight vector, w ∈ R

d, such that
||w||2 = 1).

We investigate algorithms that aim to detect hyper-
planes with low density with respect to the sample-
generating probability distribution.

Let f : R
d → R

+
0 be a d-dimensional density function.

We assume that f is continuous. For any homogeneous
hyperplane h(w) = {x ∈ R

d : wTx = 0} defined by
a unit weight vector w ∈ R

d, we consider the (d − 1)-
dimensional integral of the density over h,

f(w) :=

∫

h(w)

f(x) dx .

Note that w 7→ f(w) is a continuous mapping defined
on the (d − 1)-sphere Sd−1 = {w ∈ R

d : ‖w‖2 =
1}. Note that, for any such weight vector w, f(w) =
f(−w). For the 1-dimensional case, these hyperplanes
are replaced by points, x on the real line, and f(x) =
f(x) – the density at the point x.

Definition 1. A linear cut learning algorithm is a
function that maps samples to homogeneous hyper-
planes. Namely,

L :

∞
⋃

m=1

(Rd)m → Sd−1.

When d = 1, we require that

L :

∞
⋃

m=1

R
m → [0, 1].

(The intention is that L finds the lowest density linear
separator of the sample generating distribution.)

Definition 2. Let µ be a probability distribution and
f its density function. For a weight vector w we define
the half-spaces h+(w) = {x ∈ R

d : wTx ≥ 0} and
h−(w) = {x ∈ R

d : wTx ≤ 0}. For any weight
vectors w and w′,

1. DE(w,w′) = 1 − |wTw
′|

2. Dµ(w,w′) =
min{µ(h+(w)∆h+(w′)), µ(h−(w)∆h+(w′))}



3. Df (w,w′) = |f(w′) − f(w)|

We shall mostly consider the distance measure DE in
R

d, for d > 1 and DE(x, y) = |x − y| for x, y ∈ R. In
theses cases we omit any explicit reference to D. All
of our results hold as well when D is taken to be the
probability mass of the symmetric difference between
L(S) and w∗ and when D is taken to be D(w,w′) =
|f(w) − f(w′)|.
Definition 3. Let F denote a family of probability dis-
tributions over R

d. We assume that all members of F
have density functions, and identify a distribution with
its density function. Let D denote a distance function
over hyperplanes. For a linear cut learning algorithm,
L, as above,

1. We say that L, is consistent for F w.r.t a distance
measure D, if, for any probability distribution f
in F , if f attains a unique minimum density hy-
perplane then

∀ǫ > 0 lim
m→∞

Pr
S∼fm

[D(L(S),w∗) ≥ ǫ] = 0. (1)

where w∗ is the minimum density hyperplane for
f .

2. We say that L is uniformly convergent for F
(w.r.t a distance measure, D), if, for every ǫ, δ >
0, there exists a m(ǫ, δ) such that for any proba-
bility distribution f ∈ F , if f has a unique mini-
mizer w∗ then, for all m ≥ m(ǫ, δ) we have

Pr
S∼fm

[D(L(S),w∗) ≥ ǫ] ≤ δ. (2)

3 The One Dimensional Problem

Let F1 be the family of all probability distributions
over the unit interval [0, 1] that have continuous den-
sity function. We consider two natural algorithms for
lowest density cut over this family. The first is a simple
bucketing algorithm. We explain it in detail and show
its consistency in section 3.1. The second algorithm
is the hard-margin algorithm which outputs the mid-
point of the largest gap between two consecutive points
the sample. In section 3.2 we show hard-margin algo-
rithm is consistent and in section 3.1 that the bucket-
ing algorithm is consistent. In section 5 we show there
are no algorithms that are uniformly convergent for
F1.

3.1 The Bucketing Algorithm

The algorithm is parameterized by a function k : N →
N. For a sample of size m, the algorithm splits the in-
terval [0, 1] into k(m) equal length subintervals (buck-
ets). Given an input sample S, it counts the number

of sample points lying in each bucket and outputs the
mid-point of the bucket with fewest sample points. In
case of ties, it picks the rightmost bucket. We denote
this algorithm by Bk. As it turns out, there exists a
choice of k(m) which makes the algorithm Bk consis-
tent for F1.

Theorem 4. If the number of buckets k(m) = o(
√

m)
and k(m) → ∞ as m → ∞, then the bucketing algo-
rithm Bk is consistent for F1.

Proof. Fix f ∈ F1, assume f has a unique minimizer
x∗. Fix ǫ, δ > 0. Let U = (x∗ − ǫ/2, x∗ + ǫ/2) be
an neighbourhood of the unique minimizer x∗. The
set [0, 1] \ U is compact and hence there exists α :=
min f([0, 1] \ U). Since x∗ is the unique minimizer of
f , α > f(x∗) and hence η := α − f(x∗) is positive.
Thus, we can pick a neighbourhood V of x∗, V ⊂ U ,
such that for all x ∈ V , f(x) < α − η/2.

The assumptions on growth of k(m) imply that there
exists m0 such that for all m ≥ m0

1/k(m) < |V |/2 (3)

2

√

ln(1/δ)

m
<

η

2k(m)
(4)

Fix any m ≥ m0. Divide [0, 1] into k(m) buckets each
of length 1/k(m). For any bucket I, I ∩ U = ∅,

µ(I) ≥ α

k(m)
. (5)

Since 1/k(m) < |V |/2 there exists a bucket J such
that J ⊆ V . Furthermore,

µ(J) ≤ α − η/2

k(m)
. (6)

For a bucket I, we denote by |I ∩ S| the number of
sample points in the bucket I. From the well known
Vapnik-Chervonenkis bounds [2], we have that with
probability at least 1− δ over i.i.d. draws of sample S
of size m, for any bucket I,

∣

∣

∣

∣

|I ∩ S|
m

− µ(I)

∣

∣

∣

∣

≤
√

ln(1/δ)

m
. (7)

Fix any sample S satisfying the inequality (7) . For



any bucket I, I ∩ U = ∅,

|J ∩ S|
m

≤ µ(J) +

√

ln(1/δ)

m
by (7)

≤ α − η/2

k(m)
+

√

ln(1/δ)

m
by (6)

<
α

k(m)
− 2

√

ln(1/δ)

m
+

√

ln(1/δ)

m
by (4)

≤ µ(I) −
√

ln(1/δ)

m
by (5)

≤ |I ∩ S|
m

by (7)

Since |J ∩ S| > |I ∩ S|, the algorithm Bk must not
output the mid-point of any bucket I for which I∩U =
∅. Henceforth, the algorithm’s output, Bk(S), is the
mid-point of an bucket I which intersects U . Thus the
estimate Bk(S) differs from x∗ by at most the sum of
the radius of the neighbourhood U and the radius of
the bucket. Since the length of a bucket is 1/k < |V |/2
and V ⊂ U , the sum of the radii is

|U |/2 + |V |/4 <
3

4
|U | < ǫ .

Combining all the above, we have that for any ǫ, δ >
0 there exists m0 such that for any m ≥ m0, with
probability at least 1 − δ over the draw of an i.i.d.
sample S of size m, |Bk(S)−x∗| < ǫ. This is the same
as saying that Bk is consistent for f .

Note that in the above proof we cannot replace the
condition k(m) = o(

√
m) with k(m) = O(

√
m) since

Vapnik-Chervonenkis bounds do not allow us to de-
tect O(1/

√
m)-difference between probability masses

of two buckets.

The following theorems shows that if there are too
many buckets the bucketing algorithm is not consistent
anymore.

Theorem 5. If the number of buckets k(m) =
ω(m/ logm), then Bk is not consistent for F1.

To prove the theorem we need a proposition of the
following lemma dealing with the classical coupon col-
lector problem.

Lemma 6 (The Coupon Collector Problem [11]). Let
the random variable X denote the number of trials for
collecting each of the n types of coupons. Then for any
constant c ∈ R, and m = n lnn + cn,

lim
n→∞

Pr[X > m] = 1 − e−e−c

.

Proof of Theorem 5. Consider the following density f

on [0, 1],

f(x) =











(4 − 16x)/3 if x ∈ [0, 1
4 ]

(16x − 4)/3 if x ∈ (1
4 , 1

2 )

4/3 if x ∈ [ 12 , 1]

which attains unique minimum at x∗ = 1/4.

From the assumption on the growth of k(m) for all
sufficiently large m, k(m) > 4 and k(m) > 8m/ lnm.
Consider all buckets lying in the interval [12 , 1] and
denote them by b1, b2, . . . , bn. Since the bucket size
is less than 1/4, they cover the interval [34 , 1]. Hence
their length total length is at least 1/4 and hence there
are

n ≥ k(m)/4 > 2m/ lnm

such buckets.

We will show that for m large enough, with probability
at least 1/2, at least one of the buckets b1, b2, . . . , bn

receives no sample point. Since probability masses of
b1, b2, . . . , bn are the same, we can think of these buck-
ets as coupon types we are collecting and the sample
points as coupons. By Lemma 6, it suffices to verify,
that the number of trials, m, is at most, say, 2

3n lnn.
Indeed, we have for large enough m

2

3
n lnn ≥ 2

3

2m

lnm
ln

(

2m

lnm

)

=

4

3

m

lnm
(lnm + ln 2 − ln lnm) ≥ m .

Now, Lemma 6 implies that for sufficiently large m,
with probability at least 1/2, at least one of the buckets
b1, b2, . . . , bn contains no sample point.

If there are empty buckets in [12 , 1], the algorithm out-
puts a point in [12 , 1]. Since this happens with proba-
bility at least 1/2 and since x∗ = 1/4, the algorithm
cannot be consistent.

When the number of buckets k(m) is asymptotically
somewhere in between

√
m and m/ lnm, the bucket-

ing algorithm switches from being consistent to failing
consistency. It remains an open question to determine
where exactly the transition occurs.

3.2 The Hard-Margin Algorithm

Let the hard-margin algorithm be the function that
outputs the mid-point of the largest interval between
the adjacent sample points. More formally, given a
sample S of size m, the algorithm sorts the sample
S ∪ {0, 1} so that x0 = 0 ≤ x1 ≤ x2 ≤ · · · ≤ xm ≤ 1 =
xm+1 and outputs the midpoint (xi + xi+1)/2 where
the index i, 0 ≤ i ≤ m, is such that the gap [xi, xi+1]
is the largest.



Henceforth, the notion largest gap refers to the length
of the largest interval between the adjacent points of
a sample.

Theorem 7. The hard-margin algorithm is consistent
for the family F1.

To prove the theorem we need the following property
of the distribution of the largest gap between two ad-
jacent elements of m points forming an i.i.d. sample
from the uniform distribution on [0, 1]. The following
statement follows as a corollary of Lévy’s work [10].
However, we will present a direct and much simpler
proof.

Lemma 8. Let Lm be the random variable denoting
the largest gap between adjacent points of an i.i.d.
sample of size m from the uniform distribution on
[0, 1]. For any ǫ > 0

lim
m→∞

Pr

[

Lm ∈
(

(1 − ǫ)
lnm

m
, (1 + ǫ)

lnm

m

)]

= 1.

Proof of Lemma. Consider the uniform distribution
over the unit circle. Suppose we draw an i.i.d. sam-
ple of size m from this distribution. Let Km denote
the size of the largest gap between two adjacent sam-
ples. It is not hard so see that the distribution of
Km is the same as that of Lm−1. Furthermore, since

ln(m)/m
ln(m+1)/(m+1) → 1, we can thus prove the lemma with

Lm replaced by Km.

Fix ǫ > 0. First, let us show that for m sufficiently
large Km is with probability 1 − o(1) above the lower

bound (1 − ǫ) ln m
m . We split the unit circle b = m(1−ǫ)

ln m

buckets, each of length (1 − ǫ) lnm
m . It follows from

Lemma 6, that for any constant ζ > 0 and an i.i.d.
sample of (1 − ζ)b ln b points at least one bucket is
empty with probability 1 − o(1). We show that for
some ζ, m ≤ (1− ζ)b ln b. The expression on the right
side can be rewritten as

(1 − ζ)b ln b =
(1 − ζ)(1 + δ)m

lnm
ln

(

(1 − ζ)(1 + δ)m

lnm

)

≥ m(1 − ζ)(1 + δ)

(

1 − O

(

ln lnm

lnm

))

For ζ sufficiently small and m sufficiently large the last
expression is greater than m, yielding that a sample of
m points misses at least one bucket with probability
1 − o(1). Therefore, the largest gap Km is with prob-
ability 1 − o(1) at least (1 − ǫ) ln m

m .

Next, we show that for m sufficiently large, Km is with
probability 1−o(1) below the upper bound (1+ǫ) lnm

m .
We consider 3/ǫ bucketings B1,B2, . . . ,B3/ǫ. Each
bucketing Bi, i = {1, 2, . . . , (3/ǫ)}, is a division of the
unit circle into b = m

(1+ǫ/3) ln m equal length buckets;

each bucket has length ℓ = (1 + ǫ/3) lnm
m . The buck-

eting Bi will have its left end-point of the first bucket
at position i(ℓǫ/3). The position of the left end-point
of the first bucket of a bucketing is called the offset of
the bucketing.

We first show that there exists ζ > 0 such that m ≥
(1 + ζ)b ln b for all sufficiently large m. Indeed,

(1 + ζ)b ln b = (1 + ζ)
m

(1 + ǫ/3) lnm
ln

m

(1 + ǫ/3) lnm

≤ 1 + ζ

1 + ǫ/3
m

(

1 − O

(

ln lnm

lnm

))

.

For any ζ < ǫ/3 and sufficiently large m the last ex-
pression is greater than m.

The existence of such ζ and Lemma 6 guarantee that
for all sufficiently large m, for of each bucketing Bi,
with probability 1−o(1), each bucket is hit by a sample
point. We now apply union bound and get that, for all
sufficiently large m, with probability 1 − (3/ǫ)o(1) =
1−o(1), for each bucketing Bi, each bucket is hit by at
least one sample point. Consider any sample S such
that for each bucketing, each bucket is hit by at least
one point of S. Then, the largest gap in S can not be
bigger than the bucket size plus the difference of offsets
between two adjacent bucketings, since otherwise the
largest gap would demonstrate an empty bucket in at
least one of the bucketings. In other words, the largest
gap Km is at most

(ℓǫ/3)+ ℓ = (1+ ǫ/3)ℓ = (1+ ǫ/3)2
lnm

m
< (1+ ǫ)

lnm

m

for any ǫ < 1.

Proof of the Theorem. Consider any two disjoint in-
tervals U, V ⊆ [0, 1] such that for any x ∈ U and any

y ∈ V , f(x)
f(y) < p < 1 for some p ∈ (0, 1). We claim

that with probability 1 − o(1), the largest gap in U is
bigger than the largest gap in V .

If we draw an i.i.d. sample m points from µ, according
to the law of large numbers for an arbitrarily small
χ > 0, the ratio between the number of points mU in
the interval U and the number of points mV in the
interval V with probability 1 − o(1) satisfies

mU

mV
≤ p(1 + χ)

|U |
|V | . (8)

For a fixed χ, choose a constant ǫ > 0 such that 1−ǫ
1+ǫ >

p + χ.

From Lemma 8 we show that with probability 1 −
o(1) the largest gap between adjacent sample points
falling into U is at least (1−ǫ)|U | ln mU

mU

. Similarly, with



probability 1 − o(1) the largest gap between adjacent
sample points falling into V is at most (1+ ǫ)|V | ln mV

mV
.

From (8) it follows that the ratio of gap sizes with
probability 1 − o(1) is at least

(1 − ǫ)|U | ln mU

mU

(1 + ǫ)|V | ln mV

mV

>
1 − ǫ

1 + ǫ

1

p + χ

lnmU

lnmV
= (1+γ)

lnmU

lnmV

≥ (1 + γ)
ln((p + χ) |U|

|V |mV )

lnmV

= (1 + γ) (1 + O(1)/ln mV ) → (1 + γ) as m → ∞

for a constant γ > 0 such that 1+γ ≤ 1−ǫ
1+ǫ

1
p+χ . Hence

for sufficiently large m with probability 1 − o(1), the
largest gap in U is strictly bigger than the largest gap
in V .

Now, we can choose intervals V1, V2 such that [0, 1] \
(V1 ∪ V2) is an arbitrarily small neighbourhood con-
taining x∗. We can pick an even smaller neighbour-
hood U containing x∗ such that for all x ∈ U and all

y ∈ V1 ∪ V2,
f(x)
f(y) < p < 1 for some p ∈ (0, 1). Then

with probability 1−o(1), the largest gap in U is bigger
than largest gap in V1 and the largest gap in V2.

4 Learning Linear Cut Separators in

High Dimensions

In this section we consider the problem of learning the
minimum density homogeneous (i.e. passing through
origin) linear cut in distributions over R

d. Namely,
assuming that some unknown probability distribution
generates i.i.d. finite sample of points in R

d. We wish
to process these samples to find the (d−1)-dimensional
hyperplane, through the origin of R

d, that has the
lowest probability density with respect to the sample-
generating distribution. In other words, we wish to
find how to cut the space R

d through the origin in the
“sparsest direction”.

Formally, let Fd be the family of all probability dis-
tributions over the R

d that have a continuous density
function. We wish to show that there exists a linear
cut learning algorithm that is consistent for Fd. Note
by Theorem 10, no algorithm achieves uniform conver-
gence for Fd (even for d = 1).

Define the soft-margin algorithm with parameter γ :
N → R

+ as follows. Given a sample S of size m,
it counts for every hyperplane, the number of sample
points lying within distance γ := γ(m) and outputs
the hyperplane with the lowest such count. In case
of the ties, it breaks them arbitrarily. We denote this
algorithm by Hγ . Formally, for any weight vector w ∈
Sd−1 (the unit sphere in R

d) we consider the “γ-strip”

h(w, γ) = {x ∈ R
d : |wTx| ≤ γ}

and count the number of sample points lying in it. We
output the weight vector w for which the number of
sample points in h(w, γ) is the smallest; we break ties
arbitrarily.

To fully specify the algorithm, it remains to specify the
function γ(m). As it turns out, there is a choice of the
function γ(m) which makes the algorithm consistent.

Theorem 9. If γ(m) = ω(1/
√

m) and γ(m) → 0 as
m → ∞, then Hγ is consistent for Fd.

Proof. The structure of the proof is similar to the proof
of Theorem 4. However, we will need more technical
tools.

First let’s fix f . For any weight vector w ∈ Sd−1

and any γ > 0, we define fγ(w) as the d-dimensional
integral

fγ(w) :=

∫

h(w,γ)

f(x) dx

over γ-strip along w. Note that for any w ∈ Sd−1,

lim
m→∞

fγ(m)(w)

γ
= f(w)

(assuming that γ(m) → 0). In other words, the

sequence of functions
{

fγ(m)/γ(m)
}∞

m=1
, f/γ(m) :

Sd−1 → R
+
0 , converges point-wise to the function

f : Sd−1 → R
+
0 .

Note that f/γ(m) : Sd−1 → R
+
0 is continuous for any

m, and recall that Sd−1 is compact. Therefore the

sequence
{

fγ(m)/γ(m)
}∞

m=1
converges uniformly to f .

In other words, for every ζ > 0 there exists m0 such
that for any m ≥ 0 and any w ∈ Sd−1,

∣

∣

∣

∣

∣

fγ(m)(w)

γ(m)
− f(w)

∣

∣

∣

∣

∣

< ζ .

Fix f and ǫ, δ > 0. Let U = {w ∈ Sd−1 : |wT w∗| >
1− ǫ} be the “ǫ-double-neighbourhood” of the antipo-
dal pair {w∗,−w∗}. The set Sd−1 \U is compact and
hence α := min f(Sd−1 \ U) exists. Since w∗,−w∗

are the only minimizers of f , α > f(w∗) and hence
η := α − f(w∗) is positive.

The assumptions on γ(m) imply that there exists m0

such that for all m ≥ m0,

2

√

d + ln(1/δ)

m
<

η

3
γ(m) (9)

∣

∣

∣

∣

∣

fγ(m)(w)

γ(m)
− f(w)

∣

∣

∣

∣

∣

< η/3 for all w ∈ Sd−1

(10)



Fix any m ≥ m0. For any w ∈ Sd−1 \ U , we have

fγ(m)(w)

γ(m)
> f(w) − η/3 by (10)

≥ f(w∗) + η − η/3

(by choice of η and U)

= f(w∗) + 2η/3

>
fγ(m)(w

∗)

γ(m)
− η/3 + 2η/3 by (10)

=
fγ(m)(w

∗)

γ(m)
+ η/3 .

From the above chain of inequalities, after multiplying
by γ(m), we have

fγ(m)(w) > fγ(m)(w
∗) + ηγ(m)/3 . (11)

From the well known Vapnik-Chervonenkis bounds [2],
we have that with probability at least 1 − δ over i.i.d.
draws of S of size m we have that for any w,

∣

∣

∣

∣

|h(w, γ) ∩ S|
m

− fγ(m)(w)

∣

∣

∣

∣

≤
√

d + ln(1/δ)

m
, (12)

where |h(w, γ) ∩ S| denotes the number of sample
points lying in the γ-strip h(w, γ).

Fix any sample S satisfying the inequality (12). We
have, for any w ∈ Sd−1 \ U ,

|h(w, γ) ∩ S|
m

≥ fγ(m)(w) −
√

d + ln(1/δ)

m

> fγ(m)(w
∗) +

ηγ(m)

3
−

√

d + ln(1/δ)

m

≥ |h(w∗, γ) ∩ S|
m

−
√

d + ln(1/δ)

m
+

ηγ

3

−
√

d + ln(1/δ)

m

>
|h(w∗, γ) ∩ S|

m

Since |h(w, γ) ∩ S| > |h(w∗, γ) ∩ S|, the algorithm
must not output a weight vector w lying in Sd−1 \ U .
In other words, the algorithm’s output, Hγ(S), lies in
U i.e. |Hγ(S)T w∗| > 1 − ǫ.

We have proven, that for any ǫ, δ > 0, there exists m0

such that for all m ≥ m0, if a sample S is drawn i.i.d.
from f , then |Hγ(S)T w∗| > 1− ǫ. In other words, Hγ

is consistent for f .

5 The Impossibility of Uniform

Convergence

In this section we show a negative result that roughly
says one cannot hope for an algorithm that can achieve
ǫ accuracy and 1 − δ confidence for sample sizes that
only depend on these parameters and not on properties
of the probability measure.

Theorem 10. No linear cut learning algorithm is uni-
formly convergent for F1 with respect to any of the
distance functions DE, Df and Dµ.

Proof. For a fixed δ > 0 we show that for any m ∈ N

there are distributions with density functions f and g
such that no algorithm using a random sample of size
at most m drawn from one of the distributions cho-
sen uniformly at random, can identify the distribution
with probability of error less than 1/2 with probability
at least δ over random choices of a sample.

Since for any δ and m we find densities f and g such
that with probability more than (1 − δ) the output
of the algorithm is bounded away by 1/4 from either
1/4 or 3/4, for the family F1 no algorithm converges
uniformly w.r.t. any distance measure.

Consider two partly linear density functions f and g
defined in [0, 1] such that for some n, f is linear in
the intervals [0, 1

4 − 1
2n ], [14 − 1

2n , 1
4 ], [14 , 1

4 + 1
2n )], and

[ 14 + 1
2n , 1], and satisfies

f(0) = f

(

1

4
− 1

2n

)

= f

(

1

4
+

1

2n

)

= f(1), f(
1

4
) = 0

and g is the reflection of f w.r.t. to the centre of the
unit interval, i.e. f(x) = g(1 − x).

1/n
f

x∗ = 1/4
1/n

g

x∗ = 3/4

Figure 1: f is uniform everywhere except a small
neighbourhood around 1/4 where it has a sharp ‘v’
shape. And g is the reflection of f about x = 1/2.

Let us lower-bound the probability that a sample of
size m drawn from f misses the set U ∪ V for U :=
[ 14 − 1

2n , 1
4 + 1

2n ] and V := [34 − 1
2n , 3

4 + 1
2n ]. For any

x ∈ U and y /∈ U , f(x) ≤ f(y), and furthermore,
f is constant on the set [0, 1] \ U containing at most
the entire probability mass 1. Therefore, for pf (Z)



denoting the probability that a point drawn from the
distribution with the density f hits the set Z, we have
pf (U) ≤ pf (V ) ≤ 1

n−1 , yielding that pf (U∪V ) ≤ 2
n−1 .

Hence, an i.i.d. sample of size m misses U ∪ V with
probability at least (1 − 2/(n− 1))m ≥ (1 − η)e−2m/n

for any constant η > 0 and n sufficiently large. For a
proper η and n sufficiently large we get (1−η)e−2m/n >
1− δ. From the symmetry between f and g, a random
sample of size m drawn from g misses U ∪ V with the
same probability.

We have shown that for any δ > 0, m ∈ N, and for
n sufficiently large, regardless of whether the sample
is drawn from either of the two distributions, it does
not intersect U ∪ V with probability more than 1 −
δ. Since in [0, 1] \ (U ∪ V ) both density functions are
equal, the probability of error in the discrimination
between f and g conditioned on that the sample does
not intersect U ∪ V cannot be less than 1/2.

6 Conclusions and Open Questions

In this paper have presented a novel unsupervised learning
problem that is modest enough to allow learning algorithm
with asymptotic learning guarantees, while being relevant
to several central challenging learning tasks. Our analysis
can be viewed as providing justification to some common
semi-supervised learning paradigms, such as the maximiza-
tion of margins over the unlabeled sample or the search for
empirically-sparse separating hyperplanes. As far as we
know, our results provide the first performance guarantees
for these paradigms.

From a more general perspective, the paper demonstrates
some type of meaningful information about a data gener-
ating probability distribution that can be reliably learned
from finite random samples of that distribution, in a fully
non-parametric model – without postulating any prior as-
sumptions about the structure of the data distribution. As
such, the search for a low-density data separating hyper-
plane can be viewed as a basic tool for the initial analysis
of unknown data. Analysis that can be carried out in situ-
ations where the learner has no prior knowledge about the
data in question and can only access it via unsupervised
random sampling.

Our analysis raises some intriguing open questions. First,
note that while we prove the universal consistency of the
‘hard-margin’ algorithm for Real data distributions, we
do not have a similar result for higher dimensional data.
Since searching for empirical maximal margins is a com-
mon heuristic, it is interesting to resolve the question of
consistency of such algorithms.

Another natural research direction that this work calls for
is the extension of our results to more complex separa-
tors. In clustering, for example, it is common to search for
clusters that are separated by sparse data regions. how-
ever, such between-cluster boundaries are often not linear.
Can one provide any reliable algorithm for the detection of
sparse boundaries from finite random samples when these
boundaries belong to a richer family of functions?

Our research has focused on the information complexity of

the task. However, to evaluate the practical usefulness of
our proposed algorithms, one should also carry a compu-
tational complexity analysis of the low-density separation
task. We conjecture that the problem of finding the homo-
geneous hyperplane with largest margins, or lowest density
around it (with respect to a finite high dimensional set of
points) is NP-hard (when the Euclidean dimension is con-
sidered as part of the input, rather than as a fixed constant
parameter). However, even if this conjecture is true, it will
be interesting to find efficient approximation algorithms for
these problems.
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[10] Paul Lévy. Sur la division d’un segment par des points
choisis au hasard. C.R. Acad. Sci. Paris, 208:147–149,
1939.

[11] R. Motwani and P. Raghavan. Randomized Algo-
rithms. Cambridge University Press, 1995.

[12] Ohad Shamir and N. Tishby. Model selection and
stability in k-means clustering. In COLT, 2008.

[13] A. B. Tsybakov. On nonparametric estimation of den-
sity level sets. The Annals of Statistics, 25(3):948–969,
1997.


