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Abstract. The intersection of large ordered sets is a common probldimeigcontext of the evaluation of boolean
queries to a search engine. In this paper we propose sergraived algorithms for computing the intersection of
sorted arrays, and in particular for searching sorted ariraghe intersection context. We perform an experimental
comparison with the algorithms from the previous studiesifDemaine, Lopez-Ortiz and Munro [ALENEX 2001],
and from Baeza-Yates and Salinger [SPIRE 2005]; in additieimplement and test the intersection algorithm
from Barbay and Kenyon [SODA 2002] and its randomized varfiSAGA 2003]. We consider both the random
data set from Baeza-Yates and Salinger, the Google quesésshy Demainet al., a corpus provided by Google
and a larger corpus from the TREC Terabyte 2006 efficiencyygsteam, along with its own query log. We
measure the performance both in terms of the number of césgparand searches performed, and in terms of the
CPU time on two different architectures. Our results confaimimprove the results from both previous studies in
their respective context (comparison model on real dataGild measures on random data), and extend them to
new contexts. In particular we show that value-based sedgdnithms perform well in posting lists in terms of the
number of comparisons performed.

1 Introduction

The intersection of large ordered sets is a common probletimeircontext of the evaluation of relational queries to
databases as well as boolean queries to a search engineofdiease complexity of this problem has long been well
understood, dating back to the algorithm by Hwang and Limfover three decades ago [13, 14], and the average case
has been studied in the case of the intersection of two skt the elements are uniformly distributed [9].

In 2000, Demaineet al. [11] introduced a new intersection algorithm, termethptive, which intersects all
the sets in parallel so as to compute the intersection in giroporional to the shortest proof of the result set. In a
subsequent study [12], they compared its performance ictipea relative to a straightforward implementation of an
intersection algorithm, and proposed a new and better agagptgorithm which outperformed both in practice. They
measured the number of comparisons performed, on the irfdexdlection of plain text from web pages. In 2002,
Barbay and Kenyon [4] introduced another intersection élgm, which adapts to the correlation between the terms
of the query, and one year later Barbay [3] introduced a remzed variant. To the best of our knowledge, neither of
these algorithms were implemented before our study. In 2B&éza-Yates [1] introduced an intersection algorithm,
based on an alternative technique. Baeza-Yates and Sal#jgaeasured the performance of the algorithm in terms
of CPU time, on pairs of random arrays.

In this paper we consider the number of comparisons andlsesaperformed, as well as the CPU time on two
different architectures (RISC and CISC), on three diffedata sets: (i) a random data set similar to the one congldere
by Baeza-Yates and Salinger [2], (ii) the query log used bynBieeet al. [12] on a larger data set provided by Google,

* A preliminary version of this paper appeared in [6].



and (iii) and the GOV2 corpus, of siz&1GB, with a larger query log, both from the TREC Terab3©@6 efficiency
query stream. This combines the previous studies and allsame compare all the aforementioned algorithms on
common platforms. We propose several variants for thegatgion and search in sorted arrays in the context of their
intersection:

— We propose a variant of the algorithm from Baeza-Yates [hjctv performs the intersection of more than two
sorted arrays without sorting the intermediary resultss Variant is significantly faster than the original algbnit
on real instances, both in terms of the number of comparigerfsrmed and in terms of CPU time.

— We reduce the number of comparisons performed by eachéatéra algorithm by introducing value-based search
algorithms, and we further improve their performance byodticing an adaptive value-based search algorithm.

— We show that a variant of binary search optimizes cache usagethe original version, when the arrays are too
large to fit in memory.

The paper is structured as follows: in the next Section werilesthe data sets and the architectures on which we
evaluated the various algorithms discussed. In Section 8eseribe in detail the intersection and search algorithms
studied. In Section 4 we present and analyze our experitnergasures in the various contexts. We conclude in
Section 5 with a summary of our experiments.

2 Experimental Set-up

In this paper we measure the performance of the algorithora Demaineet al. [12] and from Baeza-Yates and
Salinger [2] which were previously studied in different tmxts (random or practical) and under different measures
(CPU or number of comparisons), so they had not until now lettly compared. We perform this comparison
under each of the previous settings, as well as using a laggpus, on which the performance of algorithms is more
sensitive to cache effects.

2.1 Datasets

Random, uniformly distributed data: We compare the performance of the algorithms on pairs oédats gener-
ated in the same way as Baeza-Yates and Salinger [2]: seggiehimteger random numbers, uniformly distributed in
the rangé€1, 10°]. The lengthn of the longest sequence varies fran®00 to 22, 000 by steps of3, 000. The lengthn
of the shortest sequence varies frof to 400 by steps ofi00.

For each algorithm and each pair of sizesm ), we generat@0 instances. We measure the number of comparisons
once for each algorithm and instance, and we average théngitime overl, 000 executions. Each execution, for
a given combination of algorithm and instance, is separfitad the next one with the same combination by the
execution of all the other algorithms on all the instancédss Ensures a realistic simulation of the cache behavior.

Google Corpus and Query Log: We compare the performance of the intersection algoritltnamswer real queries
on a sample web corpus, both provided by Google. This is thegpiery log used by Demaimeal. [12], but on a
substantially larger and more recent data set.

The set of web pages contaiéigs, 760 text documents i16.85 gigabytes of text. As the documents or web pages
of the corpus were not given a numerical identifiepriori, we numbered the documents as they were stored, by
assigning them a sequential number indicating their ordéine indexing process. The resulting inverted word index
has2, 604, 335 alphanumeric keywords with HTML markup removed.

The query log corresponds 5000 entries. For more details on the query log we refer the reedBemainect
al. [12], where its properties are discussed in detail.



TREC GOV?2 Corpus and Query Log: We consider a larger web corpus and an associated query togh form
the data set TREC GOV?2. This web corpus was collected by tHeCT€mpetition in information retrieval, through
a partial crawl of US government websites.

The GOV2 web corpus corresponds to approxima3éiyGB of text, which once indexed associa8s515, 138
keywords to the references 856, 197, 524 documents. Each document is on average7 KB long, most are in
HTML but some are in PDF. The document numbering scheme Isthat certain groups of documents have numbers
close to each other. As a result, this creates gaps in the enimgbscheme where certain numbers between document
groups do not appear.

The query log provided with the TREC GOV2 corpus correspaod80, 000 queries with click-through togov
domains. We randomly selected a sampl8,®00 queries for our simulations. There wel@ queries involving only
one keyword, and05 queries where a keyword did not appear in the inverted wateXnThis leaved4590 non-trivial
queries, which corresponds to a query log of similar sizénéodne used on the Google data set. The average size of
a query ist.42 keywords. Table 2.1 shows the number of keywords distidouth the queries: most queries have less
than11 keywords.

#ofkeywords )1 [2 [3 [4 [5 [6 [7 [8 [9 J[10 [11 [12 [13 [14 [15 |16 |17 [18
# of queries 105|778 (12661217793 {414 {198 |98 |53 |44 |14 (7 |4 |5 |2 |0 1 1
Table 1. The distribution of the sizes of TREC queries: on averdgg keywords per query.

2.2 Machines and Compilers

We implemented the algorithms i@++, and we ran our experiments on two architectures. For eadfitecture,

we measured only the performance of the intersection oedantrays once they have been loaded in memory (and
eventually cached on the swap partition of the hard-driveparticular, we did not measure the performance of the
indexing structure, which retrieves those arrays fromtitkex on the hard-drive.

The INTEL platform: For all data sets we used a PC runnirignux versi on 2. 4. 20-31. 9 on a processor
Intel (R Pentium R) 4,at2.66GHz with alow level 1 cache &fK, a level 2 cache 012K, 1GB of memory
and a swap partition of size16GB. We measured the CPU time using thét scl function, specific to the Pentium,
which measures the number of processor cycles, and heniceléscthe time taken by hard-drive accesses to the
swapped partition, and by cache misses. The programs werpiledl on this machine usingcc 3. 2. 2 with the
optimization option C3.

For the largest data set, we also measured the CPU time usérig tres function, from thesys/ti nes. h
library, to allow the comparison with the equivalent measuon the other platform, which does not support the
rdt scl function.

The SUN platform: For very large instances we ran additional simulationsguaimJl t r aSparc |11 server from
Sun running Unix or8 processors @i00MHz, with 16GB of RAM. As the largest sorted array usseisMB, and as
each instance is composed of at misarrays, no instance uses more tH&B, hence all intersection instances hold
in main memory on this machine. This is a RISC architectut@ckvmeans in particular that certain multiplications
and divisions may not be directly supported by the procdsgsbcomputed through function calls.



Algorithm 1 Pseudo-code fagvs
SvS(set, k)
1: Sort the sets by sizéset[0]| < |set[1]] < ... < |set[k]]).
2: Letthe smallest seft[0] be the candidate answer set.
3: for each sefS from set do initialize £[S] = 0.
4: for each sefS from set do
5: for each element in the candidate answer s
6 search foe in S in the rang€e’[S] to | S|,
7: and updaté[S] to the rank ofe in S.
8: if e was not foundhen

9: removee from candidate answer set,
10: and advance to the next element in the answer set.
11: end if
12: endfor
13: end for

The CPU time was measured on this machine using thees function from thesys/ ti mes. h library, which
returns the elapsed real time, including time taken by cawisses. The programs were compiled on this machine
usinggcc 2. 95. 2 with the optimization option C3.

3 Algorithms

In this paper we define search and melding algorithms seggrab that we can study the impact of new search
algorithms on all melding algorithms, and find the best caration over all possible ones.

3.1 Melding Algorithms

Various algorithms for the intersection bfsets have been introduced in the literature [4, 11,12, JA#Bbng those,
we do not consider the naive algorithm, which traverses @ady linearly, as both theoretical and experimental
analysis show that its performance in the comparison madsignificantly worse than the ones studied here. For
similar reasons we do not consider either tldaptive intersection algorithm, proposed by Demaétal. [11], nor

the algorithm proposed by Hwarey al. [12]. Instead we focus on four main algorithms, some of theith wiinor
variants.

SvS and Swapping SvS:SvS is a straightforward algorithm widely used, which intettsetbe sets two at a time in
increasing order by size, starting with the two smallest &lgorithm 1). It performs a binary search to determine if
an element in the first set appears in the second set. We aisideo variants of it which replace the binary search
with various other searches.

Demaineet al. considered the variartwapping_SvS, where the searched element is picked from the set with
the least remaining elements, instead of the first (injtiathallest) set irsvS. This algorithm was first proposed by
Hwanget al. [13]: it performs better when the size of the second set istsuitially reduced after a search although
experiments show that this does not happen often.



Small Adaptive: Small_Adaptive is a hybrid algorithm, which combines the best propertiedwsfandAdaptive

(see Algorithm 2). For each element in the smallest set,rifopms a galloping search on the second smallest set.
If a common element is found, a new search is performed ingh@amingk — 2 sets to determine if the element

is indeed in the intersection of all sets, otherwise a newcbeia performed. Observe that the algorithm computes
the intersection from left to right, producing the answemicreasing order. After each step, each set has an already
examined range and an unexamined rasgell_Adaptive selects the two sets with the smallest unexamined range
and repeats the process described above until there isteaséiis been fully examined.

Algorithm 2 Pseudo-code f@mall_Adaptive
Small_Adaptive(set,k)
1: while no set is emptylo

2. Sort the sets by increasing number of remaining elements.
3:  Pick an eliminatoe = set[0][0] from the smallest set.
4. elimset « 1.

5:  repeat

6: search foe in set[elimset].

7: incremenklimset;

8: until s=koreisnotfoundinset[elimset]

9. if s=k then
10: adde to answer.
11: endif
12: end while

Sequential and Random Sequential:Barbay and Kenyon [4] introduced a fourth algorithm, calfeduential,
which is optimal for a different measure of difficulty, basaal the non-deterministic complexity of the instance. It
cycles through the sets performing one entire gallop seatrehtime in each (as opposed to a single gallosteg

in Adaptive), so that it performs at mostsearches for each comparison performed by an optimal ntawrdimistic
algorithm: its pseudo-code is given in Algorithm 3.

A randomized variant [3|RSequential, performs less comparisons th&equential on average on instances
where the searched elements are present in roughly haléafrtiays, rather than in almost all or almost none of the
arrays. The difference witRequential corresponds to a single line, the choice of the next set wioesearch for
the “eliminator” (line12 in Algorithm 3): Sequential takes the next set available whit8equential chooses one
at random among all the sets not yet known to contain the ieditor.

Baeza-Yates and Baeza-Yates SortedBaezaYates algorithm was originally intended for the intersection wbt
sorted lists. It takes the median element of the smalleafistsearches for it in the larger list. The element is added to
the result set if present in the larger list. The median othaller list and the rank insertion of the median in the large
set divide the problem into two sub-problems. The algoridaives recursively the instances formed by each pair of
subsets, always taking the median of the smaller subseteamdrsng for it in the larger subset. If any of the subsets is
empty, it does nothing. In order to use this algorithm onanses with more than two lists, Baeza-Yates [1] suggests
to intersect the lists two-by-two, intersecting the snsllists first. As the intersection algorithm works for sdrtists

and the result of the intersection may not be sorted, thdtrestuneeds to be sorted before intersecting it with the next
list, which would be highly inefficient. The pseudo-codeBarzaYates algorithm is shown in Algorithm 4.



Algorithm 3 Pseudo-code f@equential
Sequential(set, k)
1: Choose an eliminater = set|[0][0], in the seelimset < 0.
2: Consider the first set,« 1.
3: while the eliminatore # oo do

4: searchimset[i] for e
5 if the search found then
6: increase the occurrence counter.
7 if the value of occurrence counterkighen outpute end if
8 end if
9: if the value of the occurrence countekisor e was not foundhen
10: update the eliminator @+« set[i][succ(e)].
11: endif
12:  Consider the next set in cyclic order— i + 1 mod k.
13: end while

To avoid the cost of sorting each intermediate result setjntreduceSo_BaezaYates, a minor variant of
BaezaYates, which does not move the elements found from the input to éselt set as soon as it finds them,
but only at the last recursive step. This ensures that tieezlts are added to the result set in order and trades the cost
of explicitly sorting the intermediate results with the tokeeping slightly larger subsets.

Algorithm 4 Pseudo-code f@BaezaYates

BaezaYates(set, k)

. Sort the sets by sizéset[0]| < |set[l]| < ... < [set[k]]).

2: Letthe smallest sefet[0] be the candidate answer set.

3: for each seset[i],i =1...kdo

4: candidate < BYintersect(candidate, set[i],0, |candidate| — 1,0, |set[¢]| — 1)
5

6

[En

sort the candidate set.
: end for

BYintersect(setA, setB,minA, maxA, minB, maxB)

if setA or setB are emptythen returnf) endif.
. Letm = (minA + maxA)/2 and letmedianA be the element atetA[m].
: Search fomedianA in setB.
if medianA was foundthen
addmedianA to result.
:endif
: Letr be the insertion rank afedianA in setB.
. Solve the intersection recursively on both sides ahdm in each set.

Each of those algorithms has linear time worst case behavitte sum of the sizes of the arrays, and each
performs better than the others on a set of instances. NattBdhzaYates, So_BaezaYates, Small_Adaptive and
SvS take active advantage of the difference of sizes of the aatsthatSmall_Adaptive is the only one that takes



advantage of how this size varies as the algorithm elimgekements, whil€equential andRSequential ignore
this information.

3.2 Search Algorithms

We extend the set of search algorithms tested to value-tedgedthms, such asnterpolation, Extrapolation
or Extrapol_Ahead; and to some cache oblivious search algorithms, suglv@sded_Binary.

Binary Search and variants: Binary search is well known in the literature. The adequag@lémentatiohfinds the
insertion rankp of a keyz in a sorted se# of sizen in 1 + log, n comparisons. In the context of the intersection of
sorted arrays, several elements are searched in eachardhy) many applications those elements are of increasing
size, so that the position of the last lookup during the pmesisearch is a lower bound for the position of the currently
searched element. While using this lower bound reducesuthbar of comparison (we call thislaptive Binary),

it yields a slower CPU performance when the array is verydamd partially cachedotal Binary ignores this
lower bound and uses the cache more efficiently.

We test a third variantRounded Binary, which represents a trade-off betwe@naptive Binary and
Total Binary: it performs the same comparisons tlartal_Binary so long as the compared elements are larger
than the lower bound obtained from the previous search, Ehagoint it switches to a more sophisticated mode taking
advantage both of the positions of the previous comparjsams of the lower bound. This variant always performs
more comparisons thaldaptive Binary and less thaMotal_Binary, but it performs better in terms of CPU on
instances where the array searched is very large, due te edfetts.

Galloping Search: Originally introduced by Bentley and Yao [7finbounded search is the problem of searching
for the insertion ranlp of a keyz in a sorted sed of unbounded size. The algorithm probes tHesys with index
{1,3,7,15,...,2" — 1} in sequence till it finds a keyl[2¢ — 1] larger thanz, and then performs a binary search4n
between position8*~! — 1 and2’ — 1. This technique is sometimes callede sided binary search [15], exponential
search [8], doubling search [4], or galloping [11, 12]: we will use this last name for our implementatialloping
search. It solves the unbounded search proble?dn, (p+1) comparisons.

Interpolation and Extrapolation Search: Interpolation search has long been known to perform significantly
better in terms of comparisons over binary search on datoraty drawn from a uniform distribution, and recent

developments suggest that interpolation search is alsasan@ble technique for non-uniform data [10]. Searching fo
an element of valuein an arrayset[i] on the range to b, the algorithm probes positiaf{a, b, ¢) defined as follows:

e — setli][a]
set[i][b] — set][i][a]

I(Q,b,e)_L (b—a)J ta

We propose a varianixtrapolation search, which involves extrapolating on the current andipus positions
in set[i]. Specifically, the extrapolation step probes the infigx, p;, ¢), wherep), is the previous extrapolation probe.
This has the advantage of using “explored data” as the baistafculating the expected index: this strategy is similar
to galloping, which uses the previous jump value as the asthe next jump (i.e. the value of the next jump is the
double of the value of the current jump).

11t can be implemented in two different ways, each of themroiging a different performance measure, the number of two-
way comparisons, closer to CPU time, and the number of tw®eeomparisons, closer to the running time in the context of
hierarchical memory. As the latter implementation perfedpoorly on all contexts, we discuss here only the one opiitgithe
number of two-way comparisons.



Extrapolation Look Ahead Search: We propose another search algorittBRtrapol_Ahead, which is similar to
extrapolation, but rather than basing the extrapolatiothercurrent and previous positions, we base it on the current
position and a position that is further ahead. Thus, our@inbex is calculated by(p;, p;+1, ¢) wherel is a positive
integer that essentially measures the degree to which thepetation uses local information. The algorithm uses
the local distribution as a representative sample of theibligion betweerset[i][p;] and the eliminator: a large
value of corresponds to an algorithm using more global informatishile a small value of correspond to an
algorithm using only local information. If the index of thectessosucc(e) of e in set[i] is not far fromp;, then

the distribution betweeret[i|[p;] andset][i|[p; + [] is expected to be similar to the distribution between [i][p;]
andset[i][succ(e)], and the estimate will be fairly accurate. Thus if the setissty, or piecewise uniform, we would
expect this strategy to outperform interpolation becaheeset is locally representative. On the other hand, if the se
comes from a random uniform distribution then we would exjp&erpolation to be better because in this case using
a larger range to interpolate is more accurate than usingaiesmange.

4 Experimental Results

In each of the contexts defined in Section 2 we test all therilfgns defined in Section 3 and we measure their
performance in terms of the number of searches and comparerformed, and in terms of CPU time. The CPU
times for the Random and Google data sets correspond onlg&sumnes on theNTEL platform, as the instances are
too small for the execution time to be measured onstie platform. Both platforms are considered for the larger
TREC GOV2 data set.

Note that the number of searches for a fixed merging algorithes not depend on which search algorithm is used
(they all return the same position), and that the number ofgarisons performed does not depend on the architecture.
Despite the fact that the CPU time on a particular instanneskightly vary from one execution to another, we verified
on small samples5() queries from the TREC data set, all queries from the Goodie skt) that the CPU measures
over a single run yield the same conclusion than averagirgioMuns: hence we report our results on larger samples
with a single run.

4.1 Experiments on random, uniformly distributed data

In the context of randomly generated data, we only measwgdénformance of the algorithms with two lists, in
a similar way to the study by Baeza-Yates and Salinger [2]ciwhompare the CPU performance on random data
of the combination8aezaYates usingAdaptive Binary, Small_Adaptive usingGalloping and of the naive
linear algorithmBaezaYates usingAdaptive_Binary was the best combination. We test a larger set of algorithms,
on random data generated in a similar way, and we measurgtmerformance in CPU time and the number of
comparisons and searches. Note #quential behaves exactly the sameS&sjuential on two arrays and thus
is not represented.

We show on the plots the number of comparisons and CPU timafifferent intersection and search algorithms
as a function of the size of the largest list when the size of the smallestiists fixed, for various values of.. The
standard deviation is usually very low, hence we omit in tgaris with more than two plots on them.

Comparison with Baeza-Yates and Salinger [2]:In terms of CPU time, our results agree with Baeza-Yates and
Salinger’s study: botBaezaYates andSo_BaezaYates usingAdaptive_Binary outperform any other combination

of algorithms. Figure 1 shows the performance of the five b@stbinations of algorithms on this data set. As Figure 2
shows, none of the other search algorithms perform betterttie initial choice proposed by Baeza-Yates and Salinger.
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Fig. 1. CPU times for the five best combinations of algorithms on camdyenerated instanceBaezaYates Us-
ing Adaptive_Binary performs the best for all size ratios, closely followed $wapping_SvS and SvS using
Galloping.
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Fig. 2. CPU times for all search algorithms in combination wBdezaYates. The best search algorithm is the one
proposed originallyAdaptive_Binary.
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The superiority ofAdaptive Binary over all search algorithms when usiBgezaYates or So_BaezaYates
is easily explained: value based search algorithms sudntasrpolation are too costly in CPU time, and adap-
tive search algorithms such &alloping or Extrapol_Ahead are inefficient when the searched position is in
the middle of the array on average. The superiorityBakzaYates among melding algorithms is relative, as
SvS and Swapping_SvS perform well for almost any search algorithm. The differeric CPU performance be-
tweenBaezaYates andSo_BaezaYates USingAdaptive_Binary, SvS, Swapping SvS or Small_Adaptive using
Galloping is minimal (see Table 2).

Number of searches and comparisonsin terms of the number of search8agezaYates, SvS, Swapping_SvS and
Small_Adaptive perform the best, whilBequential andSo_BaezaYates perform much more searches (see again
Table 2). The difference of performance betwBeazaYates andSo_BaezaYates is easily explainedaezaYates
performs one more comparison per search to reduce the ddiyane more value, which increases the number of
comparisons but reduces the number of searches in comp#oiSe_BaezaYates. The difference of performance
betweerSequential and the other algorithms is due to the fact tBefuential always chooses the new eliminator
on the array previously searched: in the context where thm@hts of the array are uniformly drawn and of very
different size, it always results in a worse performancae ttfeoosing the eliminator from the smallest array.

Algorithm Searches Comparisons Runtime
Svs 200 1024 Extrapol_Ahead) 242986 Rounded_Binary)
Swapping_SvS 200 1024 Extrapol_Ahead) 230916 fdaptive_Binary)
Small Adaptive| 200 1024 Extrapol_Ahead) 435828 Galloping)
BaezaYates 199 1066 (nterpolation) 188258 fdaptive_Binary)
So_BaezaYates | 328 1064 (nterpolation) 218156 fdaptive_Binary)
Sequential 385 1198 Extrapol_Ahead) 327075 fdaptive_Binary)

Table 2. Total number of searches and comparisons and total runimegerformed by each algorithm on the Random data set,
when associated with the search algorithm performing tis¢ Wwih it. The number of searches and comparisons are atetkl
although the difference in terms of the number of searchefenmeed betweeBaezaYates andSo_BaezaYates does not corre-
sponds to the difference in the number of comparison peddrrthe CPU times are not correlated with the two other measur

In terms of the number of comparisons, the use of value basaxtls algorithms such aterpolation,
Extrapolation Or Extrapol Ahead results in a better performance for any melding algoritimose algorithms
outperform other search algorithms on the uniform distidyuof elements in the arrays.

The best combinations regarding the number of comparisoedonmed are Swapping SvS using
Extrapol_Ahead andBaezaYates usingInterpolation, even though Figure 3 shows thdapping SvS with
Extrapol_Ahead has a small advantage oBtezaYates with Interpolation.

Fixing the size of the smallest list to other sizes does riet #the relative ranking (see Figure 4), so we only report
the data forn = 200. For completeness we summarize the results across alitaigeron the whole Random data set
in Table 3.

4.2 Experiments on the Google data set

Demaine et al. [12] studied the combinations of algorithn®nall Adaptive using Galloping, SvS and
Swapping SvS usingAdaptive_Binary, and found the combinatioBmall_Adaptive usingGalloping to out-
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Fig. 3. Number of comparisons f@®aezaYates usingInterpolation andSwapping_SvS usingExtrapol_ Ahead
on the Random data s&wapping_SvS with Extrapol_Ahead performs visibly better.
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Fig. 4.CPU times for the five best combinations of algorithms on thed®dm data set with the smallest list of size 400.
The order of the algorithms is the same than when the sméd#ielsas size 20BaezaYates usingAdaptive_Binary
performs the best for all size ratios.
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SvS Swapping_SvS|Sequential |BaezaYates|So_BaezaYates|Small_Adaptive
cmpl  cpu cmp cpu cmp  cpu cmp  cpu cmp cpu cmp cpu
Total_Binary 2815262397281 254008439745754(28112500184501 4025442815 677319
Adaptive_Binary|24692550642469 230916263232707516201882581620 2181562469 444474
Rounded_Binary (26232429862623 24687139974364382629242773419(0 3913472623 443064
Galloping 20872453332087 244216223733231124102559452373 2860402087 435824
Interpolation |10672791211067 280624124237477910662754631064 3046161067 466444
Extrapolation |[1281§3755851281 371444144446420312613739471262 4019331281 547751
Extrapol_Ahead [10244132091024 404841119857610910854264521073 5060751024 584941

Table 3. Total number of comparisons and CPU times performed by elgdhnitam over the Random data set. In bold, the best
performance in terms of the number of comparisons, for uarimelding algorithms in combination wilkxtrapol_Ahead, and
the best performance in terms of CFRdezaYates usingAdaptive Binary.

perform the others in terms of the number of comparisonopadd on a set of queries provided by Google on the
index of their own web-crawl.

We measured the performance of each combinations of algasibn the same queries, but on the index of a larger
web crawl, also provided by Google. Similarly to the resgit&®n by Demainet al., we show on the plots the number
of comparisons and CPU times as a function of the numbafrkeywords in the queries, which corresponds to the
number of arrays forming the instance. The standard dewiati the two by two difference of performance on each
instance, not represented here, was always very low. Wetbmgtandard deviation of the average performance of
each algorithm on instances composea @irays: it mostly represents the variation of difficulty arg@ueries with
k keywords, and not the stability of the results.

Comparison with Demaineet al. [12]: Considering the same algorithms studied by Demaeira&, our results agree
with the previous study8mall_Adaptive usingGalloping performsless comparisons than the other algorithms, but
in fact Small_Adaptive does not behave much differently fragnS andSwapping_SvS, as the combinationsvs
usingGalloping andSwapping SvS usingGalloping performs almost equally: the improvement in the number of
comparisons performed is mainly due to the usage o&#i4 oping search algorithm (see Figure 5). This similarity
of performance is likely to come from the fact that witl286 keywords per query on average:s, Swapping_SvS
andSmall_Adaptive behave the same on instances which consist of only two arrays

The number of comparisons performed is further reduced éyiie of value based search algorithms. All inter-
section algorithms benefit from the uselafterpolation, and all excepBaezaYates andSo_BaezaYates benefit
even more from the use @8ktrapol_Ahead, the interpolation search variant that we introduced (gedneligure 5).
As aresult, the best combination of search and melding idgnos regarding the number of comparison performed are
Small_Adaptive, SvS andSwapping_SvS usingExtrapol_Ahead, and results in an important improvement over
the best solution proposed by Demaeéteal..

Study of Barbay and Kenyon'’s [4] algorithm: The algorithm proposed by Barbay and Kenyon [4] and its ramdo
ized variant [3] both perform noticeably more comparisdvamtthe other intersection algorithms measured, indepen-
dently of the search algorithm chosen (see Table 4). This hignber of comparisons is correlated with the high
number of searches performed: the algorithms fails to fingbater proof by cycling through the arrays.

The searches performed Bgquential are shorter on average than other similar algorithms: ttie b&tween
the number of comparisons and the number of searches is madtesthan for other algorithms such ags (see
again Table 4). This is probably explained by the fact 8wjuential performs many searches of average size, as
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Fig. 5.Number of comparisons f@vs usingAdaptive_Binary, Galloping, Interpolation Or Extrapol_ Ahead

on the Google data setalloping and Interpolation Successively improve ofidaptive Binary search. The

performance ofxtrapol_Ahead is almost indistinguishable fromnterpolation’s although Table 5 shows that it
does perform slightly betteSwapping SvS andSmall_Adaptive show the same behavior.
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Fig. 6. CPU times for the four best combinatioss'S andSwapping_SvS usingGalloping search, anBaezaYates

andSo_BaezaYates UsingAdaptive_Binary search on Google data set:S, Swapping_SvS andSo_BaezaYates
perform very similarly, buBaezaYates performs slightly worse.
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opposed to algorithms such &8s which perform many small searches in the smallest arraysy bew rather large
ones in the other arrays,

Algorithm ComparisonsSearchefRatig

SvS usingGalloping 16884 3542 |4.77
Swapping_SvS usingGalloping 16884 3541 |4.77
Small_Adaptive usingGalloping 16884 3542 |4.77
Sequential usingGalloping 25440 5801 |4.39
RSequential usingGalloping 24518 5873 |4.17
BaezaYates USingGalloping 24285 3327 |7.30
So_BaezaYates UsingGalloping 20935 5209 |4.02
BaezaYates USingAdaptive_Binary 18543 3327 |5.57
So_BaezaYates USiNgAdaptive Binary| 15689 5209 |3.01

Table 4. Number of comparisons and searches performed on the Goatdesdt. The average cost of a search (the log of its
length), here measured in number of comparisons, is srfali@equential andRSequential than forSvs, Swapping_ SvS or
Small_ Adaptive.

Note that the number of comparisons (and ratiopaézaYates andSo_BaezaYates usingGalloping iS not
representative: when usinglaptive Binary search, which is better suited to their behavior, the peréorce in
terms of the number of comparisons is much better (see agdile B). The melding algorithr®io_BaezaYates is
more efficient in terms of the number of comparisons thaszaYates, although it performs more searches, which
still results in a slightly smaller number of comparisons gearches: this corresponds to the additional comparison
performed byBaezaYates to check if the searched element is present in the searched ar

Real time on real data: The CPU performance is correlated to the number of compasitw all melding and search
algorithms, except for the value based search algorithees sgure 6). The fact thdamterpolation generally
performs more comparisons thagtrapol Ahead (see Table 5), but uses less CPU time indicates that the €ost o
the extra memory accesses performedikyrapol _Ahead is more significant than the reduction in the number of
comparisons: it might result in an additional cache miss;esit is at distancéz n of the previous access, whetds
the number of remaining element in the array.

For completeness we summarize the results across all tlgmron the whole data set in Table 5.

4.3 Experiments on the TREC GOV2 data set

As for the Google data set, we measured the number of seaanbdesomparisons performed and the CPU time used
by the algorithms. As in the previous section, we show on tbsghe number of comparisons and CPU times for
different melding and search algorithms as a function oftinaber of arrays forming the instances.

We restricted our study to the most promising algorithmaftbe study on Google data set: in particular, we did
not consider the melding algorithRBequential on the TREC GOV2 data set. The fact that the data set is larger
allows us to compare the CPU performance of the algorithntavordifferent architectures: th&N station has much
more memory but a reduced set of instructions, which makdsptication and divisions much more costly; while the
INTEL station has a larger set of instructions, but much less mgraorthat part of the arrays will be cached on the
swap partition of the hard-drive.
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SvS Swapping_SvS|Sequential [BaezaYates|So_BaezaYates|Small_Adaptive|RSequential
cmp| cpu cmp cpd cmp cpy cmyg cpu cmp cpu cmp cpy cmp  cpu
Total_Binary 582175.14258209 4.97693087 8.67457594 5.4268371( 7.14058217 8.32594400 15.446
Adaptive_Binary|392213.76239221] 3.93755817 6.70418543 3.28415689 3.11339225 7.20854210 13.401
Rounded_Binary |546744.68454671 4.83187267 8.26054286 5.32778511 6.90854679 7.99588509 14.873

Galloping 168842.791116884 2.8742544Q 4.80824285 3.95320935 3.76916884 5.9802451§ 11.525
Interpolation |121843.338§12184 3.43417843 5.64015357 4.18212384 4.04612185 6.57717398 11.992
Extrapolation (134264.22913426 4.2481967246.617174555.42614428 5.25813427 7.49319100Q 13.104

Extrapol_Ahead [121255.48012125 5.42417701 8.64116179 6.63713145 7.27912124 8.61417279 15.036

Table 5. Total number of comparisons and CPU times (in millions ofegkperformed by each algorithm over the Google data set.
In bold, the best performance in terms of number of compasistrS andSwapping_SvS usingExtrapol_Ahead, and in terms
of CPU timesSvS usingGalloping.

Comparison with Demaineet al. [12]: In terms of the number of comparisons performed, the meldiggrithm
Small Adaptive outperforms all the other melding algorithms, in combioatwith any search algorithm, which
confirms and extends the results reported by Dematiak [12] (see Table 6). As for the Google data set, the value-
based search algorithExtrapol Ahead improves the performance of each melding algorithm, andairiqular

the performance ddmall_Adaptive (again, see Table 6). However, unlike the Google data sepéhformance of
Interpolation is similar to that ofGalloping. This decrease in performance is mainly due to the fact thet t
numbering scheme of TREC documents left many “gaps” whicfirdmites to the non-uniformity of posting sets.

Study of Barbay and Kenyon’s [4] algorithm: As for the Google data set, the algoriti$quential is much worse
than the other melding algorithms for any fixed search aflgorj in terms of the number of comparisons or searches
performed as well as in terms of CPU time (see Figure 7). Tishjints that the instances from the TREC GOV2 data
set are not too different from those from the Google datgs&ttJarger, both in terms of the sizes of the arrays and in
the number of arrays.

Impact of the cache: In contrast to the measures on the Google data set, the nuwwhbemparisons is not always
correlated to the CPU timings, even for comparison basetisedgorithms. In particular, when using the melding
algorithmsSmall Adaptive Or Sequential, the search algorithrRounded Binary performs more comparisons
thanAdaptive_Binary, but uses less CPU (see Figure 9). This indicatesRihaided_Binary generates less cache
misses, summing to a better over-all time.

The same is not true with the other melding algorithms, pesh@ecause the search queries generated by those
algorithms are either shorter (in which case no optimizatibthe cache is needed), or much larger (in which case
cache misses happen at a different level).

Impact of architecture differences: Not surprisingly, the cache optimization of tReunded_Binary search algo-
rithm does not give it any advantage on a machine where atlakeefits in memory, such as on platfoswi: then all
the binary variants perform very similarly (see Figure 10).

We were also able to measure a quantitative difference leetivee two architectures: the difference of CPU per-
formance between the comparison and value-based seaatittatgs, such asalloping andInterpolation, iS
much larger on th&8UN platform than on th@&NTEL platform, and this independently of the melding algorithonsid-
ered (see Figure 11 and 12). In general, the hardware castevpolation search seems higher on a SUN architecture
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Fig. 7. Number of comparisons performed by various melding algoricombined withGalloping on the TREC
GOV2 data set. The difference of performance fré#uential is even worse than on the Google data set.
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Fig. 8. Number of comparisons performed by variants of binary $eeombined wittmall_Adaptive onthe TREC
GOV2 data seRounded_Binary andTotal_Binary perform roughly the same, whilelaptive_Binary performs
much better.
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Fig.9. CPU performance of the various variants of binary searchhenINTEL platform, in combination with
Small_ Adaptive. The varianRounded_Binary is better in CPU time, thanks to its optimization of the cache
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Fig. 10. CPU performance of the various variants of binary searchhanStN platform, in combination with
Small_Adaptive. The binary searches are performing roughly the same.
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Fig. 11.CPU performance afalloping compared tdnterpolation, both combined wittsvS, when solving the
TREC GOV2 data set on tHNTEL platform. The advantage is not clear, but in t@al loping is performing a little
better (see Table 6.
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Fig.12. On SUN CPU performance ofalloping compared talnterpolation, both combined witt8vS, when
solving the TREC GOV2 data set on theN platform.Interpolation is definitely performing worse.
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than an Intel architecture. We speculate that this mightadused by differences in RISC vs CISC instruction set but
remains to be studied further.

For completeness we summarize the results across all tilgion the whole TREC GOV2 data set in Tables 6
and 7.

SvS |Swapping_SvS|Sequential|BaezaYates|So_BaezaYates|Small_ Adaptive
Adaptive_Binary|13.41 (13.44 28.66 7.87 412 13.32
Total_Binary 21.70|21.64 39.90 22.43 28.73 21.54
Rounded_Binary (20.46 (20.57 37.83 21.43 27.15 20.44
Galloping 4.468 4.473 10.57 9.40 5.52 4.44
Interpolation 4.60 | 4.61 11.13 8.55 4.76 4.57
Extrapolation 4.25| 4.26 9.84 8.61 4.78 4.23
Extrapol_Ahead | 3.76 | 3.77 8.09 8.05 4.23 3.74

Table 6. Total number of comparisons (in billions) performed by eatgorithm over the TREC GOV2 data set. In bold, the best
results, obtained fddmall_Adaptive usingExtrapol_Ahead.

SvS Swapping_SvS| Sequential | BaezaYates |So_BaezaYates|Small_Adaptive
INTEL SUN|INTEL SUN| INTEL SUN|INTEL SUN|INTEL SUN| INTEL SUN
Adaptive_Binary|117303153887 57686 1591699012544095765336311240136273 98411180957 230259
Total_Binary 360526180854 81227 1829745983871354558§9334118423988081 227041320697 244521
Rounded_Binary | 6491(017534363693 1801501697973485637573(0182170837171 223368108728 2415264
Galloping 33255 96907 30684 102197113224521981655088125904404624 111422 59081 162243
Interpolation 478831349604906Q 1402721273383275096706615766954331 142653 75162 200471
Extrapolation | 4969414238550570 1478861369463283167759418594463244 171270 78604 208057
Extrapol_Ahead | 6173115813862021 16354515539633852587303194108§81922 192490 88674 223195

Table 7. Total CPU time performed by each algorithm over the TREC GO#2 set. In bold, the smallest CPU times onIKWEEL
platform, obtained usin§wapping_SvS; and on theSUN platform, obtained usingvs, both in combination wittGalloping
search.
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5 Conclusions

To summarize our results:

— In terms of the number of searches performed, the best ngellgorithms areSmall_Adaptive, SvS and
Swapping_SvS on random data anghall Adaptive on real data.

— In terms of the number of comparisons performed, the bestbgmtions on random data consist in one
of the melding algorithmsmall Adaptive, SvS and Swapping_SvS associated with the search algorithm
Extrapol_Ahead. On real dataSmall_ Adaptive leads over the others under this measure and performs best
when combined witlExtrapol Ahead, which improves on the previous results [12].

— In terms of CPU time, the best performance on random datagponds to th@aezaYates algorithm using
Adaptive Binary search (which confirms previous results [2]), closely falal by theSvS algorithm us-
ing Galloping search. On real data, the algorittgmS leads over the others when used in combination with
Galloping search, as previously observed.

In terms of the number of searches or comparisons perfortheghoor performance of sophisticated algorithms
such asequential, designed to exploit short certificates of the intersedudnor of its randomized variant [3], both
on random and real data, indicates the regularity of thairtsts in both settings: most instances have a long cemtificat
On the other hand, the difference of performance of the setdion algorithnBaezaYates on random and real data
shows that real data are far from randomly uniform. In paféig the good performance of tlixtrapol_Ahead
search algorithm shows that value-based search algorensot only performing well on sorted arrays of random
elements, but also on posting lists.

In terms of CPU time, the architecture differences betwherptatforms led to both quantitative results variations
(the gaps between the performance of some algorithms wgerlan the RISC architecture than on the CISC archi-
tecture), and qualitative result variatio®®(nded_Binary optimizes the cache on the architecture with the smallest
amount of memory, but not on the other one). The differencizaf between the Google and the GOV2 data set led to
qualitative changes in the CPU performance between thantarof binary search, as the variants optimized for cache
effects performed better than others on the largest datasdtworst on the smallest. As those search algorithms
are outperformed both in number of comparison performedima@PU time by more sophisticated algorithms, this
does not yield any qualitative change, but it does hint tipéintizing the best search algorithm in CPU time, such as
Galloping, so that it takes a better advantage of the cache, might giedd better CPU performance.

Finally, the best solution to compute the intersection afesbarrays corresponding to conjunctive queries in an
indexed search engines seems to be one of the simplest gealdiorithmsvs, already used in practice, but improved
by replacing the use of thelaptive Binary search algorithm by an adaptive search algorithal,l oping search.
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the TREC GOV2 corpus and query log, Google for making theipes and query log available, Mike Patterson for
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