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Overview

 Motivation
e Search for optimal structure
e Learn a good controller



Motivation:
The Problem of Finding Optimal Robot
Structure




Motivation:
The Problem of Adapting Controllers
Given a Fixed Structu




Overview

* Related work
e Search for optimal structure
e Learn a good controller



Related Work:
Searching the Best Structure

 Neural Architecture Search
e Outer-loop: Lots of potential architecture
* Inner-loop: Train the neural network

e Evolutionary Strategy (ES) or Genetic Algorithms
e Inner-loop: Random search for controller weights




Related Work:
Training the Agent’s Controller

e Reinforcement learning (RL) for mastering locomotion
control problems. .

e Model-based:

e Pros: Faster to train
e Cons: Requires engineering / Slow to simulate

e Model-free:
* Pros. Fast to simulate
e Cons: Sample inefficient




Overview

e Algorithm
e Representation of agents’ topology
* Representation of agents’ policy using NerveNet
e Amortized fitness
* Neural topology pruning



Algorithm:
Representation of the agent’s
topology

* Every species is associated with the topology graph and
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Algorithm:
Representation of the agent’s policy

 NerveNet: a graph neural net served as the policy

e For better inheritance of the controller weights in new
structure (The weight vector is of the same shape)

el L L] COICOICOICOICL)
‘”i” s fa L hhe) (8 L Lus)
REERY L ny
.:@:. ; Pass Hidd ‘-jlz‘% e e;a Pass Hidden E&% o *
@ :I:] (:E g States to N CI:’ &X Sta Next xg\\
i / Time Step i ; Time Step ] ,'
KN IEY, . ! Y P >
ﬁﬁﬁﬁﬁﬁ%ﬁ%ﬁ@ l@@@@@@@@@@] @ﬁ%ﬁ%ﬁ%ﬁmﬁﬁ

DInput Model Weights
Bl‘:'ropaqation Model Weights
[;IOutput Model Weights
DUpdate Model Weights

(R ERERERER)
Input Features

Co)CPEE)EE)Ee)

Output Controller




Algorithm:
Representation of the agent’s policy

* NerveNet++: to speed up training

Mutation with
Policy Inheritance




Algorithm:
Performance Metric: Amortized

Fithess
e Key idea:
* Avoid training till convergence to save computation resource
Oh one species.
e Spread the training across generations.

* Within each generation, each species get same number
of updates.



Algorithm:
Neural Topology Pruning (NTP)

* Key idea: avoid wasting computation resources on
species that have low expected fithess




Algorithm:
Neural Topology Pruning (NTP)

e Key idea: avoid wasting computation resources on
species that have low expected fithess

* NTP based on Thompson Sampling:
e Regression-only model to predict reward tend to overfit.

 Bayesian optimization framework to balance trade-off
between exploration and exploitation.

* Follow “dropout as a Bayesian approximation” and perform dropout
during inference.



Algorithm:
Summary

Algorithm 1 Neural Topological Evolution

1: Initialize NV species with weights and topology {0;, G}

2: while True do > Evolution outer loop
3 for species ¢ alive do > Species fitness inner loop
4; Train and evaluate|Amortized Fitness|&; of the species using|NerveNet++.

5 end for

6: Eliminate SN species with the worst fitness score > Selection scheme
7: Mutate new species with Policy Inheritance > Mutation
&: Neural Topology Pruning > Prune off the non-promising species
9: end while




Overview

* Experiments
 Environment settings: Fish and Walker
e Baseline
* Fine-tuning species
* Pruning
e Qualitative result



Experiments:
Environment Settings
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Experiments:
Baseline
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(a) Results on fish environment. (b) Results on walker environment.

Figure 2: The performance of the topology search for Brute-force, MLP and NTE.




Experiments:
Fine-tuning Species
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(a) Fine-tuning £ish3d. (b) Fine-tuning leg-walker. (c) Fine-tuning cheetah.
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Fine-tuning Species
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(a) Fine-tuning £ish3d. (b) Fine-tuning leg-walker. (c) Fine-tuning cheetah.




Reward

Experiments:
Pruning Species
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Experiments:
Qualitative Result
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Future Work

* NTE result:

« Competitive agents interacting in same environment
e Cooperative agents interacting in same environment
 More complex environments

 Model-based method



