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We address the problem of learning structured policies for continuous control. In traditional reinforcement learn-

ing, policies of agents are learned by multi-layer perceptrons (MLPs) which take the concatenation of all observa-

tions from the environment as input for predicting actions. In this work, we propose NerveNet to explicitly model

the structure of an agent, which naturally takes the form of a graph. Specifically, serving as the agent’s policy net-

work, NerveNet first propagates information over the structure of the agent and then predict actions for different

parts of the agent. In the experiments, we first show that our NerveNet is comparable to state-of-the-art methods

on standard MuJoCo environments. We further propose our customized reinforcement learning environments for

benchmarking two types of structure transfer learning tasks, i.e., size and disability transfer. We demonstrate that

policies learned by NerveNet are significantly more transferable and generalized than policies learned by other

models and are able to transfer even in a zero-shot setting.
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Chapter 1

Introduction

Deep reinforcement learning (RL) has received increasing attention over the past few years, with the recent success
of applications such as playing Atari Games [42], and Go [53, 55]. Significant advances have also been made in
robotics using the latest RL techniques,e.g. [33, 23].

Many RL problems feature agents with multiple dependent controllers. For example, humanoid robots consist
of multiple physically linked joints. Action to be taken by each joint or the body should thus not only depend on
its own observations but also on actions of other joints.

Previous approaches in RL typically use MLP to learn the agent’s policy. In particular, MLP takes the concate-
nation of observations from the environment as input, which may be measurements like positions, velocities of
body and joints in the current time instance. The MLP policy then predicts actions to be taken by every joint and
body. Thus the job of the MLP policy is to discover the latent relationships between observations. This typically
leads to longer training times, requiring more exposure of the agent to the environment. In our work, we aim to
exploit the body structure of an agent, and physical dependencies that naturally exist in such agents.

We rely on the fact that bodies of most robots and animals have a discrete graph structure. Nodes of the
graph may represent the joints, and edges represent the (physical) dependencies between them. In particular, we
define the agent’s policy using a Graph Neural Network, [48]), which is a neural network that operates over graph
structures. We refer to our model as NerveNet due to the resemblance of the neural nervous system to a graph.
NerveNet propagates information between different parts of the body based on the underlying graph structure
before outputting the action for each part. By doing so, NerveNet can leverage the structure information encoded
by the agents’s body which is advantageous in learning the correct inductive bias, thus be less prone to overfitting.
Moreover, NerveNet is naturally suitable for structure transferring tasks as most of the model weights are shared
across nodes and edges respectively.

We first evaluate our NerveNet on standard RL benchmarks such as the OpenAI Gym, [7] which stem from
MuJoCo. We show that our model achieves comparable results to state-of-the-art MLP based methods. To verify
our claim regarding the structure transfer, we introduce our customized RL environments which are based on
the ones of Gym. Two types of structure transfer tasks are designed, size transfer and disability transfer. In
particular, size transfer focuses on the scenario in which policies are learned for small-sized agents (simpler body
structure) and applied directly to large-sized agents which are composed by some repetitive components shared
with the small-sized agent. Secondly, disability transfer investigates scenarios in which policies are learned for
one agent and applied to the same agent with some components disabled. Our experiments demonstrate that
for structure transfer tasks our NerveNet is significantly better than all other competitors, and can even achieve

1



CHAPTER 1. INTRODUCTION 2

zero-shot learning for some agents.
The main contribution of this paper is the following: We explore the problem of learning transferable and

generalized features by incorporating structure prior using graph neural network. NerveNet permits powerful
transfer learning from one structure to the others, which has been beyond the ability of previous models. NerveNet
is also more robust and has better potential of multi-task learning.



Chapter 2

Preliminary

The two major elements of this paper are reinforcement learning and graph neural network. In this chapter, we
introduce the basic knowledge on reinforcement learning, while the detail of graph neural network is introduced
in the next chapter.

2.1 Reinforcement Learning for Continuous Control

To control via reinforcement learning, an agent needs to interact with the environment. Starting from the current
state, the agent chooses an action based on the observation. The environment receives the action and a transition
to the next state is made. This process is repeated until the episode ends.

2.1.1 Markov Decision Process in Continuous Control

To start with, it is worth pointing out that the focus of this paper is finite-horizon Markov decision process (MDP),
which means that the number of timesteps in one episode is limited and bounded, and the agent observes the whole
state space. In another word, what happens before (history of observations) is not needed to for optimal control.
We define the MDP to be a tuple of (S,A,P,R), where S denotes the state space of our problem, A denotes the
action space of the agents. P denotes the transition probability distribution, which could be written as p(S′, S, a).
Distribution p(S′, S, a) → R is not known by the agent in advance. R similarly describes the reward generated
by the environment r(S)→ R.
More specifically, we use the notation of γ to describe the discount factor and st=0 as the initial state, which
follows the distribution of starting states p0(st=0).
The expected total reward is the objective function for the agent to optimize, which is

η(π) = Est=0

[
T=∞∑
t=0

γtr(st)

]
. (2.1)

In the continuous control problem, policy based reinforcement learning is usually used. In value-based meth-
ods [42, 53, 55], by estimating the value function of given state and actions available, the agent could choose
the best action. While in continuous control problems, since the actions space S is continuous, there is infinite
number of action choices. Therefore, more often, policy based methods are applied. And in our case, the Gaussian

3



CHAPTER 2. PRELIMINARY 4

policy is used. If we assume the action space is I dimentional, then

π(at|st) =

I∏
i=0

πi(a
t
i|st) =

I∏
i=0

1√
2πσ2

i

e(a
t
i−µi)

2/(2σ2
i ), (2.2)

where

at =



at1

at2

at3

...

atI−1
atI


, µt =



µt1

µt2

µt3

...

µtI−1
µtI


, σt =



σt1

σt2

σt3

...

σtI−1
σtI


, (2.3)

and µt is the mean of the action vector, while σt is the variance of the action vector. In [49, 51], the µt is the
output of a multi-layer perceptron (MLP)

µt =MLP(st). (2.4)

It is also possible to write the variance of the action vector distribution as the output of a either shared or separate
MLP, but, in practice, simply using a trainable variable is more common.
Relatedly, traditional model based methods have been widely explored [62, 32, 17, 31]. Among them, one of the
most successful algorithms is the iterative linear-quadratic regulator controller [63, 35, 5]. But these methods usu-
ally suffer from the computation cost, during both training and controlling, or the ability of generalization, which
limits their performance in high-dimentional control problems. In this paper, all the algorithms are contrained in
model free domain.

2.1.2 Objective Function

First, we introduce the definition of the action-state value function Qπ(st, at) for continuous control

Qπ
(
st, at

)
= Est,π

[
T=∞∑
τ=0

γτr(sτ )

]
. (2.5)

And for the definition of advantage function, we introduce as

Aπ
(
st, at

)
= Qπ

(
st, at

)
− Vπ

(
st
)

= Qπ
(
st, at

)
− Est,π

[
T=∞∑
τ=0

γτr(sτ )

]
. (2.6)

Equation 2.5 and 2.6 define two very fundamental functions for continuous control. Their definitions are very
similar to the action-state value function and advantage function used in discrete control problems. Following [49],
we can rewrite the equation 2.1 in the following form:

η(π) = η(πold) + Est=0,π

[
T=∞∑
t=0

γtAπold(st, at)

]

= η(πold) +

T=∞∑
t=0

∑
s

P (st = s|π)
∑
a

π(at = a|s)γtAπold(s, a)

= η(πold) +
∑
s

ρπ(s)
∑
a

π(at = a|s)Aπold(s, a),

(2.7)
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where ρπ(s) is the unnormalized discounted visitation frequencies. During implementation, this discounted visi-
tation frequencies term

∑
s ρπ(s) could be replaced by sampling during training. We prove 2.7 by following the

proof of Theorem 4.1 in [27], which is also applied in [49].

Eτ |π

[
T=∞∑
t=0

γtAπold(st, at)

]
= Eτ |π

[
T=∞∑
t=0

γt
(
r(st) + γVπold(st+1)− Vπold(st)

)]

= Eτ |π

[
T=∞∑
t=0

γt
(
r(st) + γVπold(st+1)− Vπold(st)

)]

= Eτ |π

[
T=∞∑
t=0

γtr(st)

]
− Est=0∼p0(st=0)Vπold(st=0)

= −η(πold) + η(π)

(2.8)

Equation 2.8 implies that, to optimize the objective function 2.1, we could equivalently optimize the following
objective function iteratively:

Lπold(π) = Eτ |π

[
T=∞∑
t=0

γtAπold
(
st, at

)]
(2.9)

Note that this objective function is not directly usable, since the trajectory τ is heavily dependent on the policy to
be optimized. Therefore, the dependency between the trajectory generated and the policy we are optimizing must
be broken. In the next section, we show that this could be done by introducing the surrogate loss.

2.1.3 Surrogate Loss and Trust Region Optimization

To break the dependency, in [49], the authors introduce the first order approximation Γ of the objective function,

Γπold(π) = η(πold) +
∑
s

ρπold(s)
∑
a

π(at = a|s)Aπold(s, a). (2.10)

This is a first-order approximation at the old policy πold if we assume that the policy is parameterized by θ, since
Γπold(πold) = η(πold) and ∇Γπold(πold)|θ=θold = ∇η(πold)|θ=θold . We also note that from that we could derive
the low bound of the original objective function 2.1, which is defined as

η(π) ≥ Γπold(π)− CDmax
KL (πold, π), (2.11)

where C = 4εγ
1−γ

2
andDmax

KL is the maximum of the KL-divergenceDmax
KL = maxsDKL(πold(·|s)||π(·|s)). This

is the trust region, i.e., if the step-size of optimizing is small enough, we should be able to increase the performance
of the agent. In practice, we switch the DKLmax with the average KL-divergence D̄KL. The surrogate lossM
is defined as

Mπold(π) = Γπold(π)− αD̄KL(πold, π), (2.12)

We can prove that by iteratively optimizing the M, we are optimizing the original objective function η(π). α
is a heuristic chosen coefficient, which is chosen to avoid the calculation of the original variable C. For details
of 2.11, 2.12, we refer to [49].
Optimization of 2.12 is straight-forward, as we can take the derivative of this function and apply standard gradient
descent. More specifically, if we force the KL-divergence term to be a hard constraint, then the problem becomes
a constrained optimization. In [49], second-order optimization is needed for this constrained optimization, and
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conjugate gradient method with line search in the parameter space is applied. This is time consuming when the
parameter’s size is big. A large-scale method is to apply a hinge loss on KL-divergence, which is

M′πold(π) =Mπold(π)− β
∣∣∣KLtarget − D̄KL(π, πold)

∣∣∣2 . (2.13)

KLtarget is usually heuristically chosen as 0.01. In this way, we circumvent second-order optimization by choos-
ing a suitable scaler hyper-parameter β. Another way to circumvent second-order constraint is to clip the im-
portance sampling ratio that is multiplied by the advantage function, as is used in PPO [51]. PPO clips the
probability ratio and adds KL-divergence penalty term to the loss. The likelihood ratio is defined as rt(θ; θold) =

πθ(a
τ |sτ )/πθold(aτ |sτ ). This is also discouraging the policy from over-confident updates.

Relation to Policy Gradient Methods In continuous control, policy gradient methods refer to the stochastic
policy gradient method [57] and deterministic policy gradient [54] method. Both methods suffer from the variance
of estimator. Respectively, the stochastic policy gradient and deterministic policy gradient are formulated as
follow:

∇θJ (π) = Est=0∼p0(st=0),a∼π
[
∇θ log π(at|st)Qπ(st, at)

]
, (2.14)

and

∇θJ (π) = Est=0∼p0(st=0)

[
∇θµθ(st)∇µθ(st)Q(st, µθ(s

t))
]
. (2.15)

Both 2.14 and 2.15 have reduced the computation of objective function’ gradient into the calculation of expecta-
tion.
Similar to the trust region methods introduced earlier in this chapter, policy gradient based methods also rely on
sampling trajectory to approximate the expectation in the objective function. Therefore, the estimator of policy
gradient suffers from having big variance. And the performance of the estimator is decreasing with the increase
of action space size and state space size, thus requiring more samples.
Deterministic policy gradient estimator usually has better performance than stochastic policy gradient estimator,
since the deterministic policy gradient estimator does not integrate over action space.

Note that for trust region methods, the Qπ(st, at) is defined in 2.5, which is Est,π
[∑T=∞

τ=0 γτr(sτ )
]
. In

policy gradient methods, this action-state function could be added or subtracted by any arbitary baseline functions
that are not dependent on action at, and in practice the baseline function is usually chosen to be the estimation
of value function Vπ(st). In trust region methods, Qπ(st, at) is usually chosen to be the empirical return or the
generalized advantage estimation return, which we refer the readers to [50] for more specific details.

In [14], the state-of-the-art continuous control algorithms are evaluated. The deep-learning based variant of
deterministic policy gradient, which is [37], has comparable performance with trust region based methods in many
benchmark tasks. In this paper, our algorithms are based on [51], but it is worth pointing out that our methods
could fit in any optimization algorithms in continuous control.



Chapter 3

Related Work

3.1 Related Work in Reinforcement Learning

Reinforcement learning (RL) has recently achieved huge success in a variety of applications. Boosted by the
progress of deep neural networks, [29], agents are able to solve problems from Atari Games and beat the best
human players in the game of Go [42, 53, 55]. For continuous control problems, based on simulation engines like
MuJoCo [62], numerous algorithms have been proposed to optimize agent’s expected reward [51, 49, 26, 40].

Recently, more and more research experiments have been done for transfer learning tasks [60] in RL which
mainly focus on transferring the policy learned from one environment to another. In [46, 47], the authors show
that agents in reinforcement learning are prone to over-fitting, and the learned policy generalizes poorly from one
environment to the other. In model based method, tradtional control has been well studied on generalization [11].
[24] try to increase the transferability via learning invariant visual features. Efforts have also been made from
the meta-learning perspective [15, 19, 18]. In [66], the authors propose a method of transfer learning by using
imitation learning.

As for exploiting the structure in RL, most hierarchical reinforcement learning algorithms [30, 64] focus on
modeling intrinsic motivation. In [25], the authors exploit the structure of the action space. Graph has been used
in RL problems. In [41, 38, 52, 39], graph is used to learn the representation of environment. But these methods
are limited to problems with simple dynamical models like 2d-navigation, and thus these problems are usually
solved via model-based method. However, for complex multi-joint agents, learning the dynamical model and
predicting the transition of states are time consuming and biased.

Multi-task learning has been receiving a lot of attention [65]. In [61], the authors use a distilled policy that
captures common behaviour across tasks. [65, 43, 2] use a hierarchical approach, where multiple sub-policies are
learnt. While at the same time, in [67, 44], shared visual features are used to solve Multi-task learning. In [1], a
Multi-task policy gradient is proposed, while in [9], multi-task extensions of the fitted Q-iteration algorithm are
proposed. Successor features in [4] are used to boost the performance of multiple tasks. In general, currently, most
approaches try to improve the optimization algorithms, or use a simple hierarchical structure with sub-policies.

Currently, for problems of training model-free multi-joint agents under complex physical environment, rela-
tively little attention has been paid to modeling the physical structure of the agents.

7
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3.2 Related Work in Graph Neural Networks

There have been many efforts to generalize neural networks to graph-structured data. One direction is based on
convolutional neural networks (CNNs). In [8, 13, 28], CNNs are employed in the spectral domain relying on the
graph Laplacian matrix. While [21, 16] used hash functions so that CNN can be applied to graphs. Another
popular direction is based on recurrent neural networks (RNNs) [21, 22, 48, 56, 36, 59].

Among RNN based methods, some of them are only applicable to special structured graph, e.g., sequences
or trees, [56, 59]. One class of models which are applicable to general graphs is called, graph neural networks
(GNNs), [48]. The inference procedure, a.k.a. forward pass, is a fixed-length propagation process which resem-
bles synchronous message passing system in the theory of distributed computing, [3]. Nodes in the graph have
state vectors which are recurrently updated based on their history and received messages. One of the representa-
tive work of GNNs, i.e., gated graph neural networks (GGNNs) by [36], uses gated recurrent unit to update the
state vectors. Learning of such a model can be achieved by the back-propagation through time (BPTT) algorithm
or recurrent back-propagation, [10]. It has been shown that GNNs, [36, 34, 45, 20] have a great capacity and
achieve state-of-the-art performance in many applications which involve graph-structured data. In this paper, we
model the structure of the reinforcement learning agents using GNN.



Chapter 4

Structured Model Using Graph Neural
Network

In this section, we first introduce the notation and basic settings of RL problems. We then explain how to construct
the graph for our agents, followed by the description of the NerveNet. Finally, we describe the learning algorithm
for our model.

We formulate the locomotion control problems as an infinite-horizon discounted Markov decision process
(MDP). To fully describe the MDP for continuous control problems which include locomotion control, we define
the state space or observation space as S and action space A. To interact with the environments, the agent
generates its stochastic policy πθ(aτ |sτ ) based on the current state sτ ∈ S , where aτ ∈ A is the action and θ are
the parameters of the policy function. The environment on the other hand, produces a reward r(sτ , aτ ) for the
agent, and the agent’s objective is to find a policy that maximizes the expected reward.

4.1 Graph Construction

In real life, skeletons of most robots and animals have discrete graph structures, and are most often trees. Simula-
tors such as the MuJoCo engine [62], organize the agents using an XML-based kinematic tree. In our experiments,
we will use the tree graphs as per MuJoCo’s engine. Note that our model can be directly applied to arbitrary
graphs. In particular, we assume two types of nodes in our tree: body and joint. The body node is an abstract
node with physical structures inside, which is used to construct the kinematic tree via nesting. The joint node
represents the degrees of freedom of motion between the two body nodes. Take a simple humanoid as an exam-
ple; the body nodes Thigh and Shin are connected via the Knee, where Knee is a hinge joint. We further
add a root node which observes additional information about the agent. For example, in the Reacher agent
in MuJoCo, the root node will have access to the target position of the agent. We build edges follow the tree
graph. Fig. 4.1 illustrates the graph structure of an example agent, CentipedeEight. We depict the sketch
of the agent and its corresponding graph in the left and right parts of the figure respectively. Note that edges
correspond to physical connections of joint nodes. Different elements of the agent are parsed into nodes with
different colors. The BodyUp node is not shown in the sketch, but it controls the rotation of up/down direction of
the agent. Further details are provided in the experimental section.

9
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Figure 4.1: Visualization of the graph structure of the CentipedeEight agent in our environment. This agent
is later used for testing the ability of transfer learning of our model. Since in this agent, each body node is paired
with at least one joint node, we omit the body nodes and fill up the position with the corresponding joint
nodes. By omitting the body nodes, a more compact graph is constructed, the details of which are illustrated in
the experimental section.

4.2 NerveNet as Policy Network

We now turn to NerveNet which builds on top of GNNs and servers as a policy network. Before delving into
details, we first introduce our notation. We then specify the input model which helps to initialize the hidden state
of each node. We further introduce the propagation model that updates these hidden states. At last, we describe
the output model.

We denote the graph structure of the agent as G = (V,E) where V and E are the sets of nodes and edges,
respectively. We focus on the directed graphs as the undirected case can be easily addressed by splitting one
undirected edge into two directed edges. We denote the out-going neighborhood of node u as Nout(u) which
contains all endpoints v with (u, v) being an edge in the graph. Similarly, we denote the in-coming neighborhood
of node u asNin(u). Every node u has an associated node type pu ∈ {1, 2, . . . , P}, which in our case corresponds
to body, joint and root. We also associate an edge type c(u,v) ∈ {1, 2, . . . , C} with each edge (u, v).
Node type can help in capturing different importances across nodes. Edge type can be used to describe different
relationships between nodes, and thus propagate information between them differently. One can also add more
than one edge type to the same edge which results in a multi-graph. We stick to simple graphs for simplicity.
One interesting fact is that we have two notions of “time” in our model. One is the time step in the environment
which is the typical time coordinate for RL problems. The other corresponds to the internal propagation step
of NerveNet. These two coordinates work as follows. At each time step of the environment, NerveNet receives
observation from the environment and performs a few internal propagation steps in order to decide on the action
to be taken by each node. To avoid confusion, throughout this paper, we use τ to describe the time step in the
environment and t for the propagation step.

4.2.1 Input Model

For each time step τ in the environment, the agent receives an observation sτ ∈ S . The observation vector sτ is
the concatenation of observations of each node. We denote the elements of observation vector sτ corresponding
to node u with xu. From now on, we drop the time step in the environment to derive the model for simplicity. The
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Figure 4.2: In this figure, we use Walker-Ostrich as an example of NerveNet. In the input model, for each
node, NerveNet fetches the corresponding elements from the observation vector. NerveNet then computes the
messages between neighbors in the graph, and update the hidden state of each node. This process is repeated for
certain number of propagation. In the output model, the policy is produced by collecting the output from each
controller.

observation vector goes through an input network to obtain a fixed-size state vector as follows:

h0u = Fin(xu). (4.1)

where the subscript and superscript denote the node index and propagation step respectively. Here, Fin may be
a MLP and h0u is the state vector of node u at propagation step 0. Note that we may need to pad zeros to the
observation vectors if different nodes have observations of different sizes.

4.2.2 Propagation Model

We now describe the propagation model of our NerveNet which mimics a synchronous message passing system
studied in distributed computing [3]. We will show how the state vector of each node is updated from one
propagation step to the next. This update process is recurrently applied during the whole propagation. We leave
the details to the appendix.

Message Computation In particular, at propagation step t, for every node u, we have access to a state vector
htu. For every edge (u, v) ∈ Nout(u), node u computes a message vector as below,

mt
(u,v) = Mc(u,v)(h

t
u), (4.2)

where Mc(u,v) is the message function which may be an identity mapping or a MLP. Note that the subscript c(u,v)
indicates that edges of the same edge type share the same instance of the message function. For example, the
second torso in Fig. 4.1 sends a message to the first and third torso, as well as the LeftHip, RightHip
and BodyUp.
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Message Aggregation Once every node finishes computing messages, we aggregate messages sent from all
in-coming neighbors of each node. Specifically, for every node u, we perform the following aggregation:

m̄t
u = A({htv|v ∈ Nin(u)}), (4.3)

where A is the aggregation function which may be a summation, average or max-pooling function. Here, m̄t
u is

the aggregated message vector which contains the information sent from the node’s neighborhood.

States Update We now update every node’s state vector based on both the aggregated message and its current
state vector. In particular, for every node u, we perform the following update:

ht+1
u = Upu(htu, m̄

t
u), (4.4)

where U is the update function which may be a gated recurrent unit (GRU), a long short term memory (LSTM)
unit or a MLP. From the subscript pu of U , we can see that nodes of the same node type share the same instance
of the update function. The above propagation model is then recurrently applied for a fixed number of time steps
T to get the final state vectors of all nodes, i.e., {hTu |u ∈ V }.

4.2.3 Output Model

In RL, agents typically use MLP policy, where the network outputs the mean of the Gaussian distribution for
the actions, while the standard deviation is a trainable vector [51]. In our output model, we also treat standard
deviation in the same way.

However, instead of predicting the action distribution of all nodes by single network all at once, we output for
individual node. We denote the set of nodes which are assigned controllers for the actuators as O. For each of
such nodes, a MLP takes its final state vectors hTu∈O as input and produces the mean of the action of the Gaussian
policy for the corresponding actuator. For each output node u ∈ O, we define its output type as qu. Different
sharing schemes are available for the instance of MLP Oqu , for example, we can force the nodes with similar
physical structure to share the instance of MLP. For example, in Fig. 4.1, two LeftHip should have a shared
controller. Therefore, we have the following output model:

µu∈O = Oqu(hTu ), (4.5)

where µu∈O is the mean value for action applied on each actuator. In practice, we found that we can force con-
trollers of different output type to share one unified controller which does not hurt the performance By integrating
the produced Gaussian policy for each action, the probability density of stochastic policy is calculated as

πθ(a
τ |sτ ) =

∏
u∈O

πθ,u(aτu|sτ ) =
∏
u∈O

1√
2πσ2

u

e(a
τ
u−µu)

2/(2σ2
u), (4.6)

where aτ ∈ A is the output action, and σu is the variable standard deviation for each action. Here, θ represents
the parameters of the policy function.
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4.3 Learning Algorithm

To interact with the environments, the agent generates its stochastic policy πθ(aτ |sτ ) after several propagation
steps. The environment on the other hand, produces a reward r(sτ , aτ ) for the agent, and transits to the next state
with transition probability P (sτ+1|sτ ). The target of the agent is to maximize its cumulative return

J(θ) = Eπ

[ ∞∑
τ=0

γτr(sτ , aτ )

]
. (4.7)

To optimize the expected reward, we apply the proximal policy optimization (PPO) by [51] to our model.
In PPO, the agents alternate between sampling trajectories with the latest policy and performing optimization
on surrogate objective using the sampled trajectories. The algorithm tries to keep the KL-divergence of the new
policy and the old policy within the trust region. To achieve that, PPO clips the probability ratio and adds KL-
divergence penalty term to the loss. The likelihood ratio is defined as rτ (θ; θold) = πθ(a

τ |sτ )/πθold(aτ |sτ ).
Following the notation and algorithm of PPO, our NerveNet tries to minimize the summation of the original loss
in Eq. (4.7), KL-penalty and value function loss which is defined as:

J̃(θ) =J(θ)− βLKL(θ)− αLV (θ)

=Eπθ

[ ∞∑
τ=0

min
(
Âτrτ (θ), Âτ clip (rτ (θ), 1− ε, 1 + ε)

)]

− βEπθ

[ ∞∑
τ=0

KL [πθ(: |sτ )|πθold(: |sτ )]

]
− αEπθ

[ ∞∑
τ=0

(
Vθ(s

τ )− V (sτ )target)2] , (4.8)

where the Ât is the generalized advantage estimation (GAE) calculated using algorithm from [50], and the ε
is the clip value, which we choose to be 0.2. β is a dynamical coefficient adjusted to keep the KL-divergence
constraints, and the α is used to balance the value loss. Note that in Eq. (4.8), V (st)

target is the target state value
in accordance with the GAE method. To optimize the J̃(θ), PPO make use of the policy gradient in [58] to do
first-order gradient descent optimization.

Value Network To produce the state value Vθ(sτ ) for given observation sτ , we have several alternatives: (1)
using one GNN as the policy network and using one MLP as the value network (NerveNet-MLP); (2) using one
GNN as policy network and using another GNN as value network (NerveNet-2) (without sharing the parameters
of the two GNNs); (3) using one GNN as both policy network and value network (NerveNet-1). The GNN for
value network is very similar to the GNN for policy network. The output for value GNN is a scalar instead of a
vector of mean action. We will compare these variants in the experimental section.



Chapter 5

Experiments

In this section, we first verify the effectiveness of NerveNet on standard MuJoCo environments in OpenAI Gym.
We then investigate the transfer abilities of NerveNet and other competitors by customizing some of those envi-
ronments, as well as the multi-task learning ability and robustness.

5.1 Comparison on Standard Benchmarks of MuJoCo

Experimental Setting We compare NerveNet with the standard MLP models utilized by [51] and another base-
line which is constructed as follows. We first remove the physical graph structure and then introducing an addi-
tional super node which connects to all other nodes. This results in a singly rooted depth-1 tree. We refer to this
baseline as TreeNet. The propagation model of TreeNet is similar to NerveNet whereas the policy is predicted by
first aggregating the information from all children and then feeding the state vector of root to the output model.
This simpler model can serve as a baseline to verify how important the graph structure is.

We run experiments on 8 simulated continuous control benchmarks from the Gym [7] which is based on Mu-
JoCo, [62]. In particular, we use Reacher, InvertedPendulum, InvertedDoublePendulum, Swimmer,
and four walking or running tasks: HalfCheetah, Hopper, Walker2d, Ant. We set the maximum train step
to be 1 million for all environments as it is enough to solve them. Note that for InvertedPendulum, different
from the original one in Gym, we add the distance penalty of the cart and velocity penalty so that the reward is
more consistent to the InvertedDoublePendulum. This change of design also makes the task more chal-
lenging.

Results We do grid search to find the best hyperparameters and leave the details in the appendix A.3. As
the randomness might have a big impact on the performance, for each environment, we run 3 experiments with
different random seeds and plot the average curves and the standard deviations. We show the results in Figure
5.1. From the figures, we can see that MLP with the same setup as in [51] works the best in most of tasks.1

NerveNet basically matches the performance of MLP in terms of sample efficiency as well as the performance
after it converges. In most cases, the TreeNet is worse than NerveNet which highlights the importance of keeping
the physical graph structure.

1By applying the adaptive learning rate schedule from [51], we obtained better performances than the ones reported in original paper.
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Figure 5.1: Results of MLP, TreeNet and NerveNet on 8 continuous control benchmarks from the Gym.
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Table 5.1: Performance of the Pre-trained models on CentipedeFour and CentipedeSix.

C Four Reward Avg Std Max C Six Reward Avg Std Max

NerveNet 2799.9 1247.2 3833.9 NerveNet 2507.1 738.4 2979.2
MLP 2398.5 1390.4 3936.3 MLP 2793.0 1005.2 3529.5
TreeNet 1429.6 957.7 3021.7 TreeNet 2229.7 1109.4 3727.4

5.2 Structure Transfer Learning

We benchmark structure transfer learning by creating customized environments based on the existing ones from
MuJoCo. We mainly investigate two types of structure transfer learning tasks. The first one is to train a model
with an agent of small size (small graph) and apply the learned model to an agent with a larger size, i.e., size

transfer. When increasing the size of agent, observation and action space also increase which makes learning
more challenging. Another type of structure transfer learning is disability transfer where we first learn a model on
the original agent and then apply it to the same agent with some components disabled. If one model over-fits the
environment, disabling some components of the agent might bring catastrophic performance degradation. Note
that for both transfer tasks, all factors of environments do not change except the structure of the agent.

Centipede We create the first environment where the agent is like a centipede. The goal of the agent is to
run as fast as possible along the y-direction in the MuJoCo environment. The agent consists of repetitive torso
bodies where each one has two legs attached. For two consecutive bodies, we add two actuators which control
the rotation between them. Furthermore, each leg consists of a thigh and shin, which are controlled by two
hinge actuators. By linking copies of torso bodies and corresponding legs, we create agents with different lengths.
Specifically, the shortest Centipede is CentipedeFour and the longest one is CentipedeFourty due to the
limit of supported resource of MuJoCo. For each time step, the total reward is the speed reward minus the energy
cost and force feedback from the ground. Note that in practice, we found that training a CentipedeEight
from scratch is already very difficult. For size transfer experiments, we create many instances which are listed in
Figure 5.2, like ”4to06”, ”6to10”. For disability transfer, we create CrippleCentipede agents of which two
back legs are disabled. In the Figure 5.2, CrippleCentipede is specified as ”Cp”.

Snakes We also create a snake-like agent which is common in robotics, [12]. We design the Snake environment
based on the Swimmer model in Gym. The goal of the agent is to move as fast as possible. For details of the
environment, please see the schematic figure B.5.

5.2.1 Experimental Settings

To fully investigate the performance of NerveNet, we build several baseline models for structure transfer learning
which are explained below.

NerveNet For the NerveNet, since all the weights are exactly the same between the small-agent model and the
large-agent model, we directly use the old weights trained on the small-agent model. When the large agent has
repetitive structures, we further re-use the weights of the corresponding joints from the small-agent model.
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MLP Pre-trained (MLPP) For the MLP based model, while transferring from one structure to another, the
size of the input layer changes since the size of the observation changes. One straightforward idea is to reuse the
weights from the first hidden layer to the output layer and randomly initialize the weights of the new input layer.

MLP Activation Assigning (MLPAA) Another way of making MLP transferable is assigning the weights of
the small-agent model to the corresponding partial weights of the large-agent model and setting the remaining
weights to be zero. Note that we do not add or remove any layers from the small-agent model to the large-agent
except changing the size of the layers. By doing so, we can keep the output of the large-agent model to be same
as the small-agent in the beginning, i.e., keeping the same initial policy.

TreeNet TreeNet is similar as the model described before. We apply the same way of assigning weights as
MLPAA to TreeNet for the transfer learning task.

Random We also include the random policy which is uniformly sampled from the action space.

5.2.2 Results

Centipedes For the Centipedes environment, we first run experiments of all models on CentipedeSix and
CentipedeFour to get the pre-trained models for transfer learning. We train different models until these
agents could run as equally well as possible, which is listed in Table 5.1. Note that, in practice, we train
TreeNet on CentipedeFour for more than 8 million timesteps. However, due to the difficulty of optimiz-
ing TreeNet on CentipedeFour, the performance is still lower. But visually, the TreeNet agent is able to run
in CentipedeFour.

We then examine the zero-shot performance where zero-shot means directly applying the model trained with
one setting to the other without any fine-tuning. To better visualize the results, we linearly normalize the perfor-
mance to get a performance score, and color the results accordingly. The normalization scheme is recorded in
appendix C.1.1. The performance score is less than 1, and is shown in the parentheses behind the original results.
As we can see from Figure 5.2 (full chart in appendix C.1), NerveNet outperforms all competitors on all set-
tings, except in the 4toCp06 scenario. Note that transferring from CentipedeFour is more difficult than from
CentipedeSix since the situation where one torso connects to two neighboring torsos only happens beyond 4

bodies.

TreeNet has a surprisingly good performance on tasks from CentipedeFour. However, by checking the
videos, the learned agent is actually not able to “move” as good as other methods. The high reward is mainly
due to the fact that TreeNet policy is better at standing still and gaining alive bonus. We argue that the average
running-length in each episode is also a very important metric.

By including the results of running-length, we notice that NerveNet is the only model able to walk in the
zero-shot evaluations. As a matter of fact, the performance of NerveNet could be orders-of-magnitude better, and
most of the time, agents from other methods cannot even move forward. We also notice that if transferred from
CentipedeSix, NerveNet is able to provide walkable pretrained models on all new agents.

We fine-tune for both size transfer and disability transfer experiments and show the training curves in Fig. 5.3.
From the figure, we can see that by using the pre-trained model, NerveNet significantly decreases the number of
episodes required to reach the level of reward which is considered as solved. We found that for centipede, the
bottleneck of learning for the agent is “how to stand”. When training from scratch, it can be seen from the figure
that almost 0.5 million time steps are spent on a very flat reward surface. By looking at the videos, we notice
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Figure 5.3: (a), (b), (d): Results of fine-tuning for size transfer experiments. (c), (e), (f) Results of fine-tuning for
disability transfer experiments.

that this long time period is spent on learning to “stand”. Therefore, the MLPAA agents, which copy the learned
policy, are able to stand and bypass this time-consuming process and reach to a good performance in the end.

Moreover, by examining the result videos, we noticed that the “walk-cycle” behavior is observed for NerveNet
but is not common for others. Walk-cycle are adopted for many insects in the world [6]. For example, six-leg
ants uses tripedal gait, where the legs are used in two separate triangles alternatively touching the ground. More
details of walk-cycle will be in the following section 5.5.
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Figure 5.4: Results on zero-shot transfer learning on snake agents. Each tasks are simulated for 100 episodes.

One possible reason is that the agent of MLP based method (MLPAA, MLPP) learns a policy that does not
utilize all legs. From CentipedeEight and up, we do not observe any MLP agents to be able to coordinate
all legs whereas almost all policies learned by NerveNet use all legs. Therefore, NerveNet is better at utilizing
structure information and not over-fitting the environments.

Snakes The zero-shot performance for snakes is summarized in Figure 5.4. As we can see, NerveNet has the
best performance on all transfer learning tasks. In most cases, NerveNet has a starting reward value of more than
300, which is a pretty good policy since 350 is considered as solved for snakeThree. By looking at the videos,
we found that agents of other competitors are not able to control the new actuators in the zero-shot setting. They
either overfit to the original models, where the policy is completely useless in the new setting (e.g., the MLPAA
is worse than random policy in SnakeThree2SnakeFour), or the new actuators are not able to coordinate
with the old actuators trained before. While for NerveNet, the actuators are able to coordinate to its neighbors,
regardless of whether they are new to the agents.

We also summarize the training curves of fine-tuning in Fig. 5.5. We can observe that NerveNet has a very
good initialization with the pre-trained model, and the performance increases with fine-tuning. When training
from scratch, the NerveNet is less sample efficient compared to the MLP model which might be caused by the
fact that optimizing our model is more challenging than MLP. Fine-tuning helps to improve the sample efficiency
of our model by a large margin. At the same time, although the MLPAA has a very good initialization, its
performance progresses slowly with the number of episodes increasing. In most experiments, the MLPAA and
TreeNet could not even match the performance of its non-pretrained MLP baseline.

5.3 Multi-task Learning

In this section, without devling into the specific optimization algorithms to be used in multi-task learning, we show
that NerveNet has good potential of multi-task learning from the network structure’s perspective. Before training
the models to solve multiple tasks, it is important to point out that multi-task learning remains a very difficult, and
more often the case, unsolved problem in RL. Most multi-task learning algorithms [61, 2, 43, 67] have not been
applied to domain as difficult as locomotion under complex physical models, not to mention multi-task learning
among different agents with different dynamics.

In this work, we constrain our problem domain, and design the Walker multi-task learning task-set, which
contains five 2d-walkers. In this case, model’s ability of multi-task learning, especially the ability to controll mul-
tiple agents, will be tested. The walkers are very different in terms of their dynamics, since they have very dinstinct
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Figure 5.5: Results of finetuning on snake environments.

structures, different types and numbers of controllers. Walker-HalfHumanoid and Walker-Hopper are
agents respectively variants of Walker2d and Hopper from the original MuJoCo Benchmarks. Walker-Horse,
Walker-Ostrich, Walker-Wolf on the other hand, are agents mimicking the natural animals. Just like the
real-animals, some of the agents have tails or necks to help the balance. The detailed schematic figures is in the
appendix B.2.

5.3.1 Experimental Settings

To show the ability of multi-task learning of NerveNet, we design several baselines. Since we are more interested
in the models’ potential of multi-task learning from the network structure’s perspective, we use a vanilla policy
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Figure 5.6: Results of Multi-task learning. We train the networks simultaneously on five different tasks from
Walker.

optimization method for all models. More specifically, for each sub-task in the multi-task learning task-set,
we generate equal number of timesteps for each policy update and calculate the gradients separately. We then
aggregate the gradients and apply the mean value to update the network. To compensate the extra difficulty of
training brought by more agents and tasks, we linearly increase the number of update epochs during each update
in the training, as well as the total number of timesteps generated before the training is terminated. The hyper-
parameter setting is summarized in appendix A.4.

NerveNet For NerveNet, the weights are naturally shared among different agents. More specifically, for differ-
ent agents, the weight matrices for propagation and output are shared.
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Model HalfHumanoid Hopper Ostrich Wolf Horse Average

MLP Reward 1775.75 1369.59 1198.88 1249.23 2084.07 /
Ratio 57.7% 62.0% 48.2% 54.5% 69.7% 58.6%

TreeNet Reward 237.81 417.27 224.07 247.03 223.34 /
Ratio 79.3% 98.0% 57.4% 141.2% 99.2% 94.8%

NerveNet Reward 2536.52 2113.56 1714.63 2054.54 2343.62 /
Ratio 96.3% 101.8% 98.8% 105.9% 106.4% 101.8%

Table 5.2: Results of Multi-task learning, with comparison of the single-task baselines. For three models, the first
row is the mean reward of each model of the last 40 iterations, while the second row indicates the percentage of
the performance of multi-task model compared with the single-task baseline respectively of each model.

MLP Sharing For the MLP method, we shared the weight matrices between hidden layers.

MLP Aggregation In the MLP Sharing method, the total size of the weight matrices grows with the number of
tasks. Considering that the observation dimentions for different agents are different, to keep the size of matrices
static, a matrix whose size is the hidden size by 1 is used. We multiple each element of the observation by this
matrix and aggregate the resulting vectors from each observation.

TreeNet Similarly, TreeNet also has the benefits that its weights are naturally shared among different agents.
But again, TreeNet has no knowledge of the agents’ physical structure, and all the information of each node is
aggregated into the root node.

Results We also include the baseline of training single-task MLP for each agent. We train the single-task MLP
baselines for 1 million timesteps per agent. And in the figure, we align the results of single-task MLP baseline
and the results of multi-task models by the number of episodes of one task.

As can be seen from the figure 5.6, NerveNet is able to have the best performance in all the sub-tasks. In
Walker-HalfHumanoid, Walker-Hopper, Walker-Ostrich, Walker-WolfNerveNet is able to out-
perform other agents by a large margin, And in Walker-Horse, the performance of NerveNet and MLP Sharing
are almost similar. For MLP sharing method, the performance on other four agents are relatively limited, and in
Walker-Hopper, the improvement of performance has been very limited from the middle of the experiments.
MLP Aggregation method and TreeNet method are not able to solve the multi-task learning problem, with both of
them stuck at a very low reward level. Under the vanilla optimization setting, we show that NerveNet has bigger
potential than the baselines.

From the table 5.2, it could also be observed that the performance of MLP drops drastically (42% performance
drop) when switching from single-task to multi-task learning, while for NerveNet, there is no obvious drop of
performance.

Our intuition is that NerveNet is good at learning generalized features, and the learning of different agents
could help the training of other agents, while for MLP methods, the performance decreases due the competition
of different agents.
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Model Halfhumanoid Hopper Wolf Ostrich Horse Average

Mass MLP 33.28% 74.04% 94.68% 59.23% 40.61% 60.37%
NerveNet 95.87% 93.24% 90.13% 80.2% 69.23% 85.73%

Strength MLP 25.96% 21.77% 27.32% 30.08% 19.80% 24.99%
NerveNet 31.11% 42.20% 42.84% 31.41% 36.54% 36.82%

Table 5.3: Results of robustness evaluations. Note that we show the average results for each type of parameters
after perturbation. And the results are columned by the agent type. The ratio of the average performance of
perturbed agents and the original performance is shown in the figure. Details are listed in C.2.
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Figure 5.7: Results of table 5.3 visualized.

5.4 Robustness of Learnt Policies

In this section, we also report the robustness of our policy by perturbing the agent parameters. In reality, the
parameters simulated might be different from the actual parameters of the agents. Therefore, it is important that
the agent is robust to parameters perturbation. The model that has the better ability to learn generalized features
are prone to be more robust.

We perturb the mass of the geometries (rigid bodies) in MuJoCo as well as the scale of the forces of the joints.
We use the pretrained models with similar performance on the original task for both the MLP and NerveNet. The
performance is tested in five agents from Walker task set. The average performance is recorded in 5.3, and the
specific details are summarized in appendix C.2. The robustness of NerveNet’ policy is likely due to the structure
prior of the agent instilled in the network, which facilitates overfitting. The results are updated in the latest version
of the paper.

5.5 Interpreting the Learned Representations

As we can see from the figure, NerveNet is significantly better than than MLP in terms of robustness. We argue
that this might due to that MLP is more prone to over-fitting to specific agent. In this section, we try to visualize
and interpret the learned representations. We extract the final state vectors of nodes of NerveNet trained on
CentipedeEight. We then apply 1-D and 2-D PCA on the node representations. In Fig. 5.10, we notice
that each pair of legs is able to learn invariant representations, despite their different position in the agent. We
further plot the trajectory density map in the feature map. By recording the period of the walk-cycle, we plot the
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Figure 5.8: Diagram of the walk cycle. In the left figure, legs within the same triangle are used simultaneously.
For each leg, we use the same color for their diagram on the left and their curves on the right.

transformed features of the 6 legs on Fig. 5.8. As we can see, there is a clear periodic behavior of our hidden
representations learned by our model. Furthermore, the representations of adjacent left legs and the adjacent right
legs demonstrate a phase shift, which further proves that our agents are able to learn the walk-cycle without any
additional supervision.
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5.6 Comparison of Model Variants

As mentioned in the model section, we have several variants of NerveNet, based on the type of network we use
for the policy/value representation. We compare all variants. Again, we run experiments for each task three times.
The details of hyper-parameters are left in the Appendix. For each environment, we train the network for one
million time steps, with batch size 2050 for one update.

As we can see from Fig. 5.11, the NerveNet-MLP and NerveNet-2 variants perform better than NerveNet-1.
One potential reason is that sharing the weights of the value and policy networks makes the trust-region based
optimization methods, like PPO, more sensitive to the weight α of the value function in 4.8. Based on the figure,
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Figure 5.10: Results of visualization of feature distribution and trajectory density. As can be seen from the figure,
NerveNet agent is able to learn shareable features for its legs, and certain walk-cycle is learnt during training.
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Figure 5.11: Results of several variants of NerveNet for the reinforcement learning agents.

choosing α to be 1 is not giving good performance on the tasks we experimented on.



Chapter 6

Conclusion

In this paper, we aimed to exploit the body structure of Reinforcement Learning agents in the form of graphs. We
introduced a novel model called NerveNet which uses a Graph Neural Network to represent the agent’s policy.
At each time instance of the environment, NerveNet takes observations for each of the body joints, and prop-
agates information between them using non-linear messages computed with a neural network. Propagation is
done through the edges which represent natural dependencies between joints, such as physical connectivity. We
experimentally show that our NerveNet achieves comparable performance to state-of-the-art methods on standard
MuJoCo environments. We further propose our customized reinforcement learning environments for benchmark-
ing two types of structure transfer learning tasks, i.e., size and disability transfer. We demonstrate that policies
learned by NerveNet are significantly better than policies learned by other models and are able to transfer even in
a zero-shot setting.
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Appendix A

Details of the Experiment Settings

A.1 Details of NerveNet Hyperparameters

We use MLP to compute the messages which uses tanh nonlinearities as the activation function. We do a grid
search on the size of the MLP to compute the messages, the details of which is listed in the below table A.2, A.1.

Throughout all of our experiments, we use average aggregation and GRU as update function.

Table A.1: Parameters used during training.

Parameters Value Set Parameters Value Set

Value Discount Factor γ 0.99 GAE λ 0.95
PPO Clip Value 0.2 Starting Learning Rate 3e-4
Gradient Clip Value 5.0 Target KL 0.01

A.2 Graph of Agents

In MuJoCo, we observe that most body nodes are paired with one and only one joint node. Thus, we simply
merge the two paired nodes into one. We point out that this model is very compact, and is the standard graph we
use in our experiments.

In the Gym environments, observation for the joint nodes normally includes the angular velocity, twist
angle and optionally the torque for the hinge joint, and position information for the positional joint. For the
body nodes, velocity, inertia, and force are common observations. For example in the centipede environment 4.1,
the LeftHip node will receive the angular velocity $j , the twist angle θj .

A.3 Hyperparameter Search

For MLP, we run grid search with the hidden size from two layers to three layers, and with hidden size from 32
to 256. For NerveNet, to reduce the time spent on grid search, we constrain the propagation network and output
network to be the same shape. Similarly, we run grid search with the network’s hidden size, and at the same time,
we run a grid search on the size of node’s hidden states from 32 to 64. For the TreeNet, we run similar grid search
on the node’s hidden states and output network’s shape.
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For details of hyperparameter search, please see the attached table A.2, A.4, A.3

Table A.2: Hyperparameter grid search options for MLP.

MLP Value Tried

Network Shape [64, 64], [128,128], [256, 256], [64,64,64]
Number of Iteration Per Update 10, 20
Use KL Penalty Yes, No
Learning Rate Scheduler Linear Decay, Adaptive, Constant

Table A.3: Hyperparameter grid search options for TreeNet.

TreeNet Value Tried

Network Shape [64, 64], [128,128], [256, 256]
Number of Iteration Per Update 10, 20
Use KL Penalty Yes, No
Learning Rate Scheduler Linear Decay, Adaptive, Constant

Table A.4: Hyperparameter grid search options for NerveNet.

NerveNet Value Tried

Network Shape [64, 64], [128,128], [256, 256]
Number of Iteration Per Update 10, 20
Use KL Penalty Yes, No
Learning Rate Scheduler Linear Decay, Adaptive, Constant
Number of Propogation Steps 3, 4, 5, 6
NerveNet Variants NerveNet-1, NerveNet-2, NerveNet-MLP
Size of Nodes’ Hidden State 32, 64, 128
Merge joint and body Node Yes, No
Output Network Shared, Separate
Disable Edge Type Yes, No
Add Skip-connection from / to root Yes, No
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A.4 Hyperparameters for Multi-task Learning

Table A.5: Hyperparameter settings for multi-task learning.

MLP, TreeNet and NerveNet Value Tried

Network Shape [64, 64]
Number of Iteration Per Update 10
Use KL Penalty No
Learning Rate Scheduler Adaptive

NerveNet Value Tried

Number of Propogation Steps 4
NerveNet Variants NerveNet-1
Size of Nodes’ Hidden State 64
Merge joint and body Node Yes
Output Network Separate
Disable Edge Type Yes
Add Skip-connection from / to root No



Appendix B

Schematic Figures of Agents

B.1 Schematic Figures of the MuJoCo Agents

In this section, we also plot the schematic figures of the agents for readers’ reference. Graph structures could be
automatically parsed from the MuJoCo XML configuration files. Given any MuJoCo configuration files, or other
configuration files organized in a kinematic tree, we could construct the graph for the agents.

Root

Slider

Hinge

Root

Slider

Hinge

Hinge

InvertedPendulum InvertedDoublePendulum

Figure B.1: Schematic diagrams and auto-parsed graph structures of the InvertedPendulum and InvertedDou-
blePendulum.
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Figure B.2: Schematic diagrams and auto-parsed graph structures of the Walker2d and Reacher.
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Figure B.3: Schematic diagrams and auto-parsed graph structures of the SnakeSix and Swimmer.
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Figure B.4: Schematic diagrams and auto-parsed graph structures of the Ant.
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Figure B.5: Schematic diagrams and auto-parsed graph structures of the Hopper and HalfCheetah.
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Figure B.6: Schematic diagrams and auto-parsed graph structures of Walker-Ostrich and Walker-Wolf.
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Figure B.7: Schematic diagrams and auto-parsed graph structures of Walker-Hopper and Walker-HalfHumanoid.
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Figure B.8: Schematic diagrams and auto-parsed graph structures of Walker-Horse.

B.2 Schematic Figures of Walkers Agents

We design Walker task-set, which contains five 2d walkers in the MuJoCo engine.



Appendix C

Detailed Results

C.1 Details of Zero-shot Learning Results

C.1.1 Linear Normalization Zero-shot Results and colorization

As the scale of zero-shot results is very different, we normalize the results across different models for each
transfer learning task. For each task, we record the worst value of results from different models and the pre-set
worst value Vmin. we set the normalization minimun value as this worst value. We calculate the normalization
maximum value by bmax(V )/IntLenc ∗ IntLen.

parameters Vmin IntLen

value -100, -100, -20 30, 30, 30

Table C.1: Parameters for linear normalization during zero-shot results. Results are shown in the order of Cen-
tipedes’ reward, Centipedes’ running-length, Snakes’ reward
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Table C.3: Results of the zero-shot learning of Snake

Reward Min

Random MLPAA MLPP TreeNet NerveNet

SnakeFour-v1 -31.719 -43.328 -64.958 -58.811 308.994
SnakeFive-v1 -56.382 29.262 -55.562 -39.346 301.4
SnakeSix-v1 -44.888 -5.306 -42.744 -76.42 266.066
SnakeSeven-v1 -52.764 -25.511 -49.765 -59.52 231.557
SnakeFive-v1 -56.382 -30.466 -49.953 -47.339 329.456
SnakeSix-v1 -44.888 -35.655 -52.18 -90.837 333.237
SnakeSeven-v1 -52.764 89.358 -57.334 -52.015 253.828

Reward Std

Random MLPAA MLPP TreeNet NerveNet

SnakeFour-v1 9.544 5.792 10.769 10.146 5.513
SnakeFive-v1 13.318 6.191 11.715 7.883 5.788
SnakeSix-v1 11.515 13.535 10.304 16.869 7.395
SnakeSeven-v1 11.21 12.131 10.981 6.953 7.179
SnakeFive-v1 13.318 52.71 11.544 8.519 5.85
SnakeSix-v1 11.515 64.549 10.528 23.109 6.604
SnakeSeven-v1 11.21 10.683 11.615 13.529 14.084

Reward Max

Random MLPAA MLPP TreeNet NerveNet

SnakeFour-v1 3.863 -19.409 10.118 0.918 338.374
SnakeFive-v1 20.585 63.866 3.136 -2.329 326.974
SnakeSix-v1 7.6 58.779 3.51 -2.139 305.011
SnakeSeven-v1 -2.28 51.265 1.325 -28.087 275.536
SnakeFive-v1 20.585 139.617 5.305 1.487 356.366
SnakeSix-v1 7.6 156.771 2.316 -4.159 367.768
SnakeSeven-v1 -2.28 143.824 2.596 8.394 336.561

Reward Average

Random MLPAA MLPP TreeNet NerveNet

SnakeFour-v1 -13.531 -30.185 -12.363 -21.824 325.476
SnakeFive-v1 -17.829 51.411 -16.481 -21.256 314.919
SnakeSix-v1 -19.89 32.2 -19.674 -42.461 282.426
SnakeSeven-v1 -22.099 23.533 -22.378 -42.742 256.293
SnakeFive-v1 -17.829 89.823 -16.54 -15.975 342.881
SnakeSix-v1 -19.89 105.632 -20.454 -34.343 351.85
SnakeSeven-v1 -22.099 115.123 -22.81 -22.383 313.149
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C.2 Details of Robustness results

Model Mass

Hopper Halfhumanoid Horse Wolf Ostrich

NerveNet

1981.59 2519.6 2304.25 1862.21 922.12
2047.92 2392.05 1900.43 1955.16 932.48
1968.87 2282.84 1703.47 1648.28 983.11
2062.36 2161.61 1239.72 1576.21 910.29
1852.76 1804.52 946.08 1354.51 791.84

MLP

2268.64 421.8 1692.08 1932.64 878.75
1932.98 2115.75 1083.62 1754.94 945.94
1637.47 278.92 690.22 1459.93 879.66
1591.51 1224.98 538.14 1039.9 805.99
1073.1 353.56 443.92 814.55 802.41

Model Strength

Hopper Halfhumanoid Horse Wolf Ostrich

NerveNet

1961.62 1528.89 2316.82 1827.73 794.56
1117.91 940.96 960.34 862.19 539.45
492.33 594.53 488.51 274.77 371.19
468.4 308.08 305.16 189.49 255.12

446.14 249.6 201.42 133.84 197.84

MLP

800.15 1439.89 1236.88 1730.88 230.85
431.97 1040.34 209.54 1108.32 483.36
429.76 765.7 306.08 519.73 163.36
426.27 117.05 228.26 88.28 232.8
412.39 65.29 187.72 108.97 133.99

Table C.4: Detail results of Robustness testing.



Appendix D

Structured Weight Sharing in MLP

In the MLP-Bind method, we bind the weights of MLP. By doing this, the weights of the agent from the similar
structures will be shared. For example, in the Centipede environment, the weights from observation to action
of all the LeftHips are constrained to be same.

Note that MLP-Bind and TreeNet are equivalent for the Snake agents, since the snakes only have one type of
joint. We ran MLP-Bind for the zero-shot (table D.1) and fine-tuning experiments (figure D.1) on centipedes.

We summarize the results here:
1. Zero-shot performances of MLP-Bind and MLPAA are very similar. Both models have limited performance in
the zero-shot scenario.
2. For fine-tuning on ordinary centipedes from pretrained models, the performance is only slightly worse than
when using MLP. In our experiment, in the two curves of transferring from CentipedeFour to CentipedeEight
as well as CentipedeSix to CentipedeEight, MLP-Binds reward is from 100 to 1000 worse than MLPAA during
fine-tuning.
3. For the Crippled agents, the MLP-Bind agent is very bad. This might be due to MLP-Bind not being able to
efficiently exploit the information of crippled and well-functioning legs.

D.1 Zero-shot Results for Centipede

The results are recorded in table D.1.

D.2 Results of fine-tuning on Centipede

The results are recorded in figure D.1.

40
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Figure D.1: (a), (c): Results of fine-tuning for size transfer experiments. (b), (d) Results of fine-tuning for
disability transfer experiments.



Bibliography

[1] Haitham B Ammar, Eric Eaton, Paul Ruvolo, and Matthew Taylor. Online multi-task learning for policy
gradient methods. In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1206–1214, 2014.

[2] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with policy
sketches. arXiv preprint arXiv:1611.01796, 2016.

[3] Hagit Attiya and Jennifer Welch. Distributed computing: fundamentals, simulations, and advanced topics,
volume 19. John Wiley & Sons, 2004.
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