
Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 10a
Why it helps to combine models

Combining networks: The bias-variance trade-off

•  When the amount of training data is limited, we get overfitting.
–  Averaging the predictions of many different models is a good way to

reduce overfitting.
–  It helps most when the models make very different predictions.

•  For regression, the squared error can be decomposed into a “bias” term
and a “variance” term.
–  The bias term is big if the model has too little capacity to fit the data.
–  The variance term is big if the model has so much capacity that it is

good at fitting the sampling error in each particular training set.
•  By averaging away the variance we can use individual models with high

capacity. These models have high variance but low bias.

How the combined predictor compares with the
individual predictors

•  On any one test case, some individual predictors may be
better than the combined predictor.
–  But different individual predictors will be better on different

cases.
•  If the individual predictors disagree a lot, the combined

predictor is typically better than all of the individual predictors
when we average over test cases.
–  So we should try to make the individual predictors

disagree (without making them much worse individually).

Combining networks reduces variance

y = < yi >i =
1
N

yi
i=1

N

∑

this term
vanishes

•  We want to compare two expected squared errors: Pick a predictor at
random versus use the average of all the predictors:

i is an index over the N models

< (t − yi)
2 >i = < ((t − y)− (yi − y))2 >i

=< (t − y)2 + (yi − y)2 − 2(t − y)(yi − y)>i

= (t − y)2+< (yi − y)2 >i −2(t − y)< (yi − y)>i

A picture

•  The predictors that are further
than average from t make bigger
than average squared errors.

•  The predictors that are nearer
than average to t make smaller
then average squared errors.

•  The first effect dominates
because squares work like that.

•  Don’t try averaging if you want to
synchronize a bunch of clocks!
–  The noise is not Gaussian.

 t
target y

(y −ε)2 + (y +ε)2

2
= y 2 + ε2

good
guy

bad
guy

What about discrete distributions over class labels?

•  Suppose that one model gives
the correct label probability
and the other model gives it

•  Is it better to pick one model at
random, or is it better to
average the two probabilities?

log
pi + pj
2

!

"
#

$

%
& ≥ log pi + log pj

2

pi
pj

0

average

lo
g

p
 à

 p à
pi pj

Overview of ways to make predictors differ

•  Rely on the learning algorithm
getting stuck in different local
optima.
–  A dubious hack
 (but worth a try).

•  Use lots of different kinds of
models, including ones that are
not neural networks.
–  Decision trees
–  Gaussian Process models
–  Support Vector Machines
–  and many others.

•  For neural network models,
make them different by using:
–  Different numbers of

hidden layers.
–  Different numbers of units

per layer.
–  Different types of unit.
–  Different types or strengths

of weight penalty.
–  Different learning

algorithms.

Making models differ by changing their training data

•  Bagging: Train different models on
different subsets of the data.
–  Bagging gets different training

sets by using sampling with
replacement:
a,b,c,d,e à a c c d d

–  Random forests use lots of
different decision trees trained
using bagging. They work well.

•  We could use bagging with neural
nets but its very expensive.

•  Boosting: Train a sequence of low
capacity models. Weight the
training cases differently for each
model in the sequence.
–  Boosting up-weights cases

that previous models got
wrong.

–  An early use of boosting was
with neural nets for MNIST.

–  It focused the computational
resources on modeling the
tricky cases.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 10b
Mixtures of Experts

Mixtures of Experts
•  Can we do better that just averaging models in a way that does not

depend on the particular training case?
–  Maybe we can look at the input data for a particular case to help

us decide which model to rely on.
–  This may allow particular models to specialize in a subset of the

training cases.
–  They do not learn on cases for which they are not picked. So they

can ignore stuff they are not good at modeling. Hurray for nerds!
•  The key idea is to make each expert focus on predicting the right

answer for the cases where it is already doing better than the other
experts.
–  This causes specialization.

A spectrum of models
Very local models

–  e.g. Nearest neighbors
•  Very fast to fit

–  Just store training cases
•  Local smoothing would obviously

improve things.

Fully global models
–  e. g. A polynomial

•  May be slow to fit and also unstable.
–  Each parameter depends on all

the data. Small changes to data
can cause big changes to the fit.

x

y

x

y

Multiple local models

•  Instead of using a single global model or lots of very local models,
use several models of intermediate complexity.
–  Good if the dataset contains several different regimes which

have different relationships between input and output.
•  e.g. financial data which depends on the state of the

economy.
•  But how do we partition the dataset into regimes?

Partitioning based on input alone versus partitioning based
on the input-output relationship

•  We need to cluster the training
cases into subsets, one for
each local model.
–  The aim of the clustering is

NOT to find clusters of
similar input vectors.

–  We want each cluster to
have a relationship
between input and output
that can be well-modeled
by one local model.

Partition
based on the
inputàoutput
mapping

Partition
based on the
input alone

ou
tp

ut
 à

A picture of why averaging models during training
causes cooperation not specialization

yi t y−i

Average of all the
other predictors

target

Do we really want to move the output of
model i away from the target value?

output of
i’th model

An error function that encourages cooperation

•  If we want to encourage cooperation,
we compare the average of all the
predictors with the target and train to
reduce the discrepancy.
–  This can overfit badly. It makes the

model much more powerful than
training each predictor separately.

E = (t − < yi >i)
2

Average of all
the predictors

An error function that encourages specialization

•  If we want to encourage specialization
we compare each predictor separately
with the target.

•  We also use a “manager” to determine
the probability of picking each expert.
–  Most experts end up ignoring most

targets
E = < pi(t − yi)

2>i

probability of the
manager picking
expert i for this case

The mixture of experts architecture (almost)

A simple cost function :

E = pi(t − yi)
2

i
∑

321 ppp 321 yyy

Expert 1 Expert 2 Expert 3

input

Softmax gating network

There is a better
cost function based
on a mixture model.

The derivatives of the simple cost function

•  If we differentiate w.r.t.
the outputs of the
experts we get a signal
for training each expert.

•  If we differentiate w.r.t. the outputs
of the gating network we get a
signal for training the gating net.
–  We want to raise p for all

experts that give less than the
average squared error of all
the experts (weighted by p)

pi =
exi

ex j
j
∑

, E = pi(t − yi)
2

i
∑ ,

∂E
∂yi

= pi(t − yi)

∂E
∂xi

= pi (t − yi)
2 −E()

A better cost function for mixtures of experts
(Jacobs, Jordan, Nowlan & Hinton, 1991)

•  Think of each expert as making a prediction
that is a Gaussian distribution around its
output (with variance 1).

•  Think of the manager as deciding on a scale
for each of these Gaussians. The scale is
called a “mixing proportion”. e.g {0.4 0.6}

•  Maximize the log probability of the target
value under this mixture of Gaussians model
i.e. the sum of the two scaled Gaussians. t

target value

y2 y1

The probability of the target under a mixture of Gaussians

p(tc |MoE) = pi
c 1

2π
i
∑ e

− 12 (t
c−yi

c)2

prob. of
target value
on case c
given the
mixture.

mixing proportion assigned to expert i
for case c by the gating network

output of
expert i normalization

term for a
Gaussian
with 12 =σ

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 10c
The idea of full Bayesian learning

Full Bayesian Learning
•  Instead of trying to find the best single setting of the parameters (as

in Maximum Likelihood or MAP) compute the full posterior
distribution over all possible parameter settings.
–  This is extremely computationally intensive for all but the

simplest models (its feasible for a biased coin).
•  To make predictions, let each different setting of the parameters

make its own prediction and then combine all these predictions by
weighting each of them by the posterior probability of that setting of
the parameters.
–  This is also very computationally intensive.

•  The full Bayesian approach allows us to use complicated models
even when we do not have much data.

Overfitting: A frequentist illusion?

•  If you do not have much data,
you should use a simple
model, because a complex one
will overfit.
–  This is true.
–  But only if you assume that

fitting a model means
choosing a single best
setting of the parameters.

•  If you use the full posterior
distribution over parameter
settings, overfitting disappears.
–  When there is very little

data, you get very vague
predictions because many
different parameters
settings have significant
posterior probability.

A classic example of overfitting

•  Which model do you believe?
–  The complicated model fits the

data better.
–  But it is not economical and it

makes silly predictions.
•  But what if we start with a reasonable

prior over all fifth-order polynomials
and use the full posterior distribution.
–  Now we get vague and sensible

predictions.
•  There is no reason why the amount of

data should influence our prior beliefs
about the complexity of the model.

Approximating full Bayesian learning in a neural net
•  If the neural net only has a few parameters we could put a grid over

the parameter space and evaluate p(W | D) at each grid-point.
–  This is expensive, but it does not involve any gradient descent

and there are no local optimum issues.
•  After evaluating each grid point we use all of them to make

predictions on test data
–  This is also expensive, but it works much better than ML learning

when the posterior is vague or multimodal (this happens when
data is scarce).

p(ttest | inputtest) = p(Wg
g ε grid
∑ |D) p(ttest | inputtest,Wg)

An example of full Bayesian learning

•  Allow each of the 6 weights or biases to have the 9
possible values -2, -1.5, -1, -0.5, 0 ,0.5, 1, 1.5, 2

–  There are grid-points in parameter space
•  For each grid-point compute the probability of the

observed outputs of all the training cases.
•  Multiply the prior for each grid-point by the

likelihood term and renormalize to get the posterior
probability for each grid-point.

•  Make predictions by using the posterior
probabilities to average the predictions made by
the different grid-points.

bias

bias

A neural net with 2
inputs, 1 output
and 6 parameters

96

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 10d
Making full Bayesian learning practical

What can we do if there are too many parameters for a grid?

•  The number of grid points is exponential in the number of parameters.
–  So we cannot deal with more than a few parameters using a grid.

•  If there is enough data to make most parameter vectors very unlikely,
only a tiny fraction of the grid points make a significant contribution to
the predictions.
–  Maybe we can just evaluate this tiny fraction

•  Idea: It might be good enough to just sample weight vectors according to
their posterior probabilities.

),|()|(),|(itest
i

testitesttest WinputypDWpDinputyp ∑=

Sample weight vectors
with this probability

Sampling weight vectors

•  In standard backpropagation
we keep moving the weights in
the direction that decreases
the cost.
–  i.e. the direction that

increases the log likelihood
plus the log prior, summed
over all training cases.

–  Eventually, the weights
settle into a local minimum
or get stuck on a plateau
or just move so slowly that
we run out of patience.

weight
space

One method for sampling weight vectors

•  Suppose we add some
Gaussian noise to the weight
vector after each update.
–  So the weight vector never

settles down.
–  It keeps wandering around,

but it tends to prefer low
cost regions of the weight
space.

–  Can we say anything about
how often it will visit each
possible setting of the
weights?

weight
space

Save the weights after every 10,000 steps.

The wonderful property of Markov Chain Monte Carlo

•  Amazing fact: If we use just the right
amount of noise, and if we let the
weight vector wander around for long
enough before we take a sample, we
will get an unbiased sample from the
true posterior over weight vectors.
–  This is called a “Markov Chain

Monte Carlo” method.
–  MCMC makes it feasible to use

full Bayesian learning with
thousands of parameters.

•  There are related MCMC
methods that are more
complicated but more
efficient:
–  We don’t need to let the

weights wander around
for so long before we get
samples from the
posterior.

Full Bayesian learning with mini-batches

•  If we compute the gradient of
the cost function on a random
mini-batch we will get an
unbiased estimate with
sampling noise.
–  Maybe we can use the

sampling noise to provide
the noise that an MCMC
method needs!

•  Ahn, Korattikara &Welling
(ICML 2012) showed how to
do this fairly efficiently.
–  So full Bayesian learning is

now possible with lots of
parameters.

Geoffrey Hinton
Nitish Srivastava,
Kevin Swersky
Tijmen Tieleman
Abdel-rahman Mohamed

Neural Networks for Machine Learning

Lecture 10e
Dropout: an efficient way to combine neural nets

Two ways to average models

•  MIXTURE: We can combine
models by averaging their
output probabilities:

•  PRODUCT: We can combine
models by taking the geometric
means of their output
probabilities:

Model A: .3 .2 .5
Model B: .1 .8 .1
Combined .2 .5 .3

Model A: .3 .2 .5
Model B: .1 .8 .1

Combined .03 .16 .05 /sum

Dropout: An efficient way to average many large
neural nets (http://arxiv.org/abs/1207.0580)

•  Consider a neural net with one hidden
layer.

•  Each time we present a training
example, we randomly omit each
hidden unit with probability 0.5.

•  So we are randomly sampling from
2^H different architectures.
–  All architectures share weights.

Dropout as a form of model averaging

•  We sample from 2^H models. So only a few of the models ever get
trained, and they only get one training example.
–  This is as extreme as bagging can get.

•  The sharing of the weights means that every model is very strongly
regularized.
–  It’s a much better regularizer than L2 or L1 penalties that pull the

weights towards zero.

But what do we do at test time?

•  We could sample many different architectures and take the
geometric mean of their output distributions.

•  It better to use all of the hidden units, but to halve their outgoing
weights.
–  This exactly computes the geometric mean of the predictions of

all 2^H models.

What if we have more hidden layers?

•  Use dropout of 0.5 in every layer.
•  At test time, use the “mean net” that has all the outgoing weights

halved.
–  This is not exactly the same as averaging all the separate

dropped out models, but it’s a pretty good approximation, and its
fast.

•  Alternatively, run the stochastic model several times on the same
input.
–  This gives us an idea of the uncertainty in the answer.

What about the input layer?

•  It helps to use dropout there too, but with a higher probability of
keeping an input unit.
–  This trick is already used by the “denoising autoencoders”

developed by Pascal Vincent, Hugo Larochelle and Yoshua
Bengio.

How well does dropout work?

•  The record breaking object recognition net developed by Alex
Krizhevsky (see lecture 5) uses dropout and it helps a lot.

•  If your deep neural net is significantly overfitting, dropout will usually
reduce the number of errors by a lot.
–  Any net that uses “early stopping” can do better by using dropout

(at the cost of taking quite a lot longer to train).
•  If your deep neural net is not overfitting you should be using a

bigger one!

Another way to think about dropout

•  If a hidden unit knows which
other hidden units are present, it
can co-adapt to them on the
training data.
–  But complex co-adaptations

are likely to go wrong on new
test data.

–  Big, complex conspiracies
are not robust.

•  If a hidden unit has to work
well with combinatorially many
sets of co-workers, it is more
likely to do something that is
individually useful.
–  But it will also tend to do

something that is
marginally useful given
what its co-workers
achieve.

