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Abstract. Over the last decade, probabilistic parsing has become the standard in
the parsing literature where one of the purposes of those probabilities is to discard
unlikely parses. We investigate the effect that discardinglow probability parses
has on both the weak and strong generative power of context-free grammars.
We prove that probabilistic context-free grammars are morepowerful than their
non-probabilistic counterparts but in a way that is orthogonal to the Chomsky
hierarchy. In particular, we show that the increase in powercannot be used to
model any dependencies that discrete context-free grammars cannot.

1 Introduction

During the last twenty years, the field of computational linguistics has moved from a
field which used primarily discrete grammars to a field which uses discrete grammars
augmented with weights or probabilities. This revolution has ranged from speech to
machine translation to parsing and has resulted in significant advances in terms of both
accuracy and speed [4–6, 11].

A variety of work has addressed the power of these numerically augmented gram-
mars. Some have directly analyzed the numerically augmented languages generated by
these grammars [1–3, 19, 21]. Other work has analyzed the discrete languages obtained
by filtering the weighted languages based on the weights [7, 10, 17, 20]. The results in
the former case give us fundamental insight into the probabilistic systems involved but
these are difficult to translate into practical consequences. The results in the latter case
can be interpreted more easily but are entirely dependent onthe filtering method.

This paper will fall into the latter type of work with a goal ofproviding insight into
how context-free grammars (CFGs) are used in the fields of parsing and machine trans-
lation. We will be analyzing discrete systems augmented both with probabilities and
with weights. Both [7] and [20] analyzed weighted grammars but their results are not
relevant to the natural language processing community because they view weights as
uninterpretable numerical values rather than something similar to probabilities. When
we analyze weighted and probabilistic grammars, we will always abide by the princi-
ple that any filtering mechanism must prefer higher weights or probabilities to lower
weights or probabilities. Abiding by this principle means defining a threshold which
separates acceptable from unacceptable structure. This notion is exactly captured by
Rabin’s definition of cut-point [17] which we will adopt and then generalize.



Section 2 gives an overview of previous work in this area. In section 3, we inves-
tigate probabilistic and weighted CFGs and show that using the definition of cut-point
from [17] restricts probabilistic CFGs to generating the finite languages. This leads us
to generalize the definition of cut-point which we then use toestablish a hierarchy of
weighted and probabilistic grammars in section 4. Then, in section 5 we prove a number
of results that situate this weighted hierarchy relative tothe classic Chomsky hierarchy
showing that weighted CFGs extend CFGs in a different way than tree-adjoining gram-
mars (TAGs) [12]. Then, in section 6 we offer a characterization of the languages of
weighted CFGs that shows that weighted CFGs cannot identifyany dependencies that
CFGs cannot.

2 Previous Work

The first work that addressed the mapping of weighted languages into discrete lan-
guages was [17]. That work introduced the notion of acut-pointwhich formalizes the
notion of a threshold. [17] used cut-points to prove that certain probabilistic finite au-
tomata when restricted by cut-points can generate languages beyond the regular lan-
guages. In fact, his proof can also be used to show that those automata can generate
string languages that even Turing machines cannot. This is done via an abuse of the
uncountability of the space of real numbers in[0, 1]. This unintuitive result is remedied
by requiring certain distances between probabilities in the automata resulting in prob-
abilistic finite automata that are weakly equivalent to non-probabilistic finite automata.
This paper extends [17] by examining CFGs rather than finite automata, but also, by
altering the way that probabilistic grammars are defined. This is due to the fact that [17]
defines probabilistic automata that do not result in probabilistic languages and therefore
his results are not directly applicable to modern uses of probabilistic CFGs.

Probabilistic automata and probabilistic CFGs that do generate probabilistic lan-
guages have also been investigated [7, 20]. [7] introduced amore powerful method of
filtering the weighted languages of a weighted finite automata. They allow any subset
of the real numbers to act as the set that discriminates between allowed weights and
discarded weights. In particular, restricting the output of a weighted finite automaton to
a single value generates languages such as the palindromes that finite automata cannot.
[20] extends these results by proving that weighted CFGs filtered by the same mecha-
nism generate the language{anbncn|n > 0} and weighted finite automata filtered this
way can generate the MIX language. These results are difficult to apply to any modern
weighted or probabilistic system because they disobey the principle that higher weights
are preferable.

Along similar lines, [10] analyzes the generative power of probabilistic CFGs when
only the maximal derivation for each sentence is retained. This naturally does not in-
crease the weak generative capacity of the system, but they show that these types of
probabilistic CFGs do generate tree languages that CFGs cannot. This work and our
work take a different approach in that we explore the effectsof discarding derivations
below a certain threshold whereas they discard any derivation with weight lower than
the highest weighted derivation.



In addition to this work on tree languages there has also beenwork on the strong
generative capacity of non-weighted grammars in terms of the dependencies that they
produce especially those more powerful than CFGs [8, 14].

3 Weighted and Probabilistic Grammars

We take the definitions of weighted and probabilistic grammars from [2] and [21] with
the exception that we define weights of strings to be the maximum of all derivations over
that string rather than the sum. This change is a deviation from the standard definition in
the theoretical literature but it more closely correspondsto the usage of such grammars
in the natural language parsing literature. In particular,it is very common to try to
determine the correct parse tree for a given sentence from the set of all possible parse
trees to try to disambiguate the syntax of the sentence. Defining the weights of the
strings to be themaximumover all parse trees identifies the weight of the string with
the likeliest parse tree. Identifying the weight of the string with thesumover all parse
trees would be more useful if we were interested in all possible syntactic structures for
a sentence, which in practice we are usually not.

Definition 1. A grammarG is a system specifying a set ofderivationsD(G). A non-
weighted grammaris a grammar where the set of derivations is a set of trees. Aweighted
grammaris a grammar where the derivations are pairs〈t, w〉 wheret is a tree andw
belongs toR. A probabilistic grammaris a weighted grammarG where

∑

〈t,w〉∈D(G)

w = 1

Definition 2. A context-free grammar (CFG)is a quadruple〈N, T, S,R〉 whereN is
a finite set of non-terminals,T is a finite set of terminals,S ∈ N is a start symbol and
R is a finite set of rules of the formr → r1 . . . rk wherer ∈ N andri ∈ N ∪ T for
1 ≤ i ≤ k. The derivations of a CFG are defined in the usual way and consist of trees
with S as their root and where each node in the tree appears as the left side of a rule
in R where its children are the right side of that rule and the leaves are terminals. The
rules of a derivationt, is the set of occurrences of rulesR(t) in the derivation.

The weighted CFG (WCFG)〈G,W 〉 is a CFGG = 〈N, T, S,R〉 and a weight
functionW whereW : R → R

+ is a map from rules to positive real numbers. The
derivations of a WCFG are pairs〈t, w〉 wheret ∈ D(G) and

w =
∏

r∈R(t)

W (r)

A probabilistic CFG (PCFG)〈G,W 〉 is a WCFG〈G,W 〉 where forr ∈ N ,

∑

r→r1...rk∈R

W (r → r1 . . . rk) = 1



By these definitions, we see that CFGs are a class of non-weighted grammars and
WCFGs are a class of weighted grammars. However, PCFGs are not necessarily prob-
abilistic grammars due to some probability being assigned to infinite derivations. [21]
investigates this issue more closely and defines consistentPCFGs to be PCFGs which
are probabilistic grammars and provides conditions that characterize that class. How-
ever, we will be ignoring inconsistency here.

Our primary purpose here will be to investigate the power of probabilistic and
weighted CFGs while obeying the principle that higher weights or probabilities are
preferable. [10] introduced one such method for filtering derivations while obeying that
principle but their method of choosing the maximum derivation for a sentence can only
be used to disambiguate multiple derivations for a given string and the weak generative
capacity cannot increase. To abide by the principle that higher probabilities are prefer-
able, we must return to the definition ofcut-pointprovided by [17] as a formal way to
encode the intuition behind discarding low weights or probabilities:

Definition 3. A cut-pointis a valuec ∈ R. The set of derivations of a probabilistic or
weighted grammar〈G,W 〉 with cut-pointc ∈ R is defined as:

D(〈G,W 〉, c) = {t|t ∈ D(G) andc < W (t)}

The intuition is that the cut-point provides the threshold below which structures
are unacceptable. We should also note that by our definitions, probabilistic or weighted
grammars with cut-points are non-weighted grammars. The remainder of this paper will
be spent investigating the weak and strong generative capacity of PCFGs and WCFGs
with cut-points. We need the following definitions:

Definition 4. A grammar formalismis a system for restricting the range of grammars
from all possible grammars. For example, CFGs, PCFGs and WCFGs among many
others are grammar formalisms.

Definition 5. A grammar formalismF1 is strongly includedin a grammar formalism
F2 if for every grammarG1 ∈ F1 there exists a grammar formalismG2 ∈ F2 such that
D(G1) = D(G1).

Definition 6. LetT be a set of trees. For a treet ∈ T , the string oft, S(t), is the string
of terminals found at the leaves oft. Then, the string language of the set of treesT ,
S(T ), is

S(T ) = {S(t)|t ∈ T }

A non-weighted grammar formalismF1 isweakly includedin a non-weighted gram-
mar formalismF2 if for everyG1 ∈ F1 there exists a grammarG2 ∈ F2 such that
S(D(G1)) = S(D(G2)).

The intuition is that strong inclusion characterizes the languages of derivations of
a grammar whereas weak inclusion characterizes the languages of strings. The no-
tions of weak and strong inclusion induce partial orders on the space of grammar for-
malisms. We say that two grammar formalisms are weakly (strongly) equivalent if they
are weakly (strongly) included in each other and weakly (strongly) incomparable if nei-
ther is weakly (strongly) included in the other. Our first theorem will lead us to a more
sophisticated definition of cut-point in the next section.



Definition 7. A finite grammar (FG)G is any system for describing a finite set of trees
D(G).

Theorem 1. PCFGs with positive cut-points are strongly included in FGs.

Proof. Let 〈G,W 〉 be a PCFG andc be a cut-point. LetD ⊆ D(G) be such that for
t ∈ D, W (t) > c. But, according to the definition of PCFGs,|D| ∗ c ≤ 1. Thus,
|D| ≤ 1/c and sincec > 0, D is a finite set of derivations.

This theorem gives us the somewhat surprising result that using a threshold on the
probabilities of a PCFG generates a finite language. We will proceed with some more
basic theorems before remedying this situation in the next section.

Theorem 2. CFGs are strongly included in PCFGs with cut-point0 and WCFGs with
both positive cut-points and cut-point0.

Proof. Let G be a CFG. Then, any PCFG or WCFG produces only derivations with
weights above0 and a cut-point of0 does nothing to the strong generative capacity.
Similarly, by defining a WCFGD(〈G,W 〉) whereW assigns weight1 to every rule
and using a cut-point of12 , every derivation will be above the cut-point.

Theorem 3. PCFGs with cut-point0 and WCFGs with cut-point0 are strongly in-
cluded in CFGs.

Proof. For a WCFG or PCFG〈G,W 〉 with cut-point0, the CFGG generates exactly
the derivations of the weighted or probabilistic version since the cut-point of0 does
nothing.

4 The Weighted Hierarchy

In the preceding section, we proved that PCFGs with cut-points generate only finite
structure. This result is predicated on the fact that as a sentence grows, it necessarily
contains more rules which ultimately decrease the probability given to the derivation.
One way of remedying this situation is to allow for the cut-point to vary depending in
some way on the length of the sentence or derivation. We definea generalization of
cut-point that allows the cut-point to change with the length of the sentence.

Definition 8. A normalized cut-pointis a functioncn : N → R
+ mapping from the

natural numbers to the positive real numbers. The set of derivations of a probabilistic
or weighted grammar〈G,W 〉 with string normalized cut-pointcn is defined as:

D(〈G,W 〉, cn) = {t|t ∈ D(G) ∧ cn(|S(t)|) < W (t)}

The set of derivations of a probabilistic or weighted grammar 〈G,W 〉 with rule nor-
malized cut-pointcn is defined as

D(〈G,W 〉, cn) = {t|t ∈ D(G) ∧ cn(|R(t)|) < W (t)}



These normalized cut-points achieve the intended goal of allowing arbitrarily long
sentences into the languages of PCFGs filtered by cut-pointsbut their generality is too
unwieldy for our purposes. Therefore, we define the following subclass requiring the
cut-point to change by a constant factor as the sentence grows.

Definition 9. A geometric normalized cut-point (or geo-norm cut-point)is a function
cg : N → R

+ with common ratio0 < g < 1 defined ascg(n) = gn.

Geo-norm cut-points are intended to simplify normalized cut-points and the precise
differences in the power between the two is as yet unknown. Next, we introduce lexical-
ized CFGs [13] to give insight into the generative power of CFGs supplied with lexical
information as in [6] and to allow us to prove results concerning string normalized cut-
points.

Definition 10. A lexicalized CFG (LCFG)is a CFG〈N, T, S,R〉 where for eachr →
r1 . . . rk ∈ R there exists an1 ≤ i ≤ k such thatri ∈ T and forj 6= i, rj ∈ N . That is,
each rule has exactly one terminal on the right side. Probabilistic and weighted LCFGs
are defined in the obvious way.

First, we will relate our definitions of string normalized cut-points and rule normal-
ized cut-points via a relationship between probabilistic LCFGs and CFGs.

Theorem 4. PLCFGs with string geo-norm cut-points are a special case ofPCFGs
with rule geo-norm cut-points.

Proof. By the definition of LCFGs, in any derivation of an LCFG there is exactly one
rule per non-terminal symbol. Thus, in this case, string normalized cut-points are iden-
tical to rule normalized cut-points. Furthermore, there certainly exist PCFGs that gen-
erate derivations that no PLCFG can generate simply by having a rule that is not lexi-
calized as part of a derivation with a high weight.

We now proceed with theorems proving inclusions of PCFGs in WCFGs.

Theorem 5. PLCFGs with string geo-norm cut-points are strongly included in WL-
CFGs with cut-points.

Proof. Let 〈G,W 〉 be a PLCFG and letcg be a geo-norm cut-point. We define a WL-
CFG〈G,W ′〉 whereW ′(r) = W (r)/g for r ∈ R. Then, define a cut-pointc = 1.

Let t ∈ D(G). By definition,t is generated by〈G,W 〉 with geo-norm cut-pointcg
if and only ifW (t) > gn wheren = |S(t)|. Furthermore,t has exactlyn rules, since it
is a derivation of an LCFG. Then,

W ′(t) =
∏

r∈R(t)

W ′(r) =
∏

r∈R(t)

W (r)/g

=
1

gn
∗

∏

r∈R(t)

W (r) =
W (t)

gn

Thus,W ′(t) = W (t)/gn. Then,W (t) > gn if and only if W (t)/gn > 1 if and
only if W ′(t) > 1.



Theorem 6. PCFGs with rule geo-norm cut-points are strongly included in WCFGs
with cut-points.

Proof. This proof is essentially identical to that of theorem 5 except that|S(t)| is re-
placed by|R(t)|.

These results yield the probabilistic and weighted portionof the grammar hierarchy
shown in figures 1 and 2.

5 The Weighted Hierarchy and the Chomsky Hierarchy

In the previous section, we proved a number of theorems showing the relationships
between some probabilistic and weighted grammars in relation to CFGs. In this section,
we will prove some theorems relating that hierarchy with theChomsky hierarchy1.

We will prove that the weighted and probabilistic grammars discussed in the previ-
ous section are more powerful than CFGs and contrast the weighted hierarchy with the
Chomsky hierarchy. To do this we must define tree-adjoining grammar (TAG) [12], a
grammar whose languages include the languages of CFGs.

Definition 11. A tree-adjoining grammar (TAG)is a septuple〈N, T, S, I, A, SA,OA〉
whereN is a finite set of non-terminals,T is a finite set of terminals,S ∈ N is a start
symbol,I is a set ofinitial trees, A is a set ofauxiliary trees, SA is a mapping from
nodes in trees inI ∪ A to sets of trees inI ∪ A andOA is a mapping from nodes in
trees inI ∪ A to Booleans.

An initial tree in I is a tree whose non-leaf nodes are non-terminals fromT and
whose leaf nodes are from the setN ∪ T . An auxiliary tree inA is a tree whose non-
leaf nodes are non-terminals fromT and whose leaf nodes are from the setN ∪ T
and exactly one non-terminal leaf node is identified as thefoot nodewhich is the same
symbol as the root.

The derivations of a TAG2 consist of trees that are built through a series ofadjunc-
tionsandsubstitutions. The process begins with a tree inI with root S. Adjunction is
an operation on a derivation treeT where a treeα fromA is adjoinedat a nodee ∈ T
if the root ofα shares the same symbol ase. If so, then the subtree rooted ate in T is
deleted fromT and inserted at the foot node ofα and the root of the resulting tree is
inserted at the old location ofe in T . Substitution is an operation on a derivation tree
T where a treeι from I is substitutedat a nodee ∈ T if the root ofι shares a symbol
with e ande is a leaf inT . If so, thenι is inserted ate in T .

SA assigns sets of trees inI ∪ A to each nodee in each tree ofI ∪ A indicating
which trees are allowed to be adjoined ate. If SA maps a node to the empty set, then
adjunction is disallowed at that node.OA assigns a Boolean to each nodee in each
tree ofI ∪A indicating whether adjunction is obligatory at that node.

1 The original definition of the Chomsky hierarchy did not include the tree-adjoining languages,
but it is natural to include them between the context-free languages and the context-sensitive
languages.

2 The usual distinction between derivation and derived treesin TAG is not necessary here.



TAGs are known to have generative power beyond the CFGs, mostspecifically in
being able to generate the string languages{anbncn|n > 0}, {anbncndn|n > 0} and
{anbmcndm|n > 0,m > 0}. TAGs are important because they generate the neces-
sary structures for representing the non-context-free cross-serial dependencies found in
Swiss German [18] which require the generation of the stringlanguage{anbmcndm|n >
0,m > 0}. We will now proceed with some theorems outlining the relationship between
CFGs and TAGs and weighted and probabilistic CFGs. The complete hierarchy based
on these theorems is depicted in figures 1 and 2.

FG

(PCFG w/ positive cut-points)

Regular Grammar

CFG
(LCFG)

TAG
PLCFG w/ string

geo-norm cut-points

PCFG w/ rule
geo-norm cut-points

WLCFG w/
cut-points

WCFG w/
cut-points

Fig. 1. The weak grammar hierarchy. Parentheses indicate equivalent grammar formalisms and
dashed edges indicate possibly improper inclusions. The dashed bubble is the Chomsky hierarchy.

Theorem 7. LCFGs are strongly included in PLCFGs with string geo-norm cut-points.

Proof. Let G = 〈N, T, S,R〉 be an LCFG. Forl ∈ N , letRn ⊆ R be the set of rules
with l on the left side. Then, forr ∈ Rn, let W ′(r) = 1/|R|. Then, letcg be a string
geo-norm cut-point whereg = 1/|R|.

Then, for each rule inr ∈ R, W ′(r) > g. Thus, for each derivationt ∈ D(G),
W ′(t) > g|R(t)|. But this implies that the derivation set of the WLCFG〈G,W 〉 with
string geo-norm cut-pointcg isD(G). Furthermore, for eachl ∈ N the set of rules with
l on their left side sums to1 implying that〈G,W ′〉 is a PLCFG.

Corollary 1. CFGs are strongly included in PCFGs with rule geo-norm cut-points.

Proof. By a nearly identical proof to that of Theorem 7.

Corollary 2. LCFGs are strongly included in WLCFGs with cut-points and CFGs are
strongly included in WCFGs with cut-points.

Proof. By the transitivity of inclusion and the inclusion results of the preceding section.
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FG
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Fig. 2. The strong grammar hierarchy. Dashed edges indicate inclusions that may be improper.

Proposition 1. There is a PLCFG with geo-norm cut-points which generates the string
language{anbncm|n ≥ m− 1 andm ≥ 1}.

Proof. We define the following PLCFG〈G,W 〉 whose start symbol isS:

(1) S → aBC 1

(2) A → aB 1

(3) B → Ab 1
2

(4) B → b 1
2

(5) C → cC 1
4

(6) C → c 3
4

and the geo-norm cut-pointcg whereg = 1
2 .

First, note that any string of any derivation inD(G) is in anbncm for somen,m ≥
1. Let t ∈ D(G). Let ka be the number ofas in t and letkc be the number ofcs. Then,
|S(t)| = 2 ∗ ka + kc and

W (t) =
1

2ka

∗
1

4kc−1
∗
3

4
= 3 ∗

1

2ka+2kc

Then,

cg(|S(t)|) =
1

22ka+kc

=
1

22ka+kc

Finally, since22 > 3 > 21,W (t) > cg(|S(t)|) if and only if 2ka+kc ≥ ka+2kc−1
if and only if ka ≥ kc − 1. Thus,D(〈G,W 〉, cg) is exactly those derivations whose
strings areanbncm wheren ≥ m− 1 andm ≥ 1.

To prove that this language is not generated by any CFG we needOgden’s lemma
[9, 15].



Lemma 1 (Ogden’s Lemma).LetL = S(D(G)) for a CFGG. Then there is a con-
stantn such that ifz ∈ L and wemarkn or more positions ofz then we can write
z = uvwxy such that:

1. v andx have at least one marked position between them
2. vwx has at mostn marked positions
3. uviwxiy ∈ L for all i ≥ 0

Proposition 2. There is no CFG that generates the string languageL = {anbncm|n ≥
m− 1 andm ≥ 1}.

Proof. Assume on the contrary thatL is generated by some context-free grammar. Let
n be the constant given by Ogden’s lemma. We consider the string z = anbncn+1 in
which allc positions are marked. Then there existu, v,w, x andy such thatz = uvwxy.

One ofv andx must contain ac, by the first condition.v cannot contain ana and a
b because thenuv2wx2y would have ab preceding ana. Also,v cannot contain ab but
noa, because thenuv2wx2y would not have an equal number ofas andbs. Similarly,v
cannot contain onlycs because thenuv2wx2y would have at leastn+ 2 cs with onlyn
as. Also,v cannot contain onlyas, since if it does thenx must contain an equal number
of bs and at least onec in which caseuv2wx2y would have ac preceding ab. Finally,
v cannot be empty because thenx must either contain onlycs, in which caseuv2wx2y
would contain too manycs orx must containbs andcs in which caseuv2wx2y would
contain ac before ab.

Therefore, no such partitioning ofz exists and, by Ogden’s lemma,L is not a
context-free language.

Theorem 8. PLCFGs with string geo-norm cut-points are not weakly included in CFGs.

Corollary 3. PCFGs with rule geo-norm cut-points, WLCFGs with cut-points and WCFGs
with cut-points are not weakly included in CFGs.

These results establish that WCFGs with cut-points and PCFGs with normalized
cut-points have generative power beyond CFGs. However, when compared with TAGs,
the next step in the Chomsky hierarchy, we find that they are incomparable. Before
we can proceed though, we need to provide a variant of Ogden’slemma that includes
details about the derivations for the strings.

Lemma 2. Let L = S(D(G)) for a CFGG. Then there is a constantn such that if
z ∈ L and wemarkn or more positions ofz then we can writez = uvwxy such that:

1. v andx have at least one marked position between them
2. vwx has at mostn marked positions
3. uviwxiy ∈ L for all i ≥ 0

Furthermore, for all derivationst ∈ D(G) such thatS(t) = uvnwxny, t has a
subtreet′ whose root is a non-terminalA dominating only those terminals invwx and
t has another subtreet′′ whose root is alsoA dominating the terminals inw.



Proof. This can be easily proven in an identical manner to Ogden’s original proof ex-
cept that care must be paid to the rules in the trees.

Theorem 9. No WCFG with cut-points generates the string languageL = {anbncn|n >
0}.

Proof. Assume on the contrary, that a WCFG〈G,W 〉 and a cut-pointk exists such that
S(D(〈G,W 〉, k)) = {anbncn|n > 0}. Letn be the constant in lemma 2 , lett ∈ D(G)
be the derivation with the highest weight such thatS(t) = anbncn for somen, let
z = anbncn, let all the positions be marked3 and letz = uvwxy.

Then, by lemma 2,t has a subtreet′ whose root is a non-terminalA dominating only
those terminals invwx andt has another subtreet′ whose root is alsoA dominating
only those terminals inw.

Then, sincevwx has at mostn marked positions, it must contain either allas, all
bs, allcs, someas followed bybs or somebs followed bycs. Furthermore, one ofv or
x must contain a terminal. LetR be the set of rules int− t′ and letrw =

∏
r∈R W (r)

and letzw = W (t).
It must be the case thatzw > k, since otherwiseanbncn /∈ L. If rw ≥ 1, then

uv2wx2z does not contain equal numbers ofas,bs andcs, but has weightrw ∗ zw > k.
If rw < 1, thenuwz does not contain equal numbers ofas, bs andcs, but has weight
zw/rw > k.

Corollary 4. No WCFG with cut-points generates the string language{anbncndn|n >
0}.

Proof. The proof is essentially identical to the proof for the language{anbncn|n > 0}.

Corollary 5. No WCFG with cut-points generates the string language{anbmcndm|n >
0,m > 0}.

Proof. The proof is only a slight variation on the proof for the language{anbncn|n >
0}.

Corollary 6. No PLCFG with string geo-norm cut-points, PCFG with rule geo-norm
cut-points nor WLCFG with cut-points generates the string languages{anbncn|n > 0},
{anbncndn|n > 0} or {anbmcndm|n > 0,m > 0}.

Proposition 3. There is a PLCFG with geo-norm cut-points that generates thestring
language{anbncmdmeo|n ≥ m+ o− 4 andm, o ≥ 1}.

Proof. We define the following PLCFG〈G,W 〉 whose start symbol isS:

(1) S → aBCE 1 (6) D → Cd 1
8

(2) A → aB 1 (7) D → d 7
8

(3) B → Ab 1
2 (8) E → Ee 1

4

(4) B → b 1
2 (9) E → e 3

4

(5) C → cD 1

3 Marking all positions is equivalent to the pumping lemma [9].



and the geo-norm cut-pointcg whereg = 1
2 .

Then, theD(〈G,W 〉, cg) consists of only those strings of the formanbncmdmeo

but by the same reasoning as in Proposition 1, it must be the case thatn ≥ m+ o− 4.

To proceed with our final theorem concerning the relationship between TAGs and
CFGs, we need to state Ogden’s lemma for the tree-adjoining languages given by [16]:

Lemma 3. LetL = S(G) for a TAGG. Then there is a constantn such that ifz ∈ L
and we markn or more positions ofz then we can writez = qrstuvwxy such that:

1. One of the following holds:
– q, r ands each have at least one marked position
– s, t andu each have at least one marked position
– u, v andw each have at least one marked position
– w, x andy each have at least one marked position

2. tuv has at mostn marked positions
3. qristiuviwxiy ∈ L for all i ≥ 0

Proposition 4. There is no TAG that generates the string language{anbncmdmeo|n ≥
m+ o− 4 andm, o ≥ 1}.

Proof. The proof is quite similar to the proof of proposition 2 except that we must use
lemma 3 rather than Ogden’s lemma.

Assume on the contrary thatL is generated by some TAG. Letk be the constant
given by lemma 3. We consider the stringz = anbnckdkek for n = 2k− 4 in which all
ds are marked. Then there existq, r, s, t, u, v, w, x, y such thatz = qrstuvwxy.

First, we consider the case where one ofr, t, v or x contains two or more symbols
from the set{a, b, c, d, e}. In this case, the stringqr2st2uv2wx2y must contain a pair
of symbols that are out of order which results in a string thatis not inL.

Therefore, each ofr, t, v andx contain zero or one symbols from the set of ter-
minals. By the pigeonhole principle, one of the symbols from{a, b, c, d, e} must not
appear in any ofr, t, v or x.

That missing symbol cannot bed since only theds are marked and by the first clause
of lemma 3, one ofr, t, v or x must contain a marked symbol. If that missing symbol
wasc, then the stringqr2st2uv2wx2y would not contain an equal number ofcs andds.

If the missing symbol isa, thenbmust also be missing since otherwiseqr2st2uv2wx2y
would not contain an equal number ofas andbs. However, if both are missing then
qr2st2uv2wx2y would contain at leastk + 1 ds and at leastk es but only2k − 4 as
which would falsify the inequality ofn ≥ m− o+ 4 required of all strings inL.

Therefore, the missing symbol must bee, all of which must occur in the substring
y. By analysis of the proof of lemma 3, we know that must be a point in the derivation
tree ofz such that its descendants make up the substringy. Sincey containsk es, we
can mark them differently than our previous markings and apply lemma 3 again. By
lemma 3,L must contain strings that have arbitrary numbers ofes but onlyk as. This
is a contradiction and proves the result.

Theorem 10. PLCFGs with string geo-norm cut-points are weakly incomparable to
TAGs.

Corollary 7. PCFGs with rule geo-norm cut-points, WLCFGs with cut-points and WCFGs
with cut-points are weakly incomparable to TAGs.



6 A Characterization of Weighted CFGs with Cut-Points

The preceding section introduced languages that the weighted and probabilistic CFGs
generate but that neither CFGs nor TAGs can. In this section,we provide a characteriza-
tion of WCFGs with cut-points. It is currently an open question as to how to characterize
P(L)CFGs with geo-norm cut-points or if the strong inclusion in WCFGs is even proper.

This characterization is relative to the languages of CFGs via a linear inequality
over rules. Because the languages of CFGs have not been precisely characterized, this
characterization is itself not precise but it is illuminating.

Definition 12. A linear product inequality CFG (LPICFG)is a pair 〈G,L〉 whereL is
an inequality over the rules ofG = 〈N, T, S,R〉 andR of the form:

cr11 ∗ cr22 ∗ . . . ∗ crkk > c

wherek = |R| andci ∈ R for 1 ≤ i ≤ k. The derivations of〈G,L〉 are exactly those
derivationst ∈ D(G) where the variablesri in the inequality are instantiated as the
counts of the corresponding rules int and the resulting inequality is true.

Theorem 11. LPICFGs are strongly equivalent to WCFGs with cut-points.

Proof. The correspondence between the two grammars is straightforward where the
valuec in the LPICFG corresponds to the cut-point in the WCFG and theweightsci for
1 ≤ i ≤ k in the LPICFG correspond to the weights the weight function assigns to the
rules. Then, the derivations that are eliminated by the cut-point are exactly those that
are eliminated by having a false inequality.

The correspondence between LPICFGs and WCFGs with cut-points is straightfor-
ward but it helps to illuminate the restrictions that underlie the weighted and proba-
bilistic CFGs. In particular, it means that cut-points can ensure a kind of dependency
between parts of derivations that are arbitrarily distant but that dependency can only be
a linear relationship and that dependency can only discriminate between parts of deriva-
tions by preferring one over another by some constant factor. Perhaps most importantly,
WCFGs with cut-points cannot require that a certain structure in a derivation exist if
and only if another structure exists except via the same mechanism used by a CFG.
This prohibits weights from expressing the kind of links that dependencies express in
discrete grammars.

7 Conclusion

We have investigated the effect that always preferring structures with higher weight
to structures with lower weights has on the discrete languages of probabilistic and
weighted CFGs. The result is that cut-points increase both the strong and weak gen-
erative power not only beyond CFGs but also beyond TAGs. These results show that
the use of probabilities and weights, even in the form that they are typically used in
modern parsing systems can add to the generative capacity ofthe practical systems in a



way that moving up the Chomsky hierarchy to TAGs cannot. However, we also estab-
lished that this increase in power is orthogonal to moving upthe Chomsky hierarchy
because the weights cannot establish the kinds of dependencies that TAGs can.

There remain a number of open problems in the domain of probabilistic and weighted
CFGs with cut-points, which will require future research. In particular, whether the in-
clusion of PCFGs with normalized cut-points in WCFGs with cut-points is proper can
help to determine whether it is important to continue to distinguish between weights
and probabilities when abiding by the principle that higherweights are preferable.

The results that we have presented in this paper give us an understanding of the
kinds of structures that probabilities can be used to generate in modern probabilis-
tic parsers. In particular, we have shown that the advantageof using probabilities or
weights to alter the generative capacity of a grammar formalism allows for arbitrarily
distant grammatical structures to affect each other in the limited way described in the
preceding sections. Whether this is linguistically usefulrequires more research.

In addition, the notions explored in this paper can be extended to other grammar for-
malisms such as regular grammars, finite automata, TAGs and combinatory categorial
grammars. Such research can give us similar insights into other systems used in natu-
ral language processing that will help when choosing the grammar to use in a natural
language system.
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