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Abstract. Over the last decade, probabilistic parsing has becomeahdard in

the parsing literature where one of the purposes of thodmpitities is to discard
unlikely parses. We investigate the effect that discardimg probability parses
has on both the weak and strong generative power of contestgrammars.
We prove that probabilistic context-free grammars are nporgerful than their

non-probabilistic counterparts but in a way that is orthmgjao the Chomsky
hierarchy. In particular, we show that the increase in poggmot be used to
model any dependencies that discrete context-free grasncaanot.

1 Introduction

During the last twenty years, the field of computational lisics has moved from a
field which used primarily discrete grammars to a field whisksudiscrete grammars
augmented with weights or probabilities. This revolutiastranged from speech to
machine translation to parsing and has resulted in signif@dvances in terms of both
accuracy and speed [4-6, 11].

A variety of work has addressed the power of these numeyiaaljmented gram-
mars. Some have directly analyzed the numerically augrddatgyuages generated by
these grammars [1-3, 19, 21]. Other work has analyzed testiislanguages obtained
by filtering the weighted languages based on the weight9}2,2, 20]. The results in
the former case give us fundamental insight into the prdistibisystems involved but
these are difficult to translate into practical consequsntke results in the latter case
can be interpreted more easily but are entirely dependethteofiltering method.

This paper will fall into the latter type of work with a goal pfoviding insight into
how context-free grammars (CFGs) are used in the fields efqgpand machine trans-
lation. We will be analyzing discrete systems augmenteti kgth probabilities and
with weights. Both [7] and [20] analyzed weighted grammarstheir results are not
relevant to the natural language processing communityusecthey view weights as
uninterpretable numerical values rather than somethimgasi to probabilities. When
we analyze weighted and probabilistic grammars, we willagisvabide by the princi-
ple that any filtering mechanism must prefer higher weightprobabilities to lower
weights or probabilities. Abiding by this principle mearefiding a threshold which
separates acceptable from unacceptable structure. Thignris exactly captured by
Rabin’s definition of cut-point [17] which we will adopt anken generalize.



Section 2 gives an overview of previous work in this area.dctisn 3, we inves-
tigate probabilistic and weighted CFGs and show that udieglefinition of cut-point
from [17] restricts probabilistic CFGs to generating thétéinanguages. This leads us
to generalize the definition of cut-point which we then usegtablish a hierarchy of
weighted and probabilistic grammars in section 4. Thereatisn 5 we prove a number
of results that situate this weighted hierarchy relativthtoclassic Chomsky hierarchy
showing that weighted CFGs extend CFGs in a different way thee-adjoining gram-
mars (TAGS) [12]. Then, in section 6 we offer a characteiaraof the languages of
weighted CFGs that shows that weighted CFGs cannot idesntifydependencies that
CFGs cannot.

2 Previous Work

The first work that addressed the mapping of weighted languiago discrete lan-
guages was [17]. That work introduced the notion alu&pointwhich formalizes the
notion of a threshold. [17] used cut-points to prove thataierprobabilistic finite au-
tomata when restricted by cut-points can generate languiagyond the regular lan-
guages. In fact, his proof can also be used to show that thdsenata can generate
string languages that even Turing machines cannot. Thisng dia an abuse of the
uncountability of the space of real numberg(nl1]. This unintuitive result is remedied
by requiring certain distances between probabilities emahtomata resulting in prob-
abilistic finite automata that are weakly equivalent to poababilistic finite automata.
This paper extends [17] by examining CFGs rather than finiteraata, but also, by
altering the way that probabilistic grammars are defineds iBrdue to the fact that [17]
defines probabilistic automata that do not result in prdisdisilanguages and therefore
his results are not directly applicable to modern uses dbgidistic CFGs.

Probabilistic automata and probabilistic CFGs that do gameprobabilistic lan-
guages have also been investigated [7, 20]. [7] introducadre powerful method of
filtering the weighted languages of a weighted finite autamahey allow any subset
of the real numbers to act as the set that discriminates leetatowed weights and
discarded weights. In particular, restricting the outdd weighted finite automaton to
a single value generates languages such as the palindroatdinite automata cannot.
[20] extends these results by proving that weighted CFGarditt by the same mecha-
nism generate the language”b™c"|n > 0} and weighted finite automata filtered this
way can generate the MIX language. These results are diffwalpply to any modern
weighted or probabilistic system because they disobeyriheiple that higher weights
are preferable.

Along similar lines, [10] analyzes the generative powermfabilistic CFGs when
only the maximal derivation for each sentence is retaindaks maturally does not in-
crease the weak generative capacity of the system, but thmy that these types of
probabilistic CFGs do generate tree languages that CFGwstahhis work and our
work take a different approach in that we explore the effe€discarding derivations
below a certain threshold whereas they discard any desivatith weight lower than
the highest weighted derivation.



In addition to this work on tree languages there has also ek on the strong
generative capacity of non-weighted grammars in termsefigpendencies that they
produce especially those more powerful than CFGs [8, 14].

3 Weighted and Probabilistic Grammars

We take the definitions of weighted and probabilistic gramsfieom [2] and [21] with
the exception that we define weights of strings to be the maximf all derivations over
that string rather than the sum. This change is a deviatam fhe standard definition in
the theoretical literature but it more closely correspaiedbe usage of such grammars
in the natural language parsing literature. In particulais very common to try to
determine the correct parse tree for a given sentence frersgthof all possible parse
trees to try to disambiguate the syntax of the sentence. iDgfihe weights of the
strings to be thenaximumover all parse trees identifies the weight of the string with
the likeliest parse tree. Identifying the weight of therggrivith thesumover all parse
trees would be more useful if we were interested in all pdsspntactic structures for
a sentence, which in practice we are usually not.

Definition 1. A grammarG is a system specifying a set dérivationsD(G). A non-
weighted grammas a grammar where the set of derivations is a set of treegeighted
grammaris a grammar where the derivations are paifsw) wheret is a tree andw

belongs taR. A probabilistic grammais a weighted grammat where

Z w=1

(t,wyeD(G)

Definition 2. A context-free grammar (CFG§ a quadruple(N, T, S, R) whereN is

a finite set of non-terminalg; is a finite set of terminals§ € N is a start symbol and

R is a finite set of rules of the form — r;...r, wherer € N andr; € N UT for

1 <4 < k. The derivations of a CFG are defined in the usual way and sboéirees

with S as their root and where each node in the tree appears as thsiti of a rule

in R where its children are the right side of that rule and the lesare terminals. The

rules of a derivatiort, is the set of occurrences of rul&¢) in the derivation.
Theweighted CFG (WCFG)G,W) is a CFGG = (N,T, S, R) and a weight

functionW whereW : R — RT is a map from rules to positive real numbers. The

derivations of a WCFG are pairg, w) wheret € D(G) and

w = H W(r)

reR(t)

A probabilistic CFG (PCFG)G, W) is a WCFG(G, W) where forr € N,

Z W —r...rg) =1

r—ri.. T, €ER



By these definitions, we see that CFGs are a class of non-teeiginammars and
WCFGs are a class of weighted grammars. However, PCFGs aineoessarily prob-
abilistic grammars due to some probability being assigoddftnite derivations. [21]
investigates this issue more closely and defines consBeRGs to be PCFGs which
are probabilistic grammars and provides conditions thatatterize that class. How-
ever, we will be ignoring inconsistency here.

Our primary purpose here will be to investigate the power bpbilistic and
weighted CFGs while obeying the principle that higher wesgbr probabilities are
preferable. [10] introduced one such method for filteringudtions while obeying that
principle but their method of choosing the maximum derivafior a sentence can only
be used to disambiguate multiple derivations for a givengind the weak generative
capacity cannot increase. To abide by the principle thdtdrigrobabilities are prefer-
able, we must return to the definition afit-pointprovided by [17] as a formal way to
encode the intuition behind discarding low weights or pholitées:

Definition 3. A cut-pointis a valuec € R. The set of derivations of a probabilistic or
weighted gramma(G, W) with cut-pointc € R is defined as:

DG, W), c) = {t|t € D(G) andc < W(t)}

The intuition is that the cut-point provides the threshoddolv which structures
are unacceptable. We should also note that by our definjtiwobabilistic or weighted
grammars with cut-points are non-weighted grammars. Tin@ireder of this paper will
be spent investigating the weak and strong generative tgpdd®CFGs and WCFGs
with cut-points. We need the following definitions:

Definition 4. A grammar formalisnis a system for restricting the range of grammars
from all possible grammars. For example, CFGs, PCFGs and W&Bmong many
others are grammar formalisms.

Definition 5. A grammar formalisn¥} is strongly includedn a grammar formalism
F;, if for every grammarz; € F; there exists a grammar formalis@y, € F» such that
D(G1) = D(Gh).

Definition 6. LetT be a set of trees. For a treec T', the string oft, S(¢), is the string
of terminals found at the leaves ofThen, the string language of the set of trdés
S(T),is

S(T) ={S@)t e T}

A non-weighted grammar formalis/ is weakly includedn a non-weighted gram-
mar formalismF; if for everyG; € F; there exists a grammaf, € F5 such that
S(D(G1)) = 8(D(G2)).

The intuition is that strong inclusion characterizes theglaages of derivations of
a grammar whereas weak inclusion characterizes the lapguafgstrings. The no-
tions of weak and strong inclusion induce partial ordershengpace of grammar for-
malisms. We say that two grammar formalisms are weaklyrigtyd equivalent if they
are weakly (strongly) included in each other and weakho(wity) incomparable if nei-
ther is weakly (strongly) included in the other. Our firstahem will lead us to a more
sophisticated definition of cut-point in the next section.



Definition 7. A finite grammar (FG)- is any system for describing a finite set of trees
D(@G).

Theorem 1. PCFGs with positive cut-points are strongly included in FGs

Proof. Let (G, W) be a PCFG and be a cut-point. LeD C D(G) be such that for
t € D, W(t) > c. But, according to the definition of PCFGd)| * ¢ < 1. Thus,
|D| < 1/candsince: > 0, D is a finite set of derivations.

This theorem gives us the somewhat surprising result thagasthreshold on the
probabilities of a PCFG generates a finite language. We woitged with some more
basic theorems before remedying this situation in the rentian.

Theorem 2. CFGs are strongly included in PCFGs with cut-poinand WCFGs with
both positive cut-points and cut-poifit

Proof. Let G be a CFG. Then, any PCFG or WCFG produces only derivatiorts wit
weights abové and a cut-point of) does nothing to the strong generative capacity.
Similarly, by defining a WCF@({G, W)) wherelV assigns weight to every rule
and using a cut-point 0§ every derivation will be above the cut-point.

Theorem 3. PCFGs with cut-poin) and WCFGs with cut-poind are strongly in-
cluded in CFGs.

Proof. For a WCFG or PCFGQG, W) with cut-point0, the CFGG generates exactly
the derivations of the weighted or probabilistic versiomcsi the cut-point of) does
nothing.

4 The Weighted Hierarchy

In the preceding section, we proved that PCFGs with cutipaienerate only finite

structure. This result is predicated on the fact that as tesea grows, it necessarily
contains more rules which ultimately decrease the proitabilven to the derivation.

One way of remedying this situation is to allow for the cutrdo vary depending in

some way on the length of the sentence or derivation. We defigeneralization of

cut-point that allows the cut-point to change with the léngftthe sentence.

Definition 8. A normalized cut-poinis a functionc,, : N — R* mapping from the
natural numbers to the positive real numbers. The set olvd&dns of a probabilistic
or weighted gramma¢(G, W) with string normalized cut-point, is defined as:

DG, W), cn) = {tlt € D(G) A en(IS(H)]) < W(H)}

The set of derivations of a probabilistic or weighted gramn@, 1) with rule nor-
malized cut-point,, is defined as

DG, W), cn) = {t|t € D(G) Aea(IR@)]) < W (D)}



These normalized cut-points achieve the intended goal@iaig arbitrarily long
sentences into the languages of PCFGs filtered by cut-pointheir generality is too
unwieldy for our purposes. Therefore, we define the foll\sabclass requiring the
cut-point to change by a constant factor as the sentencesgrow

Definition 9. A geometric normalized cut-point (or geo-norm cut-poiata function
¢g : N — R* with common ratid) < g < 1 defined ag,(n) = ¢".

Geo-norm cut-points are intended to simplify normalizedmrints and the precise
differences in the power between the two is as yet unknownrt, Me introduce lexical-
ized CFGs [13] to give insight into the generative power of38Kupplied with lexical
information as in [6] and to allow us to prove results congggrstring normalized cut-
points.

Definition 10. A lexicalized CFG (LCFG)s a CFG(N, T, S, R) where for each- —
r1...7, € Rthere exists an < i < k such that; € T and forj # i,r; € N. Thatis,
each rule has exactly one terminal on the right side. Prolistid and weighted LCFGs
are defined in the obvious way.

First, we will relate our definitions of string normalizedqoints and rule normal-
ized cut-points via a relationship between probabilist@HGs and CFGs.

Theorem 4. PLCFGs with string geo-norm cut-points are a special cas®6fGs
with rule geo-norm cut-points.

Proof. By the definition of LCFGs, in any derivation of an LCFG theseekactly one

rule per non-terminal symbol. Thus, in this case, stringmadized cut-points are iden-
tical to rule normalized cut-points. Furthermore, thergaialy exist PCFGs that gen-
erate derivations that no PLCFG can generate simply by bavirule that is not lexi-

calized as part of a derivation with a high weight.

We now proceed with theorems proving inclusions of PCFGs ©R@s.

Theorem 5. PLCFGs with string geo-norm cut-points are strongly ina@ddn WL-
CFGs with cut-points.

Proof. Let (G, W) be a PLCFG and let; be a geo-norm cut-point. We define a WL-
CFG(G,W') whereW’(r) = W(r)/g for r € R. Then, define a cut-poirt= 1.

Lett € D(G). By definition,t is generated byG, W) with geo-norm cut-point,
if and only if W (¢) > g™ wheren = |S(t)|. Furthermoret has exactly: rules, since it
is a derivation of an LCFG. Then,

w't)y= II w'e) =TI w)/g
)

reR(t reR(t)
1 Wit
g reR(t) g

Thus,W'(t) = W(t)/g™. Then, W (t) > ¢" if and only if W (¢)/¢™ > 1 if and
only if W'(t) > 1.



Theorem 6. PCFGs with rule geo-norm cut-points are strongly includedNCFGs
with cut-points.

Proof. This proof is essentially identical to that of theorem 5 g@tdbat|S(t)| is re-
placed by R (¢)].

These results yield the probabilistic and weighted portibthe grammar hierarchy
shown in figures 1 and 2.

5 The Weighted Hierarchy and the Chomsky Hierarchy

In the previous section, we proved a number of theorems stpttie relationships
between some probabilistic and weighted grammars in oeléti CFGs. In this section,
we will prove some theorems relating that hierarchy with@m@msky hierarchy

We will prove that the weighted and probabilistic grammassuassed in the previ-
ous section are more powerful than CFGs and contrast thentegidnierarchy with the
Chomsky hierarchy. To do this we must define tree-adjoinirgrgnar (TAG) [12], a
grammar whose languages include the languages of CFGs.

Definition 11. Atree-adjoining grammar (TAG} a septupléN,T,S,1, A, SA,OA)
whereN is a finite set of non-terminald; is a finite set of terminals§ € N is a start
symbol,] is a set ofinitial trees A is a set ofauxiliary trees S A is a mapping from
nodes in trees il U A to sets of trees id U A andOA is a mapping from nodes in
trees in/ U A to Booleans.

An initial tree in I is a tree whose non-leaf nodes are non-terminals fibrand
whose leaf nodes are from the 9étU 7. An auxiliary tree inA is a tree whose non-
leaf nodes are non-terminals froffi and whose leaf nodes are from the $étU T
and exactly one non-terminal leaf node is identified asftloé nodewhich is the same
symbol as the root.

The derivations of a TAGconsist of trees that are built through a seriesadfunc-
tionsand substitutionsThe process begins with a tree frwith root S. Adjunction is
an operation on a derivation tré€ where a treex from A is adjoinedat a nodee € T
if the root ofa shares the same symbol adf so, then the subtree rooted ain 7 is
deleted fromI" and inserted at the foot node afand the root of the resulting tree is
inserted at the old location af in T'. Substitution is an operation on a derivation tree
T where a tree from I is substitutecht a nodee € T if the root of, shares a symbol
with e ande is a leaf inT'. If so, ther is inserted at in 7.

S A assigns sets of trees ihU A to each node in each tree off U A indicating
which trees are allowed to be adjoinedatlf SA maps a node to the empty set, then
adjunction is disallowed at that nod@A assigns a Boolean to each nodén each
tree of I U A indicating whether adjunction is obligatory at that node.

! The original definition of the Chomsky hierarchy did not imbé the tree-adjoining languages,
but it is natural to include them between the context-freglemges and the context-sensitive
languages.

2 The usual distinction between derivation and derived tie@4G is not necessary here.



TAGs are known to have generative power beyond the CFGs, spesifically in
being able to generate the string language€d™c"|n > 0}, {a"b"c"d™|n > 0} and

{a"b™c™d™|n > 0,m > 0}. TAGs are important because they generate the neces-

sary structures for representing the non-context-fregseserial dependencies found in
Swiss German [18] which require the generation of the stenguagg a™b™c™*d™ |n >

0, m > 0}. We will now proceed with some theorems outlining the relaship between
CFGs and TAGs and weighted and probabilistic CFGs. The cat@plierarchy based
on these theorems is depicted in figures 1 and 2.

WCFG w/
cut-points
v A
PCFG w/ rule WLCFG w/
_______ geo norm cut points cut-points

TAG . v
PLCFG Wi strrng
L geo-norm cut-points

CFG
(LCFG)
S Regular Grammar
. \ -.:
""" - FG :

(PCFG W/ posrtrve cut-points)

Fig. 1. The weak grammar hierarchy. Parentheses indicate eqguivglammar formalisms and
dashed edges indicate possibly improper inclusions. Télesgbbubble is the Chomsky hierarchy.

Theorem 7. LCFGs are strongly included in PLCFGs with string geo-noumtypoints.

Proof. Let G = (N, T, S, R) be an LCFG. Fotf € N, let R,, C R be the set of rules
with [ on the left side. Then, for € R,,, letW'(r) = 1/|R|. Then, letc, be a string
geo-norm cut-point wherg = 1/|R|.

Then, for each rule im € R, W/(r) > g. Thus, for each derivation € D(G),
W'(t) > g/l But this implies that the derivation set of the WLCRG, W) with
string geo-norm cut-point, is D(G). Furthermore, for eache N the set of rules with
{ on their left side sums tb implying that(G, W’) is a PLCFG.

Corollary 1. CFGs are strongly included in PCFGs with rule geo-norm cainps.
Proof. By a nearly identical proof to that of Theorem 7.

Corollary 2. LCFGs are strongly included in WLCFGs with cut-points and33Fare
strongly included in WCFGs with cut-points.

Proof. By the transitivity of inclusion and the inclusion resulfgize preceding section.
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Fig. 2. The strong grammar hierarchy. Dashed edges indicate inokithat may be improper.

Proposition 1. There is a PLCFG with geo-norm cut-points which generatestting
language{a™b™c™|n > m — 1 andm > 1}.

Proof. We define the following PLCFGG, W) whose start symbol iS:

(1) S—aBC'1
(2) A > aB 1
(3)B—Ab 1
@B-b 1
(5) C —cC 1%
(6)C —c 3

and the geo-norm cut-poinf whereg = %
First, note that any string of any derivationiiG) is in a™b™c™ for somen, m >
1. Lett € D(G). Letk, be the number ads int and letk. be the number ofs. Then,
|S(t)| = 2 * ko + k. and
1 1 3 1

BT =TI Al e T

Then,
1 1

CQ(|S(t)|) = 92kq ke = 92kq+ke
Finally, since2? > 3 > 21, W(t) > ¢,(|S(¢)|) ifand only if 2k, +k. > kq+2k.—1
if and only if k, > k. — 1. Thus,D((G, W), ¢cy) is exactly those derivations whose
strings are:™b" ™ wheren > m — 1 andm > 1.

To prove that this language is not generated by any CFG we @gdédn’s lemma
[9,15].



Lemmal (Ogden’s Lemma).Llet L = S(D(G)) for a CFGG. Then there is a con-
stantn such that ifz € L and wemarkn or more positions ot then we can write
z = wvwzxy such that:

1. v andz have at least one marked position between them
2. vwz has at mosh marked positions
3. w'lwa'y € Lforalli >0

Proposition 2. There is no CFG that generates the string languége {a™b"c™|n >
m—1andm > 1}.

Proof. Assume on the contrary thatis generated by some context-free grammar. Let
n be the constant given by Ogden’s lemma. We consider thegstria a™b"c"*! in
which allc positions are marked. Then there exist, w, x andy such that = wvwzy.
One ofv andx must contain a, by the first conditionv cannot contain an and a
b because thenv?wx?y would have & preceding am. Also, v cannot contain & but
noa, because them?wz?y would not have an equal numberad andbs. Similarly,v
cannot contain onlys because them?wz2y would have at least + 2 cs with onlyn
as. Also,v cannot contain onlys, since if it does them must contain an equal number
of bs and at least onein which caseuv?wz2y would have a preceding &. Finally,
v cannot be empty because themust either contain onlys, in which casew?wa2y
would contain too manys orz must contairbs andes in which casew?w22y would
contain ac before ab.
Therefore, no such partitioning af exists and, by Ogden’s lemmd, is not a
context-free language.

Theorem 8. PLCFGs with string geo-norm cut-points are not weakly ineld in CFGs.

Corollary 3. PCFGs with rule geo-norm cut-points, WLCFGs with cut-peparnd WCFGs
with cut-points are not weakly included in CFGs.

These results establish that WCFGs with cut-points and RCH@ normalized
cut-points have generative power beyond CFGs. Howevemwbmpared with TAGs,
the next step in the Chomsky hierarchy, we find that they atenmparable. Before
we can proceed though, we need to provide a variant of Ogtemisia that includes
details about the derivations for the strings.

Lemma?2. Let L = S(D(G)) for a CFG G. Then there is a constamt such that if
z € L and wemarkn or more positions of then we can write = uwvway such that:

1. v andz have at least one marked position between them
2. vwz has at most marked positions
3. wlwaly € Lforalli >0

Furthermore, for all derivations € D(G) such thatS(¢t) = ww"wz™y, ¢t has a
subtreet’ whose root is a non-terminal dominating only those terminals invz and
t has another subtre®’ whose root is alsel dominating the terminals in.



Proof. This can be easily proven in an identical manner to Ogdergsnal proof ex-
cept that care must be paid to the rules in the trees.

Theorem 9. No WCFG with cut-points generates the string language {a™b"c"|n >
0}.

Proof. Assume on the contrary, thata WCEG, W) and a cut-poink exists such that
S(D(G,W),k)) = {a™b"c"|n > 0}. Letn be the constantin lemma 2 , ek D(G)
be the derivation with the highest weight such ti§dt) = a"b"c™ for somen, let
2z = a™b"c, let all the positions be markédand letz = wvwzy.

Then, by lemma 2, has a subtre# whose root is a non-termindl dominating only
those terminals inwx andt¢ has another subtrgé whose root is alsod dominating
only those terminals im.

Then, sincevwz has at most marked positions, it must contain either a8, all
bs, allcs, someus followed bybs or someés followed bycs. Furthermore, one af or
= must contain a terminal. LeR be the set of rules in—t' and letr,, = [, . W(r)
and letz,, = W (t).

It must be the case that, > k, since otherwise™b"c¢" ¢ L. If r, > 1, then
wv?wa?z does not contain equal numbersast bs andcs, but has weight,, * z,, > k.
If r, < 1, thenuwz does not contain equal numbersad, bs andcs, but has weight
Zw[Tw > k.

Corollary 4. No WCFG with cut-points generates the string langugg&™c"d"|n >
0}.

Proof. The proof is essentially identical to the proof for the laage{a™b"c"|n > 0}.

Corollary 5. No WCFG with cut-points generates the string langupge™ c¢"d™|n >
0,m > 0}.

Proof. The proof is only a slight variation on the proof for the laage{a"b"c"|n >

0}.

Corollary 6. No PLCFG with string geo-norm cut-points, PCFG with rule gearm
cut-points nor WLCFG with cut-points generates the stramguagega™b™c"|n > 0},
{a"b"c"d"™|n > 0} or {a™b™c*d™|n > 0,m > 0}.

Proposition 3. There is a PLCFG with geo-norm cut-points that generatessthiag
language{a™b™c™d™e’|n > m + o — 4 andm, o > 1}.

Proof. We define the following PLCFGG, W) whose start symbol is:

(1) S—aBCE 1 (6) D — Cd &
(2)A—=aB 1 (7)D—d 1
3)B—Ab L R)E—Eel
(4) B—b 1 (9E—e 3
(5) C —¢D 1

8 Marking all positions is equivalent to the pumping lemma [9]



and the geo-norm cut-poinf whereg = %
Then, theD((G, W), ¢,) consists of only those strings of the fowfib™c™d™e®
but by the same reasoning as in Proposition 1, it must be geetbat: > m + o — 4.

To proceed with our final theorem concerning the relatigngi@tween TAGs and
CFGs, we need to state Ogden’s lemma for the tree-adjoiaimgLiages given by [16]:

Lemma 3. Let L = S(G) for a TAGG. Then there is a constantsuch that ifz € L
and we marka or more positions of then we can write: = grstuvway such that:

1. One of the following holds:
— ¢, r ands each have at least one marked position
— s, t andu each have at least one marked position
— u, v andw each have at least one marked position
— w, x andy each have at least one marked position

2. tuv has at most marked positions

3. gristiuviwaly € Lforalli >0

Proposition 4. There is no TAG that generates the string languég&™c™d™e°|n >
m+o—4andm,o > 1}.

Proof. The proof is quite similar to the proof of proposition 2 exctyat we must use
lemma 3 rather than Ogden’s lemma.

Assume on the contrary thdt is generated by some TAG. Létbe the constant
given by lemma 3. We consider the string= a™b"c*d*e” for n = 2k — 4 in which all
ds are marked. Then there exist, s, t, u, v, w, x, y such that = grstuvwaxy.

First, we consider the case where one of, v or 2 contains two or more symbols
from the set{a, b, ¢, d, e}. In this case, the stringr?st?uv?wz?y must contain a pair
of symbols that are out of order which results in a string thabt in L.

Therefore, each of, ¢, v andx contain zero or one symbols from the set of ter-
minals. By the pigeonhole principle, one of the symbols frpmb, ¢, d, e} must not
appear in any of, t, v or z.

That missing symbol cannot lissince only theis are marked and by the first clause
of lemma 3, one of, ¢, v or x must contain a marked symbol. If that missing symbol
wasc, then the stringr? st2uv?wz2y would not contain an equal numberef andds.

If the missing symbol ig, thenb must also be missing since otherwigé st?uv?wr?y
would not contain an equal number @ andbs. However, if both are missing then
qr?st?uv?wz?y would contain at least + 1 ds and at least es but only2k — 4 as
which would falsify the inequality oft > m — o + 4 required of all strings irL.

Therefore, the missing symbol must geall of which must occur in the substring
y. By analysis of the proof of lemma 3, we know that must be atgoithe derivation
tree ofz such that its descendants make up the subsfrif@jncey containsk es, we
can mark them differently than our previous markings andyafgmma 3 again. By
lemma 3,L must contain strings that have arbitrary numberssobut onlyk as. This
is a contradiction and proves the result.

Theorem 10. PLCFGs with string geo-norm cut-points are weakly inconase to
TAGS.

Corollary 7. PCFGs with rule geo-norm cut-points, WLCFGs with cut-pearnd WCFGs
with cut-points are weakly incomparable to TAGs.



6 A Characterization of Weighted CFGs with Cut-Points

The preceding section introduced languages that the wegdrid probabilistic CFGs
generate but that neither CFGs nor TAGs can. In this seatiemprovide a characteriza-
tion of WCFGs with cut-points. Itis currently an open questas to how to characterize
P(L)CFGs with geo-norm cut-points or if the strong inclusio WCFGs is even proper.

This characterization is relative to the languages of CF@savinear inequality
over rules. Because the languages of CFGs have not beesglyedharacterized, this
characterization is itself not precise but it is illuminmegi

Definition 12. Alinear product inequality CFG (LPICFG a pair (G, L) whereL is
an inequality over the rules & = (N, T, S, R) andR of the form:

T1 72 Tk
alrcy’ k. x>

wherek = |R| and¢; € R for 1 < ¢ < k. The derivations ofG, L) are exactly those
derivationst € D(G) where the variables; in the inequality are instantiated as the
counts of the corresponding rulestimnd the resulting inequality is true.

Theorem 11. LPICFGs are strongly equivalent to WCFGs with cut-points.

Proof. The correspondence between the two grammars is straiglatfdorwhere the
valuec in the LPICFG corresponds to the cut-point in the WCFG anawibightsc; for

1 <i < kinthe LPICFG correspond to the weights the weight functissigns to the
rules. Then, the derivations that are eliminated by thepoutt are exactly those that
are eliminated by having a false inequality.

The correspondence between LPICFGs and WCFGs with cutsasistraightfor-
ward but it helps to illuminate the restrictions that unaethe weighted and proba-
bilistic CFGs. In particular, it means that cut-points caiswe a kind of dependency
between parts of derivations that are arbitrarily distartttbat dependency can only be
a linear relationship and that dependency can only disodteibetween parts of deriva-
tions by preferring one over another by some constant fdéeshaps most importantly,
WCFGs with cut-points cannot require that a certain stmgcin a derivation exist if
and only if another structure exists except via the same amésim used by a CFG.
This prohibits weights from expressing the kind of linksttHapendencies express in
discrete grammars.

7 Conclusion

We have investigated the effect that always preferringcsines with higher weight
to structures with lower weights has on the discrete langsiayf probabilistic and
weighted CFGs. The result is that cut-points increase badtstrong and weak gen-
erative power not only beyond CFGs but also beyond TAGs. @ hesults show that
the use of probabilities and weights, even in the form thay thre typically used in
modern parsing systems can add to the generative capadtity pfactical systemsin a



way that moving up the Chomsky hierarchy to TAGs cannot. Hareve also estab-
lished that this increase in power is orthogonal to movinghgoChomsky hierarchy
because the weights cannot establish the kinds of depeiedehat TAGs can.

There remain a number of open problems in the domain of pitiétatband weighted
CFGs with cut-points, which will require future researamnphrticular, whether the in-
clusion of PCFGs with normalized cut-points in WCFGs witlt-paints is proper can
help to determine whether it is important to continue toidggiish between weights
and probabilities when abiding by the principle that higlerghts are preferable.

The results that we have presented in this paper give us agrstadding of the
kinds of structures that probabilities can be used to géménamodern probabilis-
tic parsers. In particular, we have shown that the advantdgesing probabilities or
weights to alter the generative capacity of a grammar fasmehllows for arbitrarily
distant grammatical structures to affect each other inithiéedd way described in the
preceding sections. Whether this is linguistically use@gjuires more research.

In addition, the notions explored in this paper can be exddnd other grammar for-
malisms such as regular grammars, finite automata, TAGs emdhioatory categorial
grammars. Such research can give us similar insights itter @ystems used in natu-
ral language processing that will help when choosing thengrar to use in a natural
language system.
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