

UNIVERSITY OF TORONTO

Factorizing pose & shape

- Enables vision, graphics, & robotics tasks (e.g., pose-invariant recognition, manipulation, constrained inference, retrieval, pose transfer).
- Spectral methods also factorize pose and shape by separating **ex**trinsic from **in**trinsic geometry.

Changing intrinsic shape Metric-altering deformations; they often change the object class/identity.

Changing extrinsic pose Often intra-class deformations: rigid transforms, articulation, style-like.

<u>Goal</u>: disentangle *extrinsic pose* and *intrinsic shape* in the latent representation of a 3D point cloud, *without annotations*.

Background: Intrinsic Geometry

- Laplace-Beltrami Operator (LBO): Δ_{g}
- LBOSpectrum(shape) $\approx \hat{\lambda}$:
- Captures intrinsic geometry (vector signature).
- Isometry invariant (e.g., ~ignores articulation).

Similar body shape, different pose \approx Close in $\hat{\lambda}$ space

Geometric Disentanglement for Generative Latent Shape Models

Tristan Aumentado-Armstrong, Stavros Tsogkas, Allan Jepson, Sven Dickinson Vector Institute for Al Samsung Al Center, Toronto University of Toronto

Results: Pose-Aware Retrieval Geometrically Disentangled VAE: Model Architecture **Output:** Reconstructed • SMAL and SMPL have separate shape β and point cloud \hat{P} • Model: two-level VAE (as in [1]). pose θ parameters, so we can compute separate • Pretrain AE space independently. retrieval errors for each (E_{β} and E_{θ}). Disentanglement with constricted • Ideally, z_I should have high E_{θ} and low E_{β} ; z_E $\dim(z)$ forces pose into z_E . should have *high* E_{β} and *low* E_{θ} . Comparisons: full AE *X* and VAE *z* latent vectors. Penalty on Jacobian of each latent group with respect to another: $\mathcal{L}_J = \gamma_J \max_{\substack{g, \tilde{g} : g \neq \tilde{g}}}$ $|\partial \mu_{\widetilde{g}}||_F$ Retrieval with z_F Retrieval with z_T Quer \mathcal{L}_V Reconstruction Hierarchically Factorized (HF) VAE loss [2]: $\mathcal{L}_{\rm HF} = \beta_1 T C_{\rm intra} + \beta_2 P_{\rm DKL} + \beta_3 \mathcal{I}[x;z] + \beta_4 T C_{\rm inter}$ **Results: Latent Manipulations** Latent digit subspace traversal can roughly separate shape and style. Each row traverses the marked set. office office of the **Failure Modes** Observed trade-off between reconstruction fidelity, **VAE Operations** prior matching, and disentanglement. **Generation/Sampling** Autoencoding Encoding Unintuitive Incomplete failure intermediates disentanglement 00335500 991 References [1]: Achlioptas et al, Learning Representations and Generative Models for 3D Point Clouds, ICLR, 2018.

Datasets: point clouds derived from MNIST, DYNA, SMAL, and SMPL. **Interpolations:** visualizing movement in z_E and z_I independently largely shows the latter controls intrinsic shape, while the former controls pose.

Latent interpolations between blue-coloured shapes (SMAL & SMPL). Note: upper-right and lower-left shapes are latent *pose/deformation transfers*. Vertical: movement in z_E ; horizontal: movement in z_I .

VECTOR INSTITUTE

SANSUNG AI CENTRE

Errors		X	Z	Z_E	Z_I
SMAL	$E_{m eta}$	0.641	0.743	0.975	0.645
	E_{θ}	0.938	0.983	0.983	0.993
SMPL	$E_{m eta}$	0.856	0.922	0.997	0.928
	E_{θ}	0.577	0.726	0.709	0.947

[2]: Esmaeili et al, *Structured Disentangled Representations*, AISTATS, 2019.